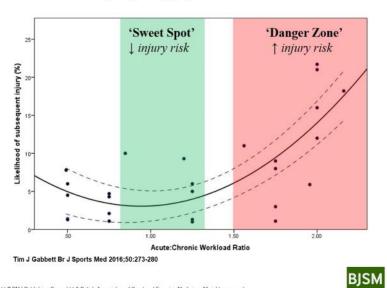


A WORKLOAD MONITORING SYSTEM THAT CALCULATES NECK FORCES IN FAST JET PILOTS

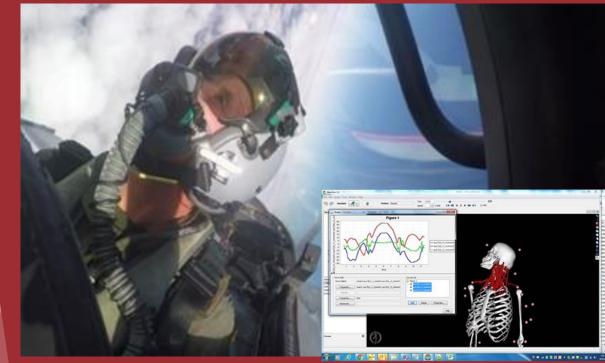

Dr Phil Newman¹, Dr Wayne Spratford¹ 1. University of Canberra, Research Institute for Sport and Exercise

Sport- Load monitoring

- What is the neck Workload?
- What conditioning loads are best for positive adaptation?
- What loads are associated with neck complaints?

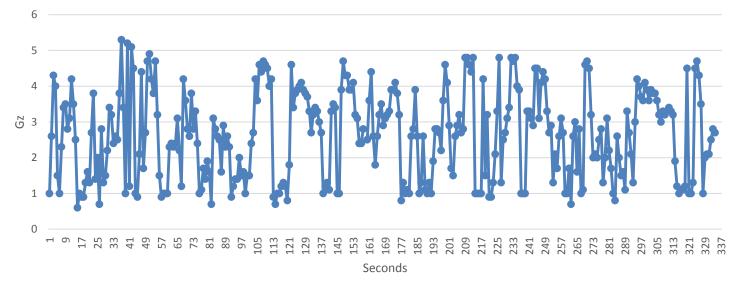
Guide to interpreting and applying acute:chronic workload ratio data.

Copyright © BMJ Publishing Group Ltd & British Association of Sport and Exercise Medicine. All rights reserved


Australian cricket team is using wearable tech to keep bowlers injury free

Innovative 'torpedo technology' also being used by Welsh rugby union team

UC Neck Forces Study



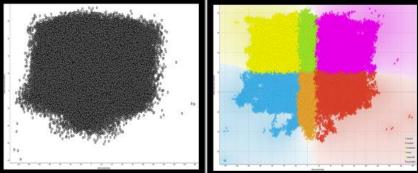
- Peak Loads?
- Cumulative loads?
- Effects of Helmet?
- Effects of Gz?
- Effects of Head Motion?
- Muscle and joint loads?
- Pilot load profiling?
- Future directions

Preliminary Task analysis- video

2 pilots- average 176 head rotations in 10 minutes of flight

Gz profile highly variable... So what is the neck load?

