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Abstract—Detection of threat objects such as Improvised 

Explosive Devices (IEDs) has become a serious challenge in 

defence environments. Currently a number of individual 

technology sensor systems are used to detect different aspects of 

these threat objects. In complex scenarios, human operators are 

challenged to interpret multiple sensor outputs in real time. This 

includes making decisions about the nature of the threat 

encountered and taking appropriate action.  

This paper presents a novel decision support framework to 

assist human operators in making decisions through fusion of 

outputs from multiple sensors with the situational awareness 

information available at the time. 
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I. INTRODUCTION 

Detection of threat objects has become a serious challenge 
in defence and national security environments. Currently a 
number of individual sensor systems are being used to detect 
different aspects of these threat objects [1]. Due to the evolving 
nature of threat objects and their concealment techniques, there 
are a growing number and types of sensors required to detect 
different aspects of threat objects. 

Due to the rapid increase in insurgent related activities, 
countering the on- and off- route threats such as landmines and 
IEDs has become a priority in Defence and National Security 
environments. Landmines and IEDs are extremely diverse in 
design and may contain many types of initiators, detonators, 
casing materials and explosive loads. A variety of sensor 
technology including acoustic, chemical, electromagnetic, 
hyper-spectral sensors, Ground Penetrating Radar (GPR), and 
electro-optical sensors have been employed to detect different 
aspects of landmines and IEDs [2].  

Typically these are incorporated into multi-sensor 
platforms with human operators. In these systems, the human 
operators are challenged to correctly identify the nature of the 
threat objects based on multiple individual sensor outputs and 
then choose an appropriate course of actions. In most of the 
operational scenarios, this decision making process needs to be 
completed in real time or under strict time constraints. In some 
complex situations, the operator may also need to change their 
decision based on the introduction of further intelligence data. 
Due to the ever increasing complexity of this task there is a 

need for an intelligent Decision Support System (DSS) to assist 
human operators to make decisions based on all available data 
sources efficiently. Although a large body of research has been 
carried out on DSS’s, it is often difficult to apply the inventory 
of various decision support techniques to solving for specific 
applications [3]. This paper presents a DSS framework to assist 
operators to make decisions based on outputs from multiple 
sensors combined with the situational awareness information 
available at the time in landmine/IED detection scenarios. 

II. DECISION SUPPORT SYSTEM ARCHITECTURE 

Fig. 1 shows a schematic diagram of the proposed multi-
input DSS for multi-sensor platforms, used for landmine/IED 
detection. When multi-sensor platforms are in operation, 
individual sensors detect different aspects of anomalies in a 
common geo-located area. 

Raw data outputs from each sensor are directly passed to 
separate data “Pre-processing and Feature Extraction” (PFE) 
modules. This output data is processed to detect subsurface 
anomalies.  When subsurface anomalies are detected the 
relevant data are further processed to extract features of the 
suspected target using real-time signal processing algorithms 
embedded within each module. For example, metal detectors 
and GPR can be used to determine physical properties of 
subsurface anomalies such as the metal content, metal type, 
burial depth, target size and its dielectrics properties [1, 4].  
Sensors such as visible spectrum and Infrared (IR) cameras 
provide visual clues such as disturbed soil conditions of 
suspected threat locations [5].  Once feature extraction is 
complete these features including their time and geo-location 
stamps are passed to the “Information Fusion” module. 

The role of the Information Fusion module is to 
characterise each subsurface anomaly by associating all 
available features with potential threat target types. Input to 
this module is individual feature sets from single sensors, 
which in turn are used to produce a Combined Feature Vector 
(CFV) formed by consolidating all information acquired by 
multiple sensors for a particular threat.  

The CFV representing the full set of features for the threat 
object is then passed to the “Target Type Determination” 
module for matching the feature vector with the most probable 
target type. Potential types of threat objects or clutter can be 
considered as hypotheses h1, h2, ..., hn. Each hypothesis hj will 
have a certain probability to occur. The Target Type 



Determination module generates a vector containing the 
likelihood of each potential target occurring. The best decision 
is inferred on the basis of the estimated cost of the 
consequences of the options being considered. 

 

 

Fig. 1. Schematic diagram of the proposed multi-input decision support 

system. 

