TRUSTED AUTONOMY

EDTAS
JULY 2015

DR. BRIAN MEKDECI
DEFENCE AND SYSTEMS INSTITUTE
UNISA

TRUSTED AUTONOMY

AUTOMATION TECHNOLOGY IS IMPROVING

- TECHNOLOGY IS NOT, AND WILL NOT BE PERFECT
- HUMANS ARE DEFINITELY NOT PERFECT

HUMAN- MACHINES WILL NEED TO WORK TOGETHER

- MACHINES SHOULD DO WHAT THEY ARE BETTER AT
- MACHINES SHOULD NOT DO WHAT THEY ARE NOT BETTER AT
- REQUIRES TRUST
 - HUMANS TRUST THE MACHINES
 - MACHINES TRUST THE HUMANS*

CALIBRATED TRUST

TRUST

FIRM BELIEF IN THE RELIABILITY, TRUTH, OR ABILITY OF SOMEONE OR SOMETHING

TRUSTWORTHI NESS

HOW MUCH SOMEONE OR SOMETHING SHOULD BE TRUSTED

OVERTRUST

TRUST > TRUSTWORTHINESS

<u>DI STRUST</u>

Trust < Trustworthiness

CALIBRATED TRUST

TRUST = TRUSTWORTHINESS

Trustworthines: Lee (2004)

ENGINEERING TRUSTED AUTONOMY

I MPROVE TRUSTWORTHINESS

I MPROVE CAPABILITY (HARD ENGINEER

- BETTER SENSORS
- BETTER ACTUATORS
- BETTER ARTIFICIAL INTELLIGENCE

IMPROVE TRUST CALIBRATION

I MPROVE INTERACTION (SOFT ENGINEE

- TRAINING
- USER INTERFACE
 - FEEDBACK

IS IT REALLY THAT EASY?

TRUSTWORTHI NESS

PROBLEMS

WHAT ARE THE METRICS FOR TRUSTWORTHINESS?

- Consider Google car
 - NUMBER OF COLLISIONS PER 100, 000 KM
 - DETECTION RATE OF OBJECTS > 1 M³?
 - NUMBER OF FLOPS / S?

HOW ARE MULTIPLE DIMENSIONS OF TRUSTWORTHINESS HANDLED?

HOW IS THIS DATA GATHERED?

- HI STORI CAL DATA / TRI AL AND ERROR
- MODELLING / SIMULATION

LEE (2004)

TRUST

PROBLEMS

WHAT ARE THE METRICS FOR TRUST?

- Trust is a belief not an action
 - HOW IS TRUST ACTUALLY MEASURED?
- REALIZING TRUST
 - Is reliance what we are really interested in?

HOW ARE MULTIPLE DIMENSIONS OF TRUST HANDLED?

HOW IS THIS DATA GATHERED?

• HI STORI CAL DATA / TRI AL AND ERROR

rustworthiness Lee (2004)

EXAMPLE: CONTRABAND DETECTION

GOAL

DETECT CONTRABAND IN LUGGAGE USING AUTOMATIC MACHINE

PROBLEM 1 — DETERMINING TRUSTWORTHINESS

HOW IS THE MACHINE'S TRUSTWORTHINESS DETERMINED?

- HI STORI CAL DATA / TRI AL AND ERROR
- SIMULATION AND MODELLING

ASSUME 97% ACCURACY

• 2% FALSE POSITIVES

PROBLEM 12 MISS

HOW SHOULD AN OPERATOR TRUST THIS IMPERFECT MACHINE?

- RELY ON IT 97% OF THE TIME
- VERY SUBJECTIVE

EXAMPLE: VEHICLE ROUTING

GOAL

ASSIGN VEHICLES TO TARGETS SO THAT OVERALL RESPONSE TIME IS MINIMIZED

PROBLEM 1 — DETERMI NI NG TRUSTWORTHI NESS

HOW IS THE MACHINE'S TRUSTWORTHINESS DETERMINED?

- Belongs to a system of systems
 - RELIANCE ON OTHER ENTITIES
- CONDITIONS CHANGE
- NEVER KNOW WHERE NEXT TARGET IS GOING TO BE
- No perfect solution

PROBLEM 2

HOW SHOULD AN OPERATOR TRUST THIS IMPERFECT MACHINE?

TRUST VS. RELIANCE

RELIANCE IS OFTEN USED AS A MEASURE OF TRUST

TRUST BUT NOT RELY

AN OPERATOR MAY TRUST THE MACHINE, BUT NOT RELY ON IT

RELY BUT NOT TRUST

AN OPERATOR MAY NOT TRUST THE MACHINE, BUT RELY ON IT ANYWAY

DO WE REALLY CARE ABOUT TRUST OR DO WE CARE ABOUT RELIANCE?