Average_Gz

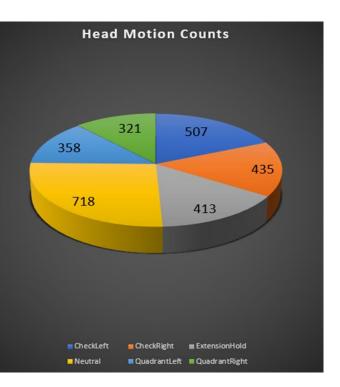


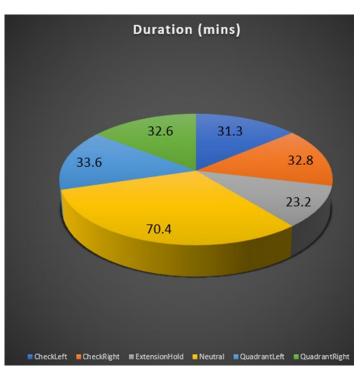
Head Motion Classifier

		Predicted CheckLeft	CheckRight	ExtensionHold	Neutral	QuadrantLeft	QuadrantRight	Σ
Actual	CheckLeft	100.0 %	0.0 %	0.0 %	0.0 %	0.0 %	0.0 %	38329
	CheckRight	0.0 %	100.0 %	0.0 %	0.0 %	0.0 %	0.0 %	41042
	ExtensionHold	0.0 %	0.0 %	100.0 %	0.0 %	0.0 %	0.0 %	28939
	Neutral	0.0 %	0.0 %	0.0 %	100.0 %	0.0 %	0.0 %	89211
	QuadrantLeft	0.0 %	0.0 %	0.0 %	0.0 %	100.0 %	0.0 %	40771
	QuadrantRight	0.0 %	0.0 %	0.0 %	0.0 %	0.0 %	100.0 %	39468
	Σ	38329	41042	28939	89211	40771	39468	277760

Neutral		Extension Hold
Check Left		Check Right
Quadrant Left		Quadrant Right

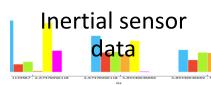
Head motion counter


Classification accuracy of the machine learners: LR 2.0% NB 3.2% kNN 96.8% Adaboost 100%.

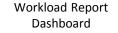

We have built an algorithm to accurately discriminate, classify, and count 6 head motions

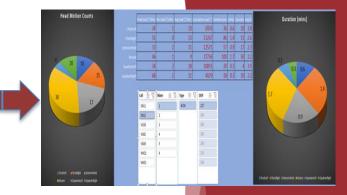
Head Motion Counter

- Reliable head
 motion counter
- Frequency and Duration and Type



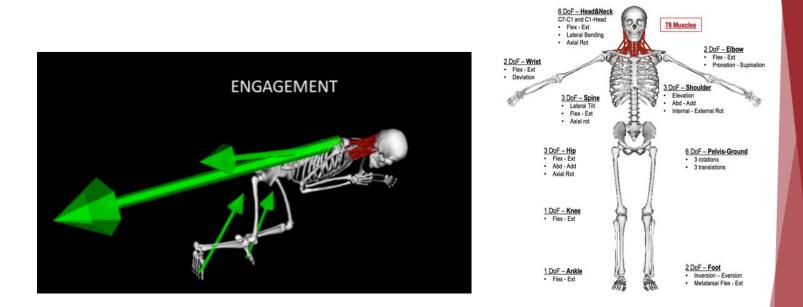
Trained and tested MOTION classifier


Head motion COUNTER



Trained and tested FORCE predictor

- 42 videos
- Inertial sensor data

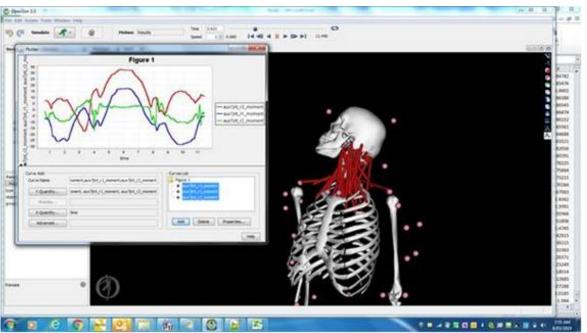


Flight data processor

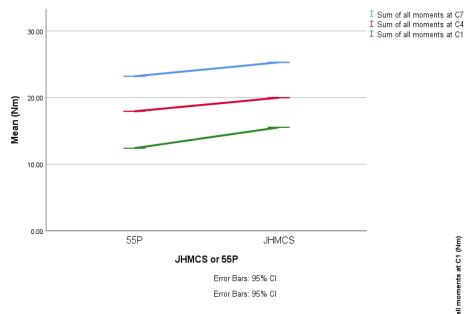
OpenSim modelling

 Using a musculoskeletal modeled developed at Bath University for Rugby Scrummaging, trajectory data was imported into the OpenSim platform

