

Heat tolerance testing: Moving on beyond a single test

Associate Professor Julien Périard BSc (Hons), BEd, MA, PhD, FECSS

@DrJPeriard

Heat illness – Defence force


Report: Extreme heat a grave threat for military bases

The U.S. Military Is Experiencing More Cases Of Illness From Extreme Heat

At least 17 people have died of heat exposure while training at bases since 2008

How rising temps could cause even more heat casualties at military bases

Heat illness – Defence force

Heat illness – Defence force

Defence People Policy, SafetyMan

- Managing Personnel Exposure To Excessive Heat/Cold
- Managing ADF Cadet Exposure To Excessive Heat

Outline

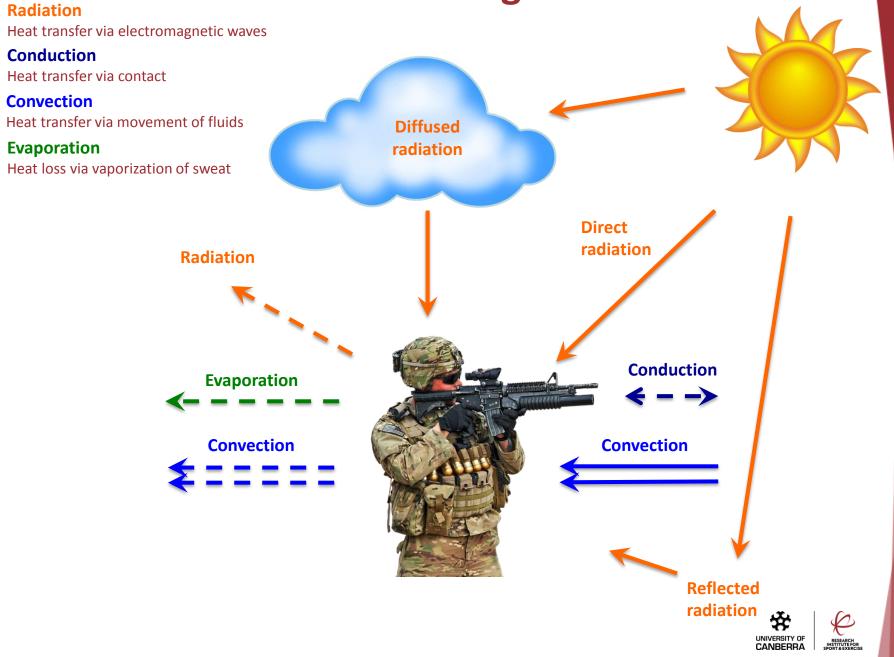
- Exertional heat illness
 - Heat illness continuum
 - Risk factors
 - Heat exchange
 - Physical activity in military uniforms
- Heat tolerance test
 - Protocol and parameters
- Beyond one test
 - Improving the outcome
 - Recommendations

