Endurance training improves tolerance to mental exertion in untrained individuals

Ben Rattray^{1,2,} Luca Filipas^{3,} Kristy Martin^{1,2,} Joseph Northey^{1,2,} Antonio La Torre^{3,4} & Richard Keegan^{1,2} ¹RISE, UC; ²Disc. Sport & Ex., UC; ³Dept Biomed. Sci Health, U Milan; ⁴IRCCS Istituto Ortopedico Galeazzi

Background

Prior mental exertion

leads to

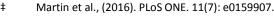
\downarrow cognitive performance^{1,2}

 \downarrow physical performance³

1. Lorist et al., (2005). Brain Res Cogn Brain Res. 24(2): 199-205.

2. van der Linden et al., (2003). Acta Psychol. 113(1): 45-65.

3. van Cutsem et al., (2017). Sports Med. 47(8): 1569-88.


- Physical training can:
 - Improve physical performance & alleviate physical-fatigue
 - Improve learning (in children¹) & reduce cognitive decline (in older²),

BUT

• Can physical training :

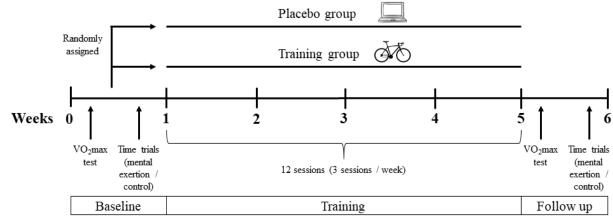
Improve cognitive performance (healthy young adults) & alleviate mentally-induced fatigue[‡]

- 1. Sibley & Etnier (2003). Ped. Ex. Sci. 15(3): 243-256.
- Northey et al., (2018). Brit J Sports Med. 52: 154-160.

 investigate whether 4 weeks of endurance training could improve tolerance to mental exertion in untrained participants, &

• whether endurance training would improve cognitive performance

Method - participants


- Initially untrained participants (n=20) largely University student cohort
- Group allocation randomised

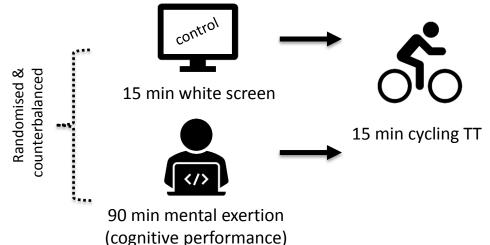
	Training group (n = 10)	Placebo group $(n = 10)$	р				
Females, n (%)	7 (70)	7 (70)	1.00				
Age, y	27.6 (6.3)	27.5 (6.0)	0.97				
Height, cm	169.4 (6.8)	169.5 (9.6)	0.98				
Weight, kg	69.6 (18.4)	68.7 (14.3)	0.91				
VO _{2peak} , ml·min ⁻¹ ·kg ⁻¹	32.9 (6.9)	32.8 (5.6)	0.98				
TT in control condition, m	6823 (715)	6762 (701)	0.85				
TT difference (mental exertion - control), m	-246 (214)	-200 (156)	0.59				
Note: Data are presented as mean (SD) or number of participants.							

Table 1. Baseline characteristics of the study by group allocation.

Method - design

- Physical training
 - cycle ergometer for ~ 3x1h/wk 1 x intervals; 20 min at 65-70%, plus 6 x 3 min at 85-90% peakHR,

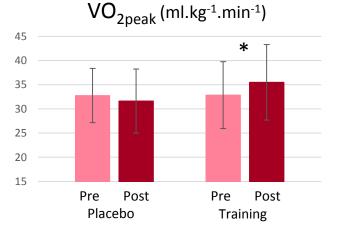
1 x threshold; 20 min at 65-70% followed by 40 min at 75-80%, 1 x moderate; 60 min at 65-70%

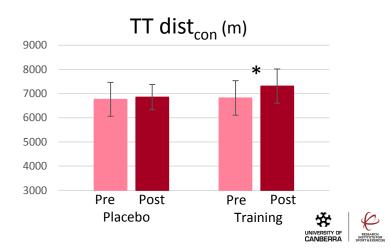

- Placebo group
 - Equivalent time watching documentaries, participants asked to recall simple questions pertaining to content

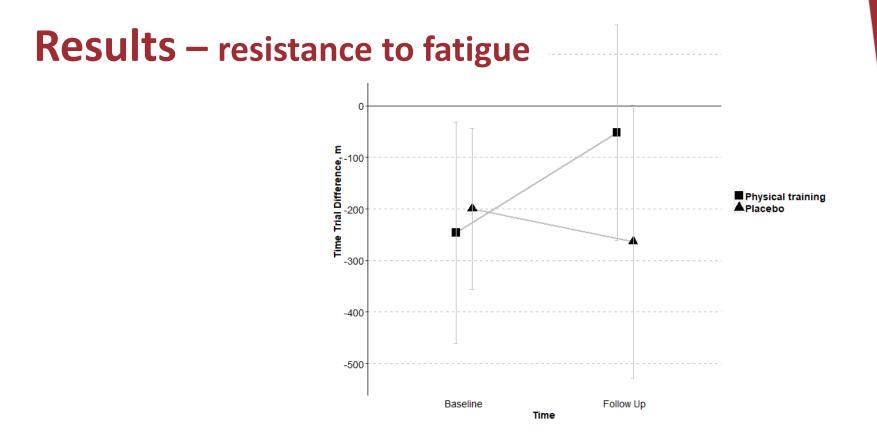
Method - measures

Session 2 & 3 of Baseline & Follow-up

Indices of performance, heart rate, perceived exertion, workload & motivation assessed