Lab Methods



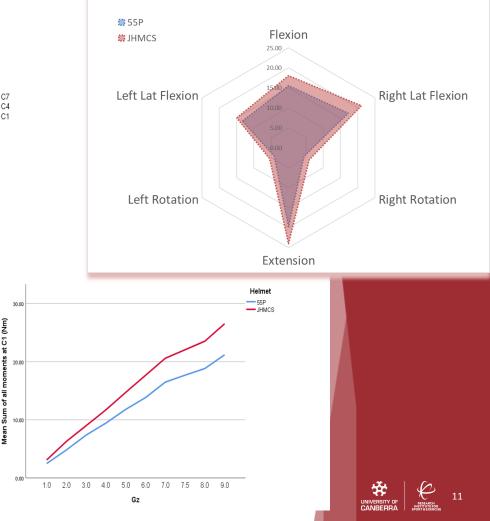
- 3D trajectory data were collected from 20 retroreflective markers attached to the helmet, thorax and upper-arms using a motion analysis system
- RAAF pilots performed common aerial combat head checks while sitting in an F/A-18A ejection seat
 - Check Left, Check Right, Extension Hold and Extension Scan
- Two helmets were worn, HGU-55/P and JHMCS


Lab Methods ·

- COM and MOI properties were altered within the model to reflect that of the helmet, before each participants data set was
 - Scaled and inverse kinematics and inverse dynamics created
- The Opensim model has enabled the calculation of neck forces associated with dynamic head motions.

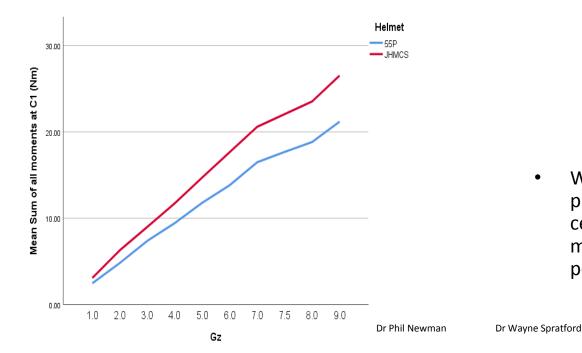
Effects of Helmet

JHMCS is associated with consistently higher neck forces than 55P


at C1 (Nm)

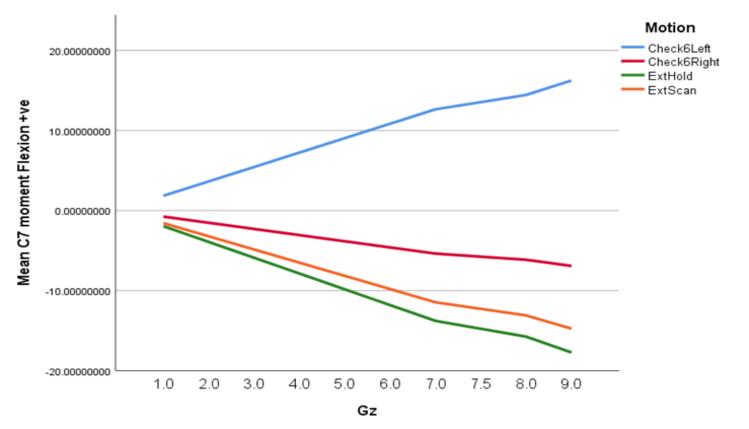
Sum of all mom

Mean


The effect of JHMCS is proportionally greater at C1.

