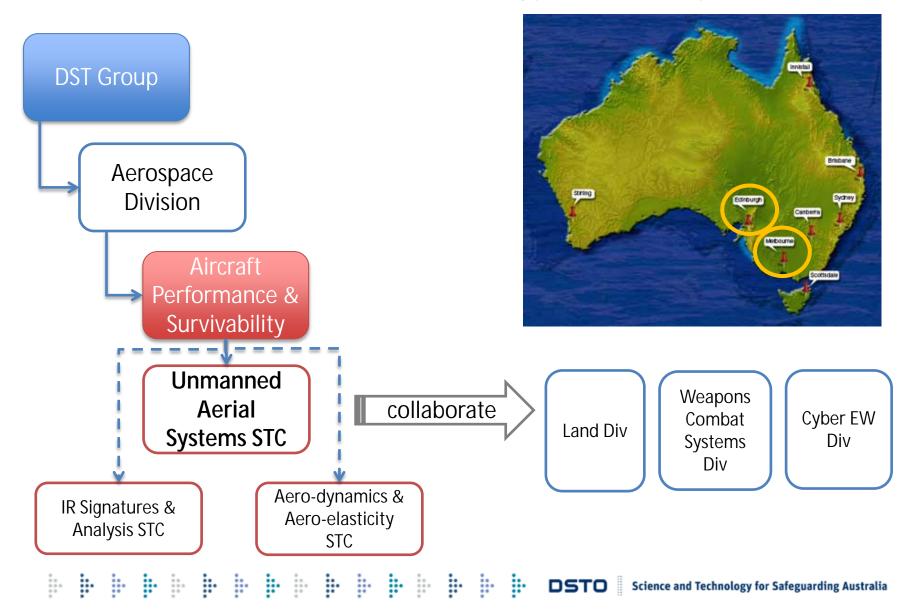


Australian Government

Department of Defence Defence Science and Technology Organisation

# Micro-UAV Challenges DST technical development and the implications for HADR capability

#### Simon Ng Group Leader Unmanned Aerial Systems




### Structure

- DST's Unmanned Aerial Systems Science and Technology Capability (UAS STC)
- Complexities of HADR operations (from our perspective)
- Technology challenges posed by HADR
- Our research in this context
- An invitation to collaborate
- Summary

DSTO

### The UAS science and technology capability (STC)



### Collaboration



**Dr Jennifer Palmer and her team** Urban operations Novel flight mechanics

**UNCLASSIFIED** 



Australian National University



**Mr Geoff Brian and his team** UAS signature, materials and energy Hybrid energy systems University of South Australia



DSTO







÷

•

....

Mr Kent Rosser and his team Multi-modal navigation and guidance Micro airframe control Sensor integration



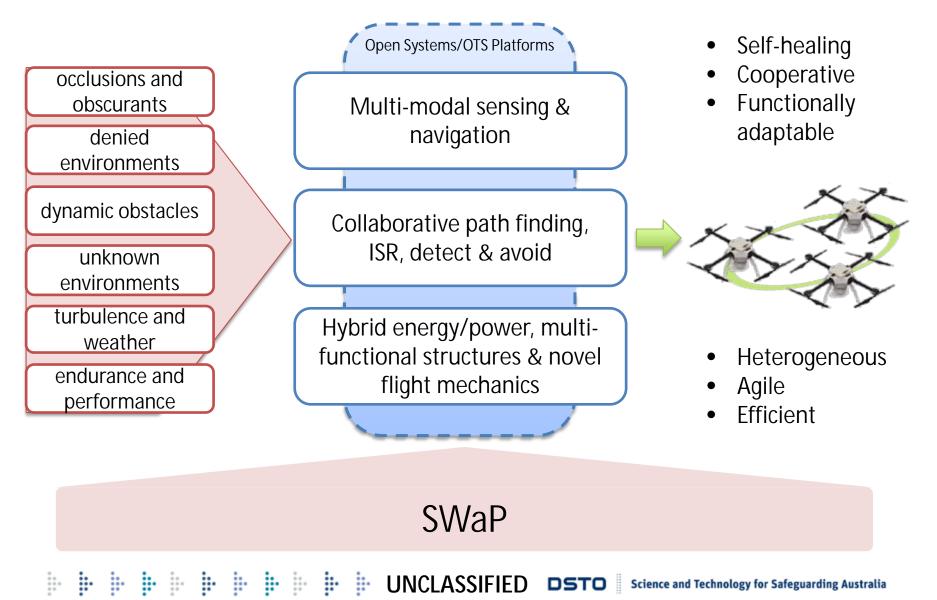


UNCLASSIFIED DSTO Science and Technolog

### n-dimensional complexity a Contextual UNCERTAINTY

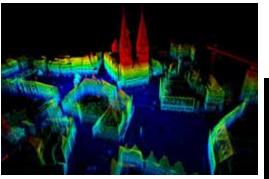





DSTO

|              |            | Wind           | Fire      |                              |                        |
|--------------|------------|----------------|-----------|------------------------------|------------------------|
| Constriction | Occlusions |                |           | Altered<br>Landscape Traffic |                        |
| Structures   | S          | Conta          | amination |                              |                        |
|              | 0          | more           |           | Systemic                     | Looters                |
| Darkness     | Water      | Chemicals      | Survivors | Failure                      | Loolers                |
| Debris       |            | Instabilitie   | S         | No                           | bise                   |
|              |            | · 🔄 🄄 👘 UNCLAS |           | Science and Technology for   | Safeguarding Australia |