Exertional heat illness

Exertional heat illness – Continuum

Exertional heat illness – Risk factors

Risk factor

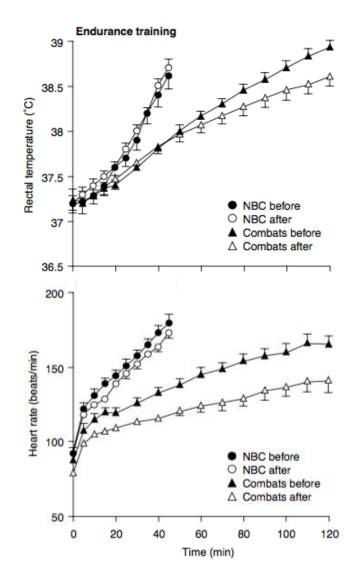

Effect

Compromised Health Status Viral or bacterial infection Fever Skin disorders Cardiovascular insufficiency	Augmented hyperthermic response; immunocompromised Augmented hyperthermic response Local inflammation; impaired sweating Orthostatic intolerance
Environmental factors Heat waves High humidity Lack of air movement Urban heat islands Lack of air conditioning	Prolonged environmental heat exposure Impedes evaporative cooling Impedes convective cooling Higher intensity, longer duration environmental heat exposu Impedes evaporative, convective cooling
Medications (classic) Diuretics Anticholinergics (Atropine) β-blockers (Propranolol) Antihistamines Antidepressants Alcohol NSAIDs (Aspirin, Acetaminophen)	Dehydration and salt, potassium and calcium depletion Impaired sweating Reduced blood pressure; reduced skin blood flow Impaired sweating Increased heat production Diuresis, impaired vasomotor reflexes Increased gut and liver toxicity
Drug Use (Exertional) Ergogenic aids (Ephedrine) Ecstacy (MDMA)	Increased activity and heat production, impaired sweating Increased heart rate and blood pressure; sweating or chills; increased muscle tension Increased heart rate and blood pressure; excessive sweating
Fitalin NSAIDs (Aleve)	Increased gut and liver toxicity
Genetic conditions Malignant hyperthermia TLP4 polymorphisms	Increased metabolic heat production Endotoxin hyporesponsiveness

NSAIDs, nonsteroidal anti-inflammatory drugs; MDMA, 3,4-methylenedioxymethamphetamine; TLR, toll-like receptor.

Heat exchange

Heat exchange – Evaporation Evaporation Heat loss (%) Convection **Radiation** Ambient temperature (°C)



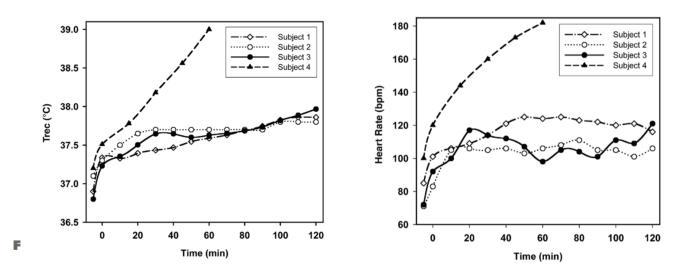
Physical exertion in the heat

Uncompensable heat stress

Walking at 4.8 km/h, 2% grade in 40°C, 30% RH
Before and After 8 weeks of endurance training

NBC: nuclear, biological and chemical protective ensemble

Heat tolerance test


Heat tolerance test – Protocol

Israeli Defense Force - Heat Tolerance Test

- Walking for 2 h at 5 km/h and 2% incline
- 40°C and 40% RH

Key outcomes:

- Core temperature rise with tendency to plateau <38.5°C
- Heart rate increase with tendency to plateau <150 bpm
 - Classified as heat tolerant or intolerant
- Sweat rate between 0.5 and 1.2 L/h Thermal balance

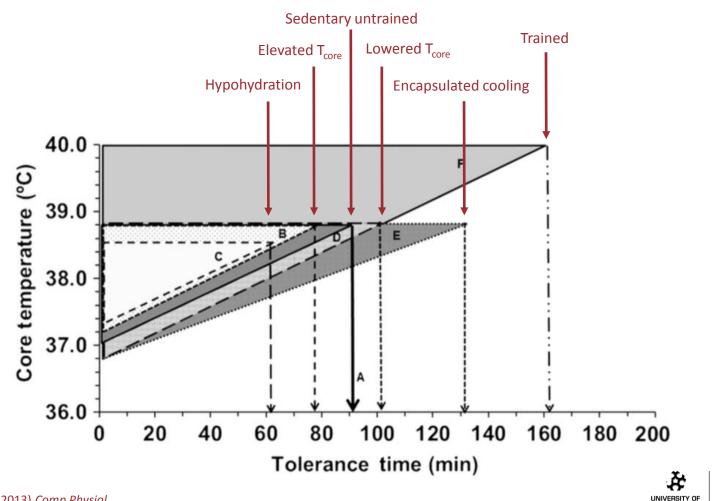
Heat tolerance test – Guidelines

- Performed a few weeks after clinical recovery from heat illness episode
- First failure \rightarrow Individual considered heat intolerant
 - Repeat test 2 to 3 months later
- Second failure \rightarrow Definitive indication of heat intolerance
 - Discontinuation of active combat duty
 - Return to unsupervised recreational activity permitted

