

A novel method for determining thoraco-abdominal organ location using low dose X-ray: Applications for body armour design.

Rob Davidson Faculty of Health, University of Canberra
Celeste Coltman Research Institute for Sport and Exercise & Faculty of Health, University of Canberra
Mark Pickering School of Engineering and Information Technology, University of New South Wales

CONTENT

- Body Armour: coverage
- Organ Location: limitations
- Solution
- Results
- Discussion
- Future Work

Function of Body Armour

- Personal Protective Equipment (PPE)
- Protect vital organs of thorax & abdomen^[1, 2]
- Protection-mobility tradeoff
- Evidence based design

Coverage requirements

- No universal requirements
- National Institute of Justice:
 - Standards for stab resistance coverage of vital organs: heart, liver, kidneys and spleen
- Breeze^[2]:
 - Essential organs: heart, great vessels, liver and spleen

Organ Location

- Medical imaging literature centre mass of organs
- Lack of data: boundaries of organs – dependent on body size and shape / male versus female
- Consideration of breathing and postural conditions ^[1]
- Erect versus prone

Limitations of determining organ location

- Inappropriate imaging modalities: CT, MRI and ultrasound
 - Invasive / risks
 - Expensive
 - Inappropriate

 Goal is to be able to develop a method that can be easily used for all soldiers

Alternate solution?

- Existing methodologies^[3]
- For this work:
 - Low dose PA and lateral chest / upper abdomen x-ray images
 - 3D surface scan

- PBU-60 whole body anthropomorphic phantom (Kyoto Kagaku Co. Ltd., Kyoto, Japan)
 - Includes lungs, heart, great vessels, liver, kidneys and spleen

- PBU-60 whole body anthropomorphic phantom
 - Includes lungs, heart, great vessels, liver, kidneys and spleen
- Planar X-ray images, PA and Lat., and known image magnification factors.

(X-ray unit: Carestream Health, Rochester, USA)

> planar X-ray images PA & lateral of phantom

- PBU-60 whole body anthropomorphic phantom
 - Includes lungs, heart, great vessels, liver, kidneys and spleen
- Planar X-ray images, PA and Lat., and known image magnification factors.
- External surface scan using a handheld 3D scanner (Artec[™], Leo 3D Scanner, Artec Group, San Jose)

- PBU-60 whole body anthropomorphic phantom
 - Includes lungs, heart, great vessels, liver, kidneys and spleen
- Planar X-ray images, PA and Lat., and known image magnification factors.
- External surface scan using a handheld 3D scanner
- CT scans and 3D reconstructions (Canon Aquilion One, Tochigi, Japan)

- X-ray images saved in DICOM format; external surface scan in stereolithography (stl) format
- X-ray images were manually segmented using custom software (Orthovis v4 Matlab, The Mathworks, Inc., Natick, MA)^[4]
- Multi-modality 2D–3D registration based on previous work ^[5] using segmented X-ray images and external surface scan
- Compare the created 3D registered model against ground truth, the CT scan data

- Registration of 2D surface to 3D external scan in two planes:
 - Front (PA) and
 - Side (lateral)

OrthoV	is									
Army : Chest	1.6mAs	()								
Register CT to	o Fluoro									
250	17 · ·			50	250	111	(11 2		
200	1			J.	200 -		- m	3		
150				A.C.	150 -	1	-		2	
100			1		100	: 3			1	
100			-	- ji	100	1-0	1		1	
50	t			-	50 -	11:			1	
L	50	100	150	200	250	50	100	150	200	250

Results – lung fields

Results – heart

Results – liver

Results – lung, heart and liver

Discussion

- Proof of concept work shows promising initial results of organ localisation from two low dose planar X-ray images^[6] and a 3D external surface scan
 - chest / abdo X-rays ≈ 0.7 mSv
 - chest / abdo CT scans $\approx 15 \text{ mSv}$
- Potential to classify soldiers into body shape groups based on organ location and external body shape
- Limitations
 - Anthropomorphic phantom only closely represent human X-ray attenuation characteristics
 - No breathing and postural changes

Future Work

- Test method on humans and correlate to images acquired in a vertical MRI scanner
 - Show influences of gravity and breathing
- Build data sets of soldiers' body shapes / sizes and organ locations, both male and female

References

- 1. Laing S & Jaffrey M (2019) Thoraco-abdominal organ locations: Variations due to breathing and posture and implications for body armour coverage assessments. Melbourne, Australia: Defence Science and Technology Group; TR-3636. (unpublished report)
- 2. Breeze J, Allanson-Bailey LS, Hepper AE & Midwinter MJ (2015) Demonstrating the effectiveness of body armour: a pilot prospective computerised surface wound mapping trial performed at the Role 3 hospital in Afghanistan, *Journal of Royal Army Medical Corps*, 161(1), p36-41
- 3. Scarvell JM, Pickering MR & Smith PN. (2010) New registration algorithm for determining 3D knee kinematics using CT and single-plane fluoroscopy with improved out-of-plane translation accuracy, *Journal of Orthopaedic Research*, 28(3), p334-340
- 4. Lynch JT, Schneider, M, Perriman DM, Scarvell JM, Pickering MR, Asikuzzaman Md., Galvin CR, Besier TF & Smith PN, (2019) Statistical shape modelling reveals large and distinct subchondral bony differences in osteoarthritic knees, *Journal of Biomechanics*, 93, p177-184
- 5. Akter M, Lambert AJ, Pickering MR, Scarvell JM & Smith PN (2015) Robust initialisation for single-plane 3D CT to 2D fluoroscopy image registration. *Comput Methods Biomech Biomed Eng Imaging Vis,* 3, p147–171.
- Australian Radiation Protection and Nuclear Safety Agency (2019). Having a scan? A guide for Medical Imaging, ARPANSA Fact Sheet – Medical Imaging: Information for Patients, retrieved on 28 August 2019 from <u>https://www.arpansa.gov.au/sites/default/files/legacy/pubs/rpop/patienthandout.pdf</u>

A novel method for determining thoraco-abdominal organ location using low dose X-ray: Applications for body armour design.

Rob DavidsonFaculty of Health, University of CanberraCeleste ColtmanResearch Institute for Sport and Exercise & Faculty of Health,
University of CanberraMark PickeringSchool of Engineering and Information Technology,
University of New South Wales