CURRENT GAPS

- DETERMINING TRUSTWORTHINESS
 - SUITABLE TESTING AND CERTIFICATION
- SETTING APPROPRIATE TRUST LEVEL
 - GIVEN A PARTICULAR TRUSTWORTHINESS AND CONTEXT, WHAT IS THE APPROPRIATE LEVEL OF TRUST?
- DETERMINING USER'S LEVEL OF TRUST
 - HOW WELL DOES THE USER TRUST THE MACHINE?
- GUI DI NG HUMANS TOWARDS APPROPRI ATE TRUST
 - KNOWING WHAT THE APPROPRIATE TRUST IS AND THE HUMAN'S TRUST LEVEL, GUIDING THE HUMAN TO TRUST MORE APPROPRIATELY

LAB

HARDWARE:

- 3 COMPUTER WORKSTATIONS
- 3 MONITORS EACH
- STANDARD KEYBOARD AND MOUSE
- I NTERNET CONNECTION

SOFTWARE:

- REAL-TIME, MULTI UAV SIMULATION IN A SPATIO-TEMPORAL SCENARIO
- Multi-operator capable
- PLATFORM AGNOSTIC, INTERNET BROWSER-RASED
- DESKTOP, MOBILE
- WINDOWS, IOS, ANDROID, LID
- 2D/3D GRAPHICS

OPERATOR TASKS

ROUTI NG:

ASSIGN BEST VEHICLE TO TARGETS

• BEST STRATEGY IS SOMEWHAT SUBJECTIVE

DETECTION:

- DETERMINE IF TARGET IS LOCATED WITHIN A SPECIFIC IMAGE
 - RIGHT OR WRONG

FI REFI GHTI NG:

- PUT OUT FIRE USING WATER SPRAY PAYLOAD
 - HAND/EYE COORDINATION (2D)
 - WIND IS THE DIFFICULTY FACTOR
 - TIME IS THE KEY METRIC (SKILL BASED)

RESCUE:

- Land on object, retrieve it
 - HAND/EYE COORDINATION (3D)
 - Momentum is the preferrory

EXPERIMENTAL VARIABLES

I NDEPENDENT VARI ABLES

- Frequency / Severity of Errors
 - Low, High
- GROUND CONTROL STATION
- DESKTOP, PORTABLE
- TEAMMATES
 - HUMAN, ROBOT
- ERROR REPORTING
 - HONEST, NONE
- WORK LOAD
 - HIGH, LOW
- TASK COMPLEXITY
 - HIGH, LOW

DEPENDENT VARIABLES

- MISSION PERFORMANCE
- TRUST
 - LIKERT SCALE
 - NUMBER OF INTERVENTIONS (RELIANCE)
- AUTONOMY METRICS
 - HOW OFTEN ROBOTS NEED ASSISTANCE (NEGLECT TIME)
- COMMUNICATION AND COORDINATION
 - NUMBER OF MESSAGES, QUALITY OF THE MESSAGES
- WORKLOAD
 - RATIO OF SERVICE TIME TO NEGLECT TIME

SUMMARY: TRENDS

• Dri vers

- TECHNOLOGY I MPROVEMENT
 - BETTER TRUSTWORTHINESS
 - PRI VATE COMPANIES, LIKE GOOGLE, ARE HEAVILY INVOLVED
- COST SAVINGS
 - REPLACE EXPENSIVE HUMAN RESOURCES WITH CHEAPER AUTOMATION

• BARRI ERS

- Lack of Proper Testing, Certification, etc.
- FEAR
 - DI STRUST OF GOVERNMENT, BIG BUSINESS, TECHNOLOGY*

SUMMARY: FORECAST

- < 15 YEARS
 - TECHNOLOGY I MPROVEMENT
 - BETTER TRUSTWORTHINESS Tech
 - MORE PUBLIC ACCEPTANCE FOR AUTOMATION
 - LIMITED AUTONOMY FOR COMPLEX TASKS
- > 15 YEARS
 - ATTEMPTS AT FULL AUTONOMY FOR COMPLEX TASKS

Ti me

- TECHNOLOGY ADVANCEMENTS START TO SLOW DOWN
- ACCIDENTS AND FEAR WILL PREVENT FULL PUBLIC ACCEPTANCE / TRUST
- ECONOMY PROBLEMS (JOBS) WILL BE AN ISSUE

END OF PRESENTATION

QUESTI ONS?

HYPOTHESES

- 1. PERFORMANCE DECREASES AS TRUST BETWEEN HUMAN-MACHINE, OR HUMAN-HUMAN DECREASES
- 2. TRUST IN AUTOMATION VARIES WITH TASK LOAD
 WHEN HUMANS ARE UNDER HIGH WORKLOADS, THEY WILL TRUST
 MACHINES MORE
- 3. TRUST IN AUTOMATION INCREASES WITH TASK COMPLEXITY

 THE LESS THEY HAVE CONFIDENCE IN THEIR OWN ABILITIES, THE

 MORE HUMANS WILL TRUST THE AUTOMATION
- 4. TRUST OF MACHINES DECREASES AS FAILURE OF OTHER
 TECHNOLOGIES DECREASE

 ROBOT MAY BE DISTRUSTED IF OTHER PARTS OF THE OVERALL SYSTEM
 OF SYSTEMS FAIL
- 5. USER INTERFACE OF PORTABLE DEVICES IS NOT-IDEAL, RELIANCE WILL INCREASE BECAUSE OF CONVENIENCE

 THIS WILL BE MORE PRONOUNCED DURING HIGH-TASK LOAD SITUATIONS
- 6. ERROR REPORTING INCREASES TRUST (RELIANCE) ON AUTONOMY AUTOMATION IS NOT PERFECT

RESEARCH QUESTIONS

- 1. How can trust / trustworthiness be characterized and measured for different types of human-robot interaction?
 - HOW IS TRUST AND RELIANCE RELATED?
 - I F WE KNOW HOW WELL AN IMPERFECT ROBOT PERFORMS CERTAIN TASKS, HOW DO WE CALIBRATE TRUST?
- 2. DO HUMANS TRUST OTHER HUMANS MORE THAN ROBOTS MORE THAN HUMANS?
- 3. How do disruptions change trust?
 - DOES IT MATTER IF THE DISRUPTION AS CAUSED BY
 - HUMAN FAILURE
 - ROBOT FAILURE
 - System failure