

Towards Cognitive Sensor Fusion in Unstructured Environments

Dr David Johnson

E300 Viewer Span 4.34 Meistif 15x6 Duration 2.5388

- Australia leads the world in *civilian* field-robotic applications
 - Dirty, Dull and Dangerous is a way-of-life
 - Big country
 - Small population
 - Low subsidies

Innovate or perish

- Mining: Rio Tinto's 'Mine of the Future' program
 World's largest non-military robotics programme
- Agriculture: 1st IEEE Agricultural Robotics Summer School held in Sydney, Feb 2015
- Logistics: Port of Brisbane (and now Port Botany)
 World's 1st fully-automated container-handling terminal

Autonomy vs. Remote Operation

- Why bother, and what makes it hard?
- In robotics, autonomy is the automation of *independent* perception, learning and control/action.
- Humans are very good at controlling remote vehicles using low-quality visual data, as seen by FPV-racing.
- Much of this is instinctual, using <u>context</u> and <u>experience</u> to 'fill in the gaps' and guess what will happen next.
- It is not surprising that these tasks are difficult to automate, but we can make the sensors better, the processing faster, etc.

What is perception?

- Situational Awareness (Endsley, 1995a)
 - The <u>perception</u> of elements in the environment within a volume of time and space, the <u>comprehension</u> of their meaning, and the <u>projection</u> of their status in the near future
- Two definitions of perception (Oxford Dictionary):
 - 1. The ability to <u>see</u>, <u>hear</u>, or become <u>aware</u> of something through the senses.
 - 2. The way in which something is <u>regarded</u>, <u>understood</u>, or <u>interpreted</u>.

How do bats do it?

Royal Institution Christmas Lecture (1986): David Pye – The Bionic Bat

The horseshoe bat not only uses Doppler sonar to detect and home-in on moving targets, it also steers and oscillates its ears to generate its own Doppler signal for the classification of static targets.

Where is the state-of-the-art?

- Multi-modal resilient perception
- Simultaneous data association and classification

What is cognitive perception?

- (Multi-modal) sensing used to adapt sensor parameters to the environment. Based on:
 - Context
 - Experience (prior information)
 - External cues
- For example:
 - Laser/vision-guided through-wall radar
 - UWB radar prone to boundary-layer disturbance
 - Laser provides highly accurate geometric surface model
 - Combined solution allows this disturbance to be removed from the raw radar signal
 - Techniques have also been applied at MMW frequencies for imaging through foliage.

Perception Challenges

Scale (complexity)

Variability (novelty)

Interaction (not a black box)

David Johnson | Australian Centre for Field Robotics

Perception Challenge #1: Scale

Space - Localisation at the mm scale across km-wide maps.

Time - Online processing with real-time requirements for high speed ground, air and water-based vehicles with revisit-times ranging from ms to years.

Frequency - Coherent sensing and communications from kHz to THz, optical and beyond

Number – Dimensionality of many different variables

Perception Challenge #2: Variability

• Challenges for computer-vision:

- Illumination
- Object pose
- Clutter
- Occlusions

Challenges for active sensors

- Multipath
- Interference
- Sample-aliasing

Perception Challenge #3: Interaction

- Human Control Interface User interaction, levels of autonomy
- Human Environment Co-habitation vs. isolation
- Natural Environment Manipulation of and attenuation by
- Machine Interaction Systems of Systems, collaboration, communication
- Active Perception Adaptation of perception parameters and the system itself to meet highlevel goals.

Perspectives on Trends, Barriers and Drivers

- Trends
 - Smaller, cheaper, cooperative (coherent operation) is best
 - Vision for >90% of sensing problems
 - Lidar/Radar/Sonar for 24/7 mission-critical operation
 - Filtering of relevant information is vital
- Barriers
 - Spectral congestion
 - Expectation management.
 - IP restrictions to collaboration
 - Securing funding of long-term research projects
- Drivers
 - Defence / User need for increased safety and productivity

Gaps in Knowledge of Cognitive Sensor Fusion

- Dealing with complexity, novelty and dynamic real-world situations
- Adapting to changing operating goals and constraints
- Operation in real-time
- Closed-loop control of multi-modal perception
- These tasks will require additional research into:
 - Compressed Sensing
 - Active learning
 - Deep learning
 - Coherent multi-spectral processing
 - Determining importance in information space in distributed manner

Technological change in 5,10 & 30 years

- 5 years
 - Flying IEDs. <\$1k weaponised FPV drone easily accessible.
 - "Internet of Things" a reality.
 - Connected sensors sharing high-level information.
- 10 years
 - Better energy-storage, actuators and sensors.
 - Hybrid (system-on-chip) processing.
 - Coherent system-level perception.
 - Human-machine teaming following natural-language orders.
- 30 years
 - We may all be cyborgs, blurring the line between humans and autonomous systems.
 - Weaponised fully-autonomous systems common or banned.

Questions?

David Johnson | Australian Centre for Field Robotics

Future Work

- Research Challenges
 - Robustness
 - Robust to purpose (reliability)
 - Minimal false-negatives / false-positives
 - Robust to the environment (persistence)
 - Minimal unknown failure modes
 - Onboard diagnostics
 - Robust to the (less-skilled) operator (trust)
 - Functional safety
 - Intuitive operation
 - Robust to scale (cost)
 - Designed for mass-production
 - Full product life-cycle considerations
 - Spectrum congestion
 - Standards compliance
 - 'Big-Data' processing

