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Different function/load different material optimum
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Probing all scales within materials

micromechanics

nanomechanics

microstructures

structural

mechanics
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Architectured materials
in a nutshell
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A given material for a given function

Different function/load different material optimum

[Ashby, 2011]
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The materials space

[Ashby, 2013]
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Bridging the scales

Adapted from [Bouaziz et al., 2008]
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Geometry, not a new idea…

[Ashby, 2011]

Same function different structural designs
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Changing the topology – more rigid

[Ashby & Bréchet, 2003]
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Changing the topology – more compliant

[Ashby & Bréchet, 2003]
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Optimising the topology

[Laszczyk, 2011][Tovar et al., 2006]
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In summary
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• Architectured materials are a rising class of materials that bring new 

possibilities in terms of functional properties, filling the gaps within the materials 

performance space.

• They include any material that has been morphologically engineered such 

that some of its properties have been enhanced in comparison to the bulk 

monolithic material, due to both structure and composite effects, which depend 

on the multiphase morphology, i.e. the topological arrangement of each phase.

• The development of architectured materials is intrinsically transdisciplinary, 

on the fringes of physics, chemistry, and mechanical engineering, but also 

biology, computer science, architecture, design, etc. 
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Some examples
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Lattices with negative Poisson’s ratio
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[Dirrenberger et al., 2011, 2012, 2013]
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Architectured stochastic fibrous materials
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Large-scale additive manufacturing
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[Gosselin et al., 2016; Dirrenberger, 2016; Duballet et al., 2017; Duballet et al., 2018]

• 1st additively manufactured structural element in France

• Spin-off company created : XtreeE
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3D printed architectured wall
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Architectured lattice metamaterials
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• Multiaxial mechanical loading

• Non-homogeneous boundary conditions

• Architectured materials necessitate new methods of characterisation

[Auffray et al., 2015; Rosi & Auffray, 2016]
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Laser-architectured metal sheets
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Laser heat-treatment
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Laser-architectured metal sheets
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Prospective topics of interest
for international collaboration
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Prospective research topics

• Hybrid architectured materials

• Multiphysics computationally-efficient modelling tools

• Innovative material processing (not just additive manufacturing!)

• Materials science through machine learning

• Cradle-to-cradle design of structures

25
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Hybrid architectured materials
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Ti64 initial configuration Localisation and fracture (13%)

Hybrid initial configuration Localisation and fracture (10%)

• Mitigating the surface defects of lattice structures

• Stabilising the lattice, delaying the collapse

• Hyperelastic/viscoelastic behaviour for dissipation

[Dirrenberger & Molotnikov, 2017]
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Durability of polymers and composites
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• How to predict lifetime of polymers in 

use conditions?

• Main ageing mechanism: oxidation

• How to simulate the stress-strain state in 

the oxidized layer in order to assess the 

time when spontaneous cracking occurs

1. Kinetic modelling molecular tracer  by 

coupling oxidation mechanism et oxygen

diffusion

METHODOLOGY:
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[Ernault et al., 2017]
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Multilayer coextrusion
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Extruder A
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n : number of ME

• Section area: 10 x 10 mm²

• Up to 13 ME in series

n = 10 → 2049 layers

n = 11 → 4097 layers

n = 12  8193 layers

n = 13  16385 layers

Nanoscale thickness

• Nanocomposites processing

• Confined polymer systems

• Forced-assembly / self-assembly materials

[Messin et al., 2017; Bironeau et al., 2017; Bironeau et al., 2016]
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Outlook

• Many scientific questions remain (durability, 
processing, modelling…)

• Most industrial sectors have applications for 
architectured materials: biomedical, aerospace, 
energy, automotive, defence…

• We need more international collaboration in order to 
tackle the scientific challenges involved in materials
engineering, and foster innovation.
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Thank you!
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Dr. Justin DIRRENBERGER

Contact: justin.dirrenberger@ensam.eu
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