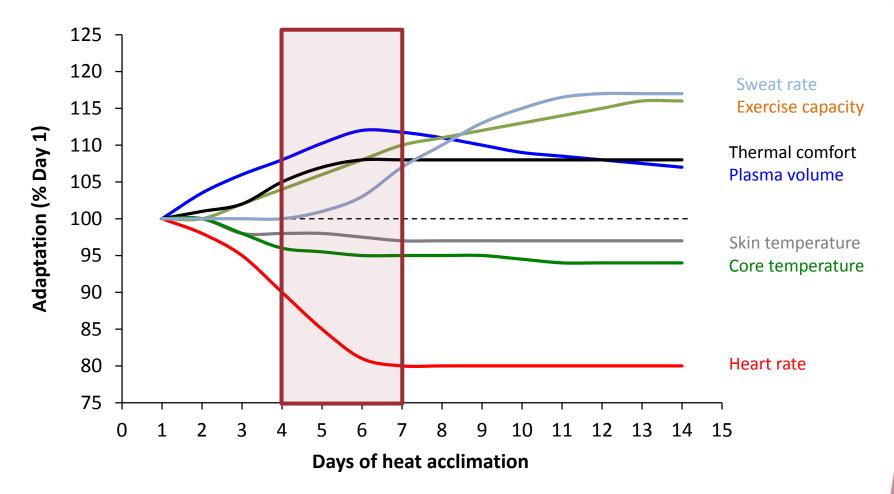
Heat Tolerance in Women—Reconsidering the Criteria

DRUYAN A, MAKRANZ C, MORAN D, YANOVICH R, EPSTEIN Y, HELED Y. Heat tolerance in women—reconsidering the criteria. Aviat Space Environ Med 2012; 83:58–60.

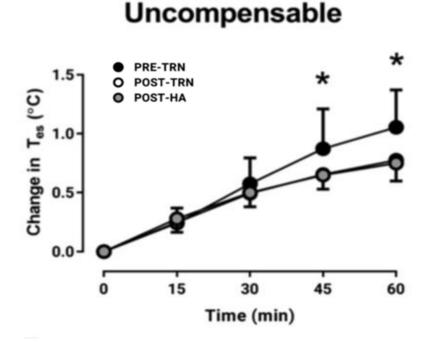
- Heat intolerance rate
 - Men: 26%
 - Women: 68%
- Aerobic fitness, lower sweat rates, different hormonal profile, and different morphology