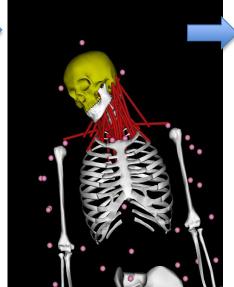
HELMET COMPARISON

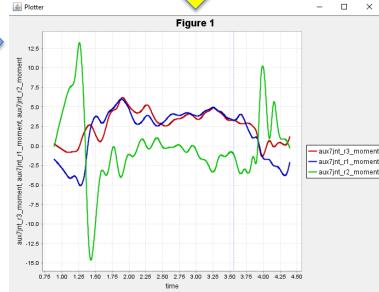
Effects of G force

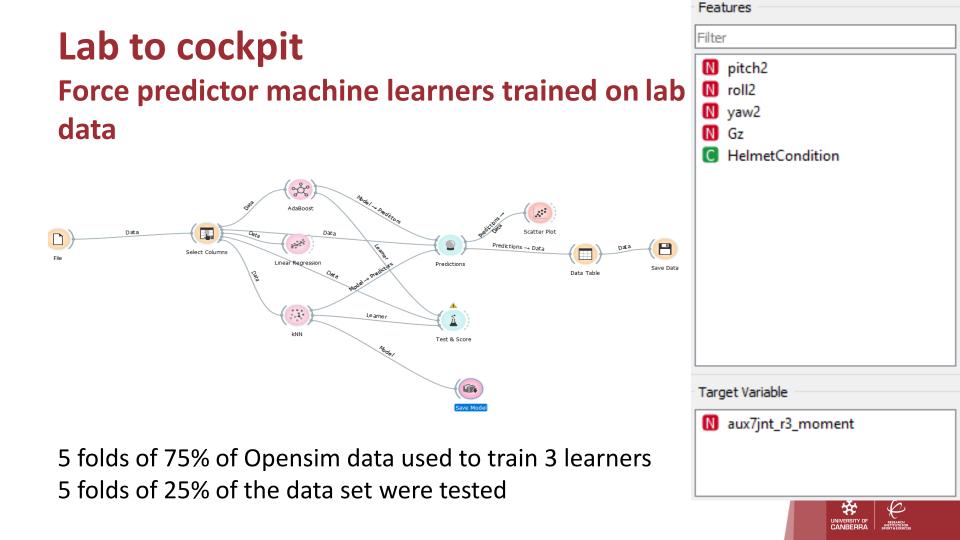

- Gz increases neck force linearly at all segments.
- Every 1 unit increase in Gz results in a 10 % increase in neck force when wearing the 55P.
- Every 1 unit increase in Gz results in a 11 % increase in neck force when wearing the JHMCS.

 We now have force predictions for each cervical segment, (and muscle forces also possible)

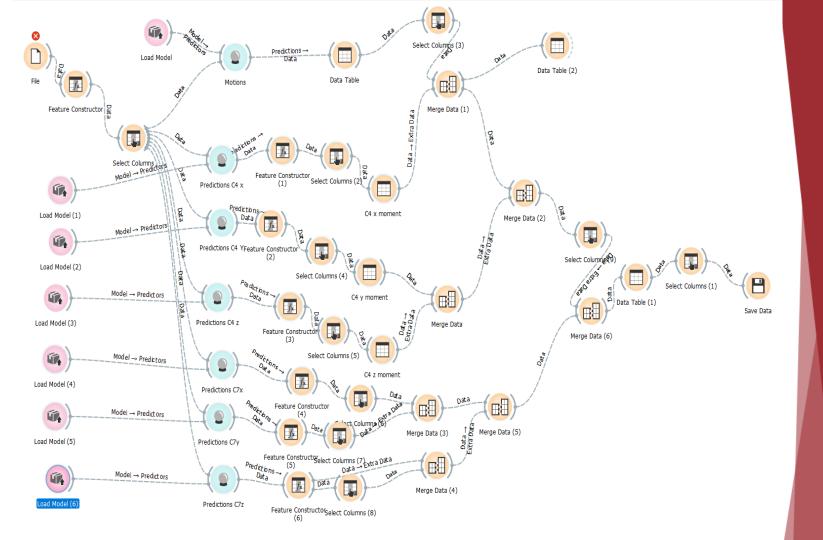
Effects of Motion Type


Dr Wayne Spratford


Neck Force Prediction-Lab to Cockpit?