The final “Decision Optimisation” module updates the 
likelihood values of occurrence for each threat type by 
incorporating the latest situational awareness information 
available at the time in addition to sensor readings. This 
module provides flexibility to incorporate any timely 
intelligence passed on to the operator in addition to sensor 
readings before making a decision about the threat 
encountered, and subsequently choose a course of action. 

A. Pre-processing and Feature Extraction Module 

In demining and IED detection operations multiple sensor 
kits mounted on vehicle born platforms are used to detect 
subsurface anomalies, and to discriminate threats from clutter 
objects [2,6].  

Initially, the main features of suspected threat objects are 
extracted by pre-processing the output data (alarm signals) 

acquired from individual sensors. For this analysis, we employ 
a CFV, which is populated by consolidating the feature sets 
from individual sensors, ensuring they are geospatially co-
located with the same area in the suspected threat object. 
Standard signal processing based feature extraction techniques 
can be implemented to extract physical properties of suspected 
threat objects from the output data of individual sensors [7].  

B. Fuzzy Logic based Target Type Determination Module 

The role of this module is to associate the CFV 
representing the suspected threat object to one of the 
predefined threat objects. For example, the threat object could 
be a target or clutter. Definition of threats and clutter is carried 
out by experts combining relevant features associated with 
those particular target types. 

Unlike standard data fusion methods that operate by fusing 
local decisions taken by Automatic Target Recognition (ATR) 
embedded with individual sensors, this method operates at a 
higher level. The feature vector, generated by consolidating all 
individual sensor outputs, is associated with categories of 
potential threat objects and clutter as shown in Fig. 2.  At the 
end of this process, a likelihood value will have been 
determined for each threat category by matching individual 
features (F1, F2,…, Fn) against each target type (T1, T2,…, Tn). 
For example, certain types of threat objects can be identified as 
having a certain size, metal content and burial depth. 

However, due to variation of physical characteristics of 
threat objects it is difficult to associate an exact numerical 
value to features in each target type or category. In addition, 
depending on the sensor or equipment type and its data 
processing methodology, some features may be defined with a 
degree of uncertainty. 

 

Fig. 2. Association of features with pre-defined target types. 

Fuzzy logic is a suitable way to handle imprecise data. 
Fuzzy logic is based on the idea that all things partially belong 
to multiple groups or sets. For example, experimentally derived 
values for features, such as target size and burial depth, can be 
represented as members of relevant Fuzzy sets rather than 
limiting them to exact numerical values [9]. 

The proposed Fuzzy logic based target discrimination 
framework can be used to assist with associating the combined 
feature vector (input to the Fuzzy system) against pre-defined 
target sets (output of the Fuzzy system).  This Fuzzy logic-
based expert system has three key steps: defining Fuzzy sets 
for input and output variables, construction of a knowledge 
base in the form of Fuzzy rules, and inference. 
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1) Defining Fuzzy Sets 

Depending on the sensor type and data processing 
techniques used for pre-processing the individual sensor output 
data, target features (Fuzzy system) can be represented in the 
form of crisp or membership functions for linguistic variables. 
The crisp variable is always a numerical value limited to the 
universe of discourse, while some of the features can be only 
expressed in linguistic terms. For example, for a vehicle-
mounted multi-sensor landmine detection system the crisp 
features may include the size and burial depth of the suspected 
threat object. The linguistic variable may be used to describe 
target features such as the metal content (e.g. metallic or non-
metallic) or shape (e.g. circular, rectangular). 

In order to represent input data relevant to any chosen 
variable as Fuzzy sets, membership functions must be 
determined. 

For example, the size (e.g. radius) of a suspected target (S) 
ranges from 0 to 100 cm. This range can be represented 
through Fuzzy sets Small (S1), Medium (S2) and Large (S3) 
with Fuzzy boundaries as shown in Fig. 3.  

Another category of input/output variables is best 
represented in the form of a Fuzzy singleton, which has a 
membership function of unity at a particular point in the 
universe of discourse and zero everywhere else.  

2) Knowledge Base Representation through Fuzzy Rules 

Fuzzy rules provide a framework to analyse complex 
systems. They map the input space to the output space, and 
represent knowledge or expert advice. 

 

Fig. 3. Example Fuzzy membership function for target size. 