Beyond one test

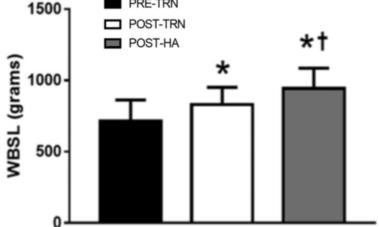
Training and heat acclimation


Light exercise in uncompensable heat stress

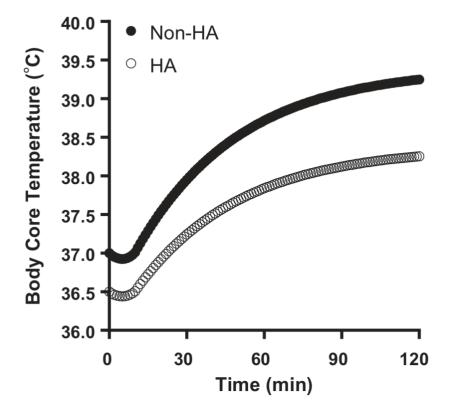
RESEARCH INSTITUTE FOI


CANBERRA

Heat acclimation



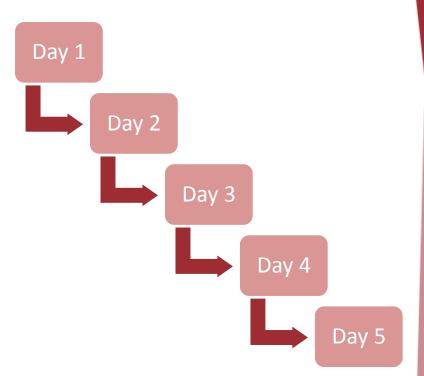
Training and heat acclimation


- 8 weeks of aerobic training
- 6 days of heat acclimation

Training and heat acclimation

Recommendations

Conduct initial VO_{2max} test


FEMALE

Age	Very Poor	Poor	Fair	Good	Excellent	Superior
13-19	<25.0	25.0 - 30.9	31.0 - 34.9	35.0 - 38.9	39.0 - 41.9	>41.9
20-29	<23.6	23.6 - 28.9	29.0 - 32.9	33.0 - 36.9	37.0 - 41.0	>41.0
30-39	<22.8	22.8 - 26.9	27. <mark>0</mark> - 31.4	31.5 - 35.6	35.7 - 40.0	>40.0
40-49	<21.0	21.0 - 24.4	24.5 - 28.9	29.0 - 32.8	32.9 - 36.9	>36.9
50-59	<20.2	20.2 - 22.7	22.8 - 26.9	27.0 - 31.4	31.5 - 35.7	>35.7
60+	<17.5	17.5 - 20.1	20.2 - 24.4	24.5 - 30.2	30.3 - 31.4	>31.4

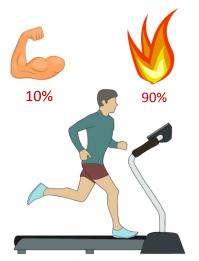
MALE					
(malina in m1/lan/min)					

Age	Very Poor	Poor	Fair	Good	Excellent	Superior
13-19	<35.0	35.0 - 38.3	38 <mark>.4 - 4</mark> 5.1	45.2 - 50.9	51.0 - 55.9	>55.9
20-29	<33.0	33.0 - 36.4	36.5 - 42. <mark>4</mark>	42.5 - 46.4	46.5 - 52. <mark>4</mark>	>52.4
30-39	<31.5	31.5 - 35.4	35. <mark>5 - 40.9</mark>	41.0 - 44.9	45.0 - 49. <mark>4</mark>	> 4 9.4
40-49	<30.2	30.2 - 33. <mark>5</mark>	33.6 - 38.9	39.0 - 4 3.7	43.8 - 48.0	> 4 8.0
50-59	<26.1	26.1 - 30.9	31.0 - 35.7	35.8 - <mark>4</mark> 0.9	41.0 - 45.3	> <mark>4</mark> 5.3
60+	<20.5	20.5 - 26.0	26.1 - 32.2	32.3 - 36.4	36.5 - 44.2	>44.2

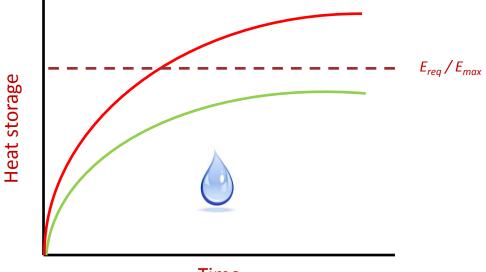
Repeat Heat Tolerance Test

Aerobic fitness – Acclimation status – Heat tolerance

Thank you


OCCUPATIONAL PERFORMANCE SCIENCE

Special Interest Group


THE UNIVERSITY OF CANBERRA RESEARCH INSTITUTE FOR SPORT AND EXERCISE (UCRISE)

Heat tolerance test – Biophysics

5 km/h, 2% grade 40°C and 40% RH 120 min

Time

Body mass	E _{req} (W)	E _{max} (W)	ω	SR _{req} (L/h)
60 kg	485	823	0.59	0.87
90 kg	695	968	0.72	1.39

ωmax

1.0 = Maximum0.70 = Untrained and un-acclimatised0.85 = Trained0.95 = Heat acclimatised

 E_{req} : Requirement for evaporative cooling

 \textit{E}_{max} : Maximal evaporative capacity of the environment

 $\omega \text{:} Skin \ wettdeness$