OpenSim model predicts neck forces in pilots

Method - train and test algorithm


kNN	AdaBoost	Linear Regression	aux7jnt_r3_moment	pitch2	roll2	yaw2	Gz	HelmetCondition
-29.71066	-29.71066	-14.68522116	-29.71066695	42.76217160	5.61916302	-19.10914842	9.0	55P
-29.65144	-29.65144	-14.63400750	-29.65144730	42.90314611	5.54587117	-18.61120241	9.0	55P
-29.81381	-29.81381	-14.60319342	-29.81381702	43.10604486	5.26686525	-18.01762868	9.0	55P
-30.16096	-30.16096	-14.63981116	-30.16096750	43.21756174	4.91007898	-17.84795077	9.0	55P
-30.85172	-30.94370	-14.71875945	-30.85172520	43.40827698	4.18847730	-17.59472409	9.0	55P
-30.94370	-30.94370	-14.74584823	-30.94370964	43.44901194	4.02671209	-17.57733500	9.0	55P
-30.99066	-30.99066	-14.74081018	-30.99066240	43.44594010	4.01641841	-17.56250758	9.0	55P
-31.08700	-31.08700	-14.73975935	-31.08700743	43.47359164	3.92503987	-17.48179660	9.0	55P
-31.50744	-31.50744	-14.70303297	-31.50744616	43.47133140	3.66730339	-17.29249402	9.0	55P
-31.61562	-31.61562	-14.68957223	-31.61562798	43.47250833	3.54628458	-17.21320117	9.0	55P
-31.93023	-31.93023	-14.63214859	-31.93023727	43.44689408	3.24515392	-16.98481373	9.0	55P
-32.01269	-32.01269	-14.55088195	-32.01269506	43.42284623	2.98721419	-16.67317472	9.0	55P
-31.97735	-31.97735	-14.50147948	-31.97735388	43.41515703	2.91897653	-16.48878304	9.0	55P
-31.69236	-31.69236	-14.42070070	-31.69236474	43.48542019	2.79906433	-16.01515067	9.0	55P
-31.44189	-31.44189	-14.43123482	-31.44189618	43.59932151	2.81408006	-15.82375563	9.0	55P
-30.16094	-30.16094	-15.42815475	-30.16094069	43.98535547	4.01581984	-19.03182173	9.0	55P
-29.24362	-29.24362	-15.14711725	-29.24362583	43.94144902	3.96858548	-18.05751659	9.0	55P
-28.95543	-28.95543	-15.06393194	-28.95543460	43.94416506	3.95362308	-17.73660997	9.0	55P

Trained machine learners predict neck force based on Gz and head coordinates

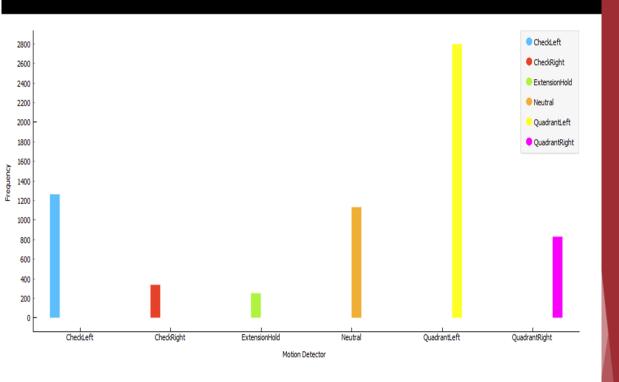
Excellent fit, error small (0.7-3%)

Method	MSE	RMSE	MÂE	R2
AdaBoost	1.275	1.129	0.310	0.994
kNN	4.054	2.013	0.692	0.981
Linear Regression	99.061	9.953	7.677	0.533