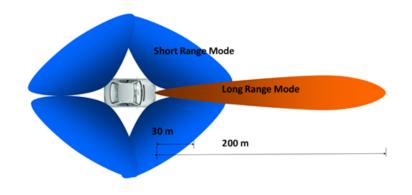
#### DSTO


|        | Urban ISR for<br>military or police<br>action                                                                         | Chemical and<br>biological agent<br>localisation                               |    | Emergency<br>response                                                                            | Humanitarian<br>assistance and<br>disaster relief |  |  |
|--------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|
|        | Navigation, comm<br>• Collision avoidance<br>• Assured communications                                                 |                                                                                |    | and, and control<br>• Active mapping and mission planning<br>• Control in large-scale turbulence |                                                   |  |  |
|        | Miniaturised sensors• Radar• Single-photon avalanche diode arrays• Night vision (SWIR and LWIR)• Chemical, biological |                                                                                |    |                                                                                                  |                                                   |  |  |
|        | Teaming and cooperation         • Human-machine teams         • Distributed mapping and search by robotic teams       |                                                                                |    |                                                                                                  |                                                   |  |  |
| 1 Witz | <ul> <li>Integrat</li> </ul>                                                                                          | Iltifunctional material<br>ed power and energy<br>led and structural antenn    |    | ů j                                                                                              | ems                                               |  |  |
| No.    |                                                                                                                       | <b>Specialised</b><br>ficient micro platforms for<br>nature rotary wing system | or | indoor operation                                                                                 |                                                   |  |  |

## Our S&T



## **Urban UAS Ops**


- SLAM
  SLAM
- Multi platforms, multi sensor
- S Multifunctional structures
- Multi-system control architecture
- Demonstration and validation



Novel multiplatform SLAM with chip based radar



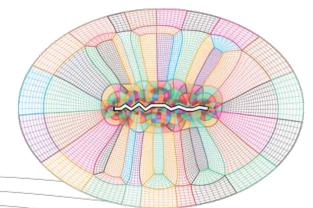




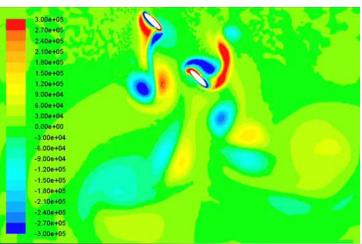
UNCLASSIFIED DSTO Science and Technology for Safeguarding Australia

## **Closed-Loop Alternate Navigation Demonstration**

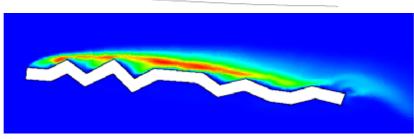
- Technologies for passive, closed-loop navigation of UAS
   PA with DSTO / ARFL
- S Demonstration over 100km

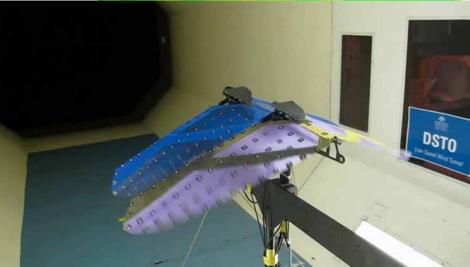






DSTO

## **Bio-inspired flight**

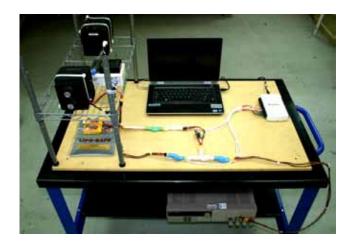

Sio-inspired aerofoil for fixed-wing UAS

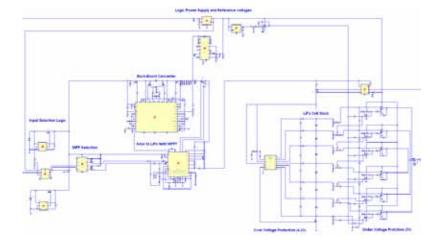



### Flapping-wing UAS








UNCLASSIFIED DSTO Science and Technology for Safeguarding Australia

### **Power management research for UAS**

- S Adaptive energy management
- S Hybrid power systems
- S Power and mission optimisatio
- HiTL facility
- Environmental-energy harvesting (solar, thermal, wind)





Science and Technology





### Key Messages

n-dimensional complexity for HADR

Whole of system view essential to meaningful HADR capability

Technical solutions exist in isolation, but not integrated

Open systems and open architectures for stronger collaboration

### Dr Simon Ng simon.ng@dsto.defence.gov.au