After evaluating each relevant Fuzzy rule, a confidence 
value, C, is generated against each relevant target type as 
shown in Table 1. Here, let Table 1 represent an example 
dataset where the rows (R’s) and columns (T’s) represent 
Fuzzy rules and target types respectively. An example how the 
confidence value for each target type is determined as a result 
of evaluating the relevant Fuzzy rule is shown in Figure4. In 
this  example s is the numerical value representing size   and m 
is represents the metal content. 

The decision on the confidence value is determined by 
summing all likelihood values for each target type and 
normalising them, as shown in the last row of Table 1. These 
values are passed on to the decision optimisation module as 
confidence values for each target type. 

Rule 1 – IF s is S3 (0.0) OR m is M1 (0.1) 

THEN Target is T1 (0.1) 

 
Rule 2 – IF s is S2 (0.2) AND m is M2 (0.7) 

THEN Target is T2 (0.2) 

 
Rule 3 – IF s is S1 (0.5) THEN Target is T3 (0.5) 

 

Fig. 4. Fuzzy rule evaluation example. 

TABLE I.  CONFIDENCE VALUES FOR EACH RULE WITH RESPECT TO 

TARGET TYPE 
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III. DECISION OPTIMISATION 

The decision optimisation method is aimed at providing the 
operator with the best advice to take appropriate action under 
given circumstances. The consequence of any decision taken 
by the operator will incur costs in terms of time, resources, or 
even risk of human life, depending on the severity of the 
situation. 

The cost of consequence of the decision for any target type 
as the threat object depends on the target types associated with 
the decision. For example, the expected cost incurred when an 
anti-tank mine is misclassified as a clutter object may be 
different to a situation when an anti-personnel mine is 
misclassified as a clutter object. The expected cost for selecting 
(deciding) target type Ti when the actual target type is Tj can be 
represented as uij. However in reality the potential target types 
can be referred to as hypotheses with each target type Tj having 
a particular probability Pj of being present at the time.  The 
actual cost for deciding for Ti when Tj is present can be 
presented as uij ₓ Pj. 
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Table 2 summarises the costs matrix associated with 
various combinations of decisions (Di when deciding Ti) and 
actual target types (Tj), and the likelihood for any target type 
being present. 

The rationale behind the decision optimisation is to 
minimise the cost by taking the decision on the correct target 
type. The assessment criteria for the decision are formulated as 
the overall expectation of costs associated with the   i

th
 decision 

(7): 
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where   p (Tj) is the prior probability for target Tj 

The decision on the target type is made on the basis of the 
least estimated cost and can be represented as (8): 

 ( ) min ( )
i

i

E U E U=  (8) 

At any time situational awareness may lead to an updated 
vector of target data, through sensor updates or any other 
communication channel. Real-time information updates can be 
represented as a vector (9): 

 V = {v1, v2, …, vt} (9) 

Some of the elements of this vector may have an effect on 
certain types of targets. Each vector element is used to update 
the probabilities for the full range of threats. This means the 
prior probabilities against each threat type, delivered as the 
output of the Fuzzy inference process, will be updated to 
generate a vector of posterior probabilities. 

The updated likelihood value for target type Tj due to the 
new information vt can be represented as p(vt|Tj). These 
likelihood values are then used as weights to update the 
existing probabilities of each target type p(Tj) to compute the 
updated probability (posterior probability)(10): 
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The decision for the updated situation will then be 
determined as before (11): 
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TABLE II.  COST MATRIX 

A Priori Probability P1 P2 P3 … Pj 

Target Type (Tx) 

Decision (Dx) 
T1 T2 T3 … Tj 

D1 u11 u12 u13 … u1j 

D2 u21 u22 u23 … u2j 

D3 u31 u32 u33 … u3j 

: : : : : : 

Di ui1 ui2 ui3 … u4j 

 

IV. CONCLUSIONS 

Complex intelligence inferences may be based on masses 
of information, of different kinds, from different sources. 

This paper proposes a new DSS that takes into account the 
value or utility of decision consequences and the probability of 
these consequences. The system utilises simplified methods for 
assessing both value and probability judgements, and a 
simplified method for combining these judgements in the 
selection of a course of action. 

This paper contributes to a new computing paradigm to 
bridge the gap between the human user and computer systems. 
This new methodology can be applied to real world decision 
processes that involve advanced technology solutions 
combined with intelligence. 
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