Lab to cockpit

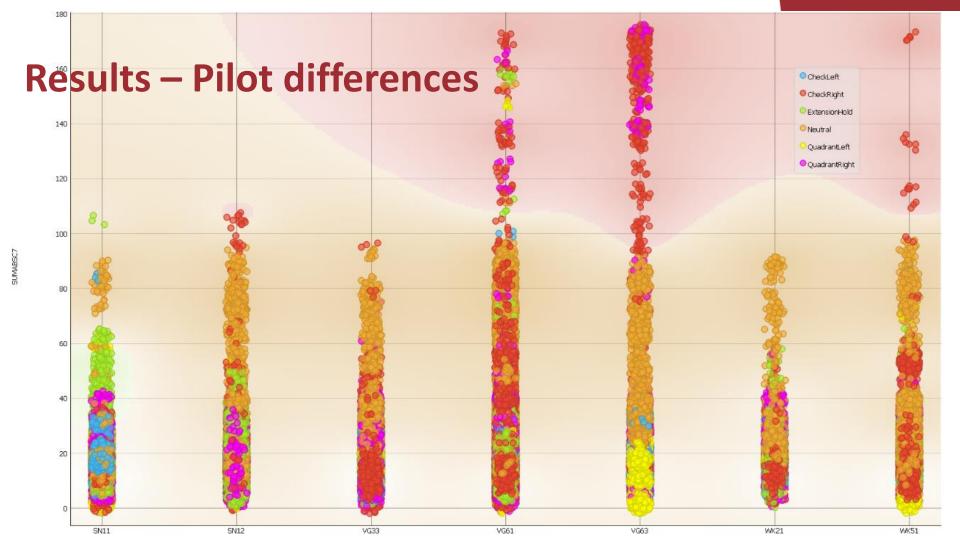
- Video footage of the pilot
- F/A-18A
- Head position co-ordinates relative to the instrument panel
 - JHMCS HMD sync'd with video
 - 7 pilots
 - 11 sorties
 - 42 video segments
- Calculate (predict) neck forces in flight at C7,
 - C4, C1
- Only input is head-mounted inertial sensor data and Gz-meter

CheckLeft



QuadrantLeft (component of High Aspect Pass)

QuadrantRight (component of High Aspect Pass)



Distribution of 'Motion Detector' grouped by 'Motion Detector'

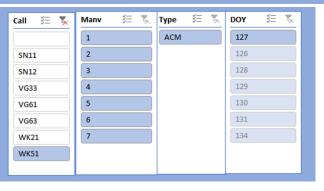
• 6 head motions accurately classified and counted from real flights


- 42 videos
- Inertial sensor data
- OpenSim data
- Trained and tested FORCE predictor

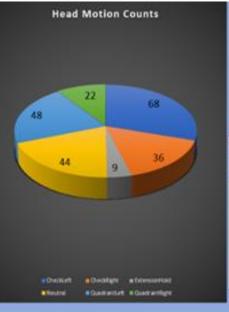
2.67470090118 - 3.85449036665

 Trained and tested MOTION classifier

 Head motion COUNTER

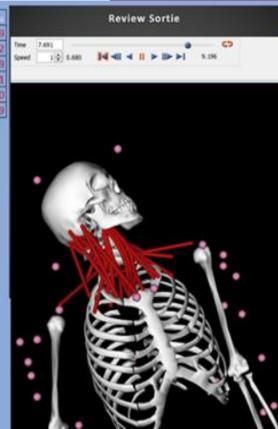


Results- a goldmine


	Peak load C7 (Nm)	Min load C7 (Nm)	Avg load C7 (Nm)	Cumulative Load C7	Duration(sec)	(mins)	Episodes	Avg Gz
CheckLeft	77	0	12	445025	1880	31.3	507	2.5
CheckRight	127	0	14	559925	1966	32.8	435	2.5
ExtensionHold	40	0	17	466381	1390	23.2	413	3.4
Neutral	123	0	10	862259	4222	70.4	718	2.5
QuadrantLeft	52	1	22	900531	2019	33.6	358	3.1
QuadrantRight	91	1	18	690347	1956	32.6	321	3.1

- For example in this pilot;
 - Most time spent in neutral
 - Highest peak load in check right
 - Highest average load and cumulative load was at C7 , in quadrant left position