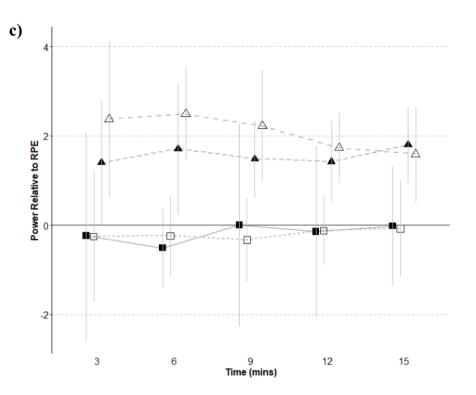

mental exertion task consisted of computerised cognitive tasks, assessing attention, working memory, response inhibition & task-switching



Results – training & fitness

Session	Heart rate, bpm	Power output, W	Cadence, rpm	RPE		
1	126 (8)	71.8 (20.2)	71.0 (6.2)	13.2 (2.4)		
6	146 (9)	91.2 (28.1)	73.1 (8.3)	15.1 (2.5)		
12	145 (10)	99.8 (27.8)	75.1 (8.9)	14.5 (3.0)		
Note: Data are presented as mean (SD)						

Physical training group increased TT distance following mental exertion task to greater extent than placebo group (b=264 m; 95% CI: 211 to 476; p=0.03). Linear mixed models utilising control task TT performance as a covariate.



Results – cognitive performance

	Task	Training group -	Control group	Training group -	Control group
	T ASK	Baseline	- Baseline	Follow up	- Follow up
Accuracy (%)	Flanker (1)	98.2 (1.5)	96.3 (3.2)	98.4 (1.5)	97.3 (4.2)
	Go/no-go	98.7 (2.0)	98.5 (1.2)	98.5 (1.2)	98.4 (0.9)
	Stroop	94.9 (2.0)	94.8 (4.5)	97.0 (2.1)	96.7 (1.8)
	Flanker (2)	98.8 (1.3)	97.1 (2.8)	98.2 (2.1)	96.2 (3.8)
Reaction time (ms)	Flanker (1)	423 (49)	429 (64)	413 (38)	427 (57)
	Go/no-go	813 (98)	857 (104)	825 (90)	866 (101)
	Stroop	819 (167)	811 (125)	812 (161)	769 (145)
	Flanker (2)	430 (52)	454 (49)	419 (42)	429 (65)
Other measures	Go/no-go omission	1.9 (2.9)	1.6 (1.1)	2.7 (1.9)	3.6 (2.4)
	Go/no-go commission	0.4 (0.5)	0.3 (0.7)	0.4 (1.0)	0.2 (0.6)
	Stroop false alarms	1.5 (4.4)	0.9 (1.3)	0.1 (0.3)	0.8 (1.1)
	Stroop lapses	6.9 (10.9)	5.3 (5.6)	4.4 (7.9)	3.3 (4.1)

Results – performance to effort?

Placebo - Control
Placebo - Mental Fatigue
Training group - Control
Training group - Mental fatigue

Implications

- Fitness for all operators
 - Resilience to mental exertion
 - Recovery from mental exertion
 - Suspect also cog. performance, but data not supportive here
- Our participant group comparison to current military
 - Suspect little similar results, perhaps greater results given more stressful conditions under which cognitive control exhibited in military
- Raises Q's re targeted training interventions (e.g., combining cognitive/physical training stimuli)
- Mechanistically supportive of cognitive control overlap/training

Operators should be encouraged to **improve and/or maintain aerobic fitness** as reducing the impact of mental fatigue on subsequent tasks may improve work productivity and minimise errors

Cognitive Control

 processes, or capacity, by which individuals manage goal-orientated behaviours (effort-reward decisions) against habitual tendencies or in the face of many choices.

(Norman and Shallice, 1986; Badre and Nee, 2018)

- Attentional demands feel effortful
- Reduced need when tasks demands are low, or automated (well-learned)
- Present in novel situations

Cognitive Control in *military*

in regards to other cognitive domains, *cognitive control* is associated with:

- response selection and inhibition paradigms
 - Target/tactical identification in a complex environment
 - emotional regulation
- tasks demanding goal selection & maintenance (sustained attention; vigilance),
 - Staying focused
- and/or performance monitoring, task switching (working memory),
 - maintaining situational awareness and command

Decisions regarding whether to continue to engage in an action or behaviour are also consistent with effort-reward decision making [cognitive control] (Wittmann et al., 2016)

Conclusions

 4 weeks endurance training 个tolerance to mental exertion in untrained participants

- ability to tolerate mental exertion is trainable
- those in cognitively challenging occupations are likely to benefit from physical training

Acknowledgements

- Kristy Martin
- Richard Keegan
- Joe Northey
- Luca Fillipas
- Antonio La Torre

Conference details: 19-21 May, 2020 Australian Institute of Sport - Canberra, Australia

The Brain on Physical Activity Towards optimising health & performance

#ActiveBrain2020

ACTIVE BRAIN 2020

activebrain.com.au

Image use (marked for re-use)

Slide 1.

All in with medical support during Warrior Games | Health.mil. Creator: Greg Davis. Copyright:Public Domain

Proper sleep hygiene as a force multiplier | Health.mil. Creator:Master Sgt. Michel Sauret. Credit:200th Military Police Command. Copyright:Public Domain

EOD revamps physical training regimen > U.S. Air Force ... Creator:Senior Airman Robert L. McIlrath.