Results- peak, cumulative, technique, helmet, sortie, segment, muscle..... risk

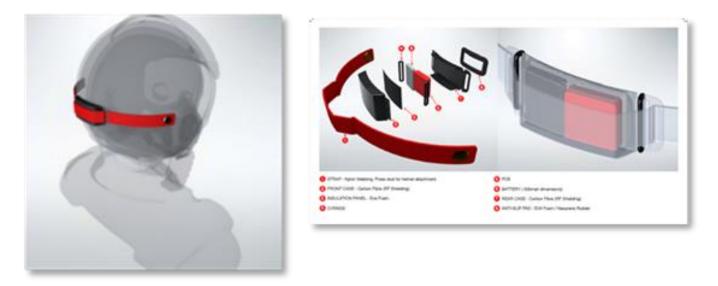


		Mix load (7) html	Avg load C7(Net)	Remulation Load C7	Duration (was)	(marti B
Owner	27	1	11	51277	244	4.1
Characters	127	2	15	82430	-268	4.5
Commissioned B	36	3	22	10627	24	0.4
Timutal	83	2	11	65769	300	5.0
Guidentiett	36	4	23	158356	338	5.6
	31	4	16	83231	254	4.2

Call 🔅 😨	Manv 翁 😵	Type 🕺 🗌	DOY 第12
VG33	1		128
VG63	2	ACM	128
	3	ACM Def	127
	4	ACM HA	129
		ACM Hostile	130
		Break	131
		HA BEM	134
1. I.	-		

22

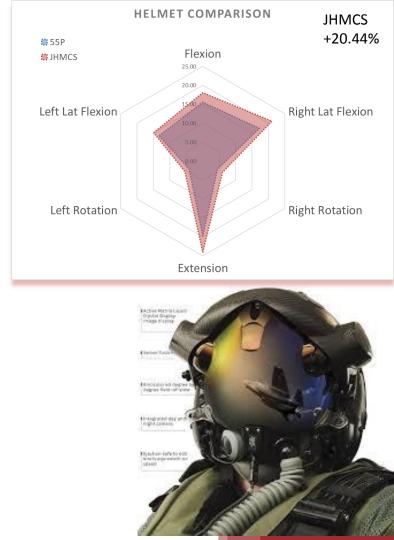
Summary


This study has shown we can;

- efficiently and accurately monitor pilot *workload*
- make *technical* review and training more feasible and inform *conditioning* loads
- enable access to *immediate* post-flight summaries of workload.
- enable prospective *calculation of risks* associated with neck forces (further study)
- Conduct comparative modelling of *new helmet* designs

Future

- We are developing Head mounted sensors and interface
- What is neck force and injury relationship?



Future

- We can now quantify the difference between helmets.
- What is best design to reduce neck force?

HelSim V1.5 Adjust models according to parameters below and run Inverse Select all Next gen Helmet model v3.8 Kinematics and Inverse Dynamics on the selected trials ⊡ 🗹 1 □ 155P Gz 9 BT 2.0.612.10.572 ☑ DGS L 2.0.552,4.604 DGS R 2,0.62,5 Skull **□ □** 2 5.62 Mass 🗄 🗹 55P Mass ± 🗹 3 ¥ 0.015 0 z .033 centre ± 🗹 4 Moments ± 🗹 5 XX 0.057: уу .0650 ZZ .0569 of inertia ± ⊠6 Disk Paths ... D:\Latest Newcastle OpenSim Data\Modelled\1 Gz ± 🗹 8 Database ± 🗹 9 ... Output D:\HelSim test ± 🗹 11 ± ⊻12 ± 🗹 13 ± 🗹 14 ± 🗹 15 ± 🗹 16 Check ± **1**7 Inverse K and D Test Files Static Optimisation Cancel Logs IF 18

 \times

Thank you

Air Combat Group – Fighter Fit, WGCDR Carlos Almenara Dr Adrian Smith- RAAF Institute of Aviation Medicine Mr James Wallace – Fighter Fit, UCRISE Ms Amelia Riches- UC Physiotherapy honours UC students, research assistants, and members of 77 SQN