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Abstract—An important influence on the appropriate 

exploitation of robotic and autonomous systems will be the 

human-RAS trust calibration process in the context of 

transitioning between different modes of control. Understanding 

the dynamic interaction of factors that influence calibration in 

such use contexts is an important research question. This paper 

sheds light on these constructs through a simulated experiment in 

which participants (n = 11) alternated between teleoperation 

(TO) and supervisory control (SC) whilst monitoring the robot’s 

performance and locating objects concurrently. Applying an 

integrative mixed-methods approach involving semi-structured 

interview questions, behavioural observations, and quantitative 

data from a parallel study, a narrative account of the trust 

calibration process and the primacy of rejection relating to trust 

calibration was extracted.  Implications for the design of robotic 

systems and the training of human-robot teams are discussed. 
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I. INTRODUCTION 

Due to advances in science and technology, robotic systems 
have increased in utility and ubiquity in recent years. Indeed, as 
these systems become smarter and more adaptive, the idea of a 
human-robot team moves from science fiction to reality. The 
advantages of human-robot teams have been demonstrated 
through increased operational capability for unsafe 
environments and complex activities that impose hazardous 
levels of workload and complex information integration [1,8]. 
However, for this potential to be fully realised, existing 
challenges within the scope of human-robot interaction need to 
be addressed. One of these challenges is the degree to which 
the human operator trusts and subsequently relies on the robot. 
Another is a deeper understanding of the cognitive processes 
that underlie the transition between modes of control, 
particularly in a shared-control context (e.g., joint control of a 
vehicle). 

II. BACKGROUND 

A. Trust and Trust Calibration 

Trust is a complex and multidimensional psychological 

construct that drives many facets of human behaviour. Trust is 

an important topic for human robot teaming because at a basic 

level, an untrusted system is an unused, or worse, misused 

system [10]. Trust therefore needs to be appropriate or 

calibrated appropriately to the system. This calibration of trust 

is the correspondence between a person’s trust in the robotic 

autonomous system (RAS) and its capabilities. When trust 

correctly corresponds to system reliability and capability, 

reliance on the system is appropriate to the context and 

performance, and by extension, is maximised [8]. Current 

models of trust calibration suggest that the construct is 

affected by a multitude of factors including who you are (i.e., 

individual differences), your background (e.g., early 

experiences with a product or system), and what situation (i.e., 

a mission context) you are in. Examples of these factors 

include attentional capacity, operator workload, training, 

personality traits, automation transparency, and user 

experience to name just a few [4].  

 Individually, there is an understanding of how these 

factors influence trust, however, the dynamic interaction 

between these factors is less understood [11]. For example, the 

existing body of knowledge has mostly examined the 

momentary state of trust and much of the research have been 

driven by experimental designs attempting to extrapolate the 

degree to which trust is optimal for given outcomes (e.g., 

reliance on the robot [2]). What is missing within the extant 

research is a perspective of the evolution of trust over time and 

where and when specific factors can manifest or are most 

prominent (i.e., at what point in the calibration process or in 

the presence of what variables). For instance, under a shared-

control scenario where human and robotic agents take turns at 

being the active and passive user, the phenomena of 

transitioning itself has largely been unexamined within the 



literature [12]. In a shared control context where the human 

operator and robot takes over and gives up control, the human 

operator experiences periods where they are  on-the-loop, in-

the-loop, or out-of-the-loop [3]. Under these conditions, 

human operators shift between periods of engagement and 

disengagement which could potentially affect the trust 

calibration process. 

B. Rational and Current Study 

The background above alluded to gaps in the literature in 
relation to the dynamic interaction of the factors that affect the 
trust calibration process and the dearth of research around trust 
calibration as it relates to the phenomena of transitioning. 
Guided by these reasons, the research questions for the current 
study are as follows: 

1. What are the cognitive mechanisms that underlie the 
transition process from teleoperation (TO) to 
supervisory control (SC) and vice versa. 

2. How does trust calibrate across transitions between SC 
and TO within a shared-control context in a human-
robot team? 

III. METHODOLOGY 

A. Design and Framework 

The current study adopted a mixed-methods research 
(MMR) approach to understanding the phenomena of trust 
calibration in the context of transitioning between two levels of 
control (TO and SC). The methodology was also guided by a 
pragmatic paradigm which advocates for a way of 
understanding the world that is guided by what is practical and 
useful. Centrality is placed on the practical utility of the 
research findings above methodological and epistemological 
purity [11]. Under this framework, the constructs under 
investigation are examined within a computer-simulated virtual 
environment in which a human operator and robot work 
together in a humanitarian relief mission. Due to technical 
capabilities and budgetary constraints, a confederate driver was 
used as the robot, unbeknownst to the participant. The 
confederate driver was trained to behave like a robot based on 
advice drawn from subject matter experts to create consistency 
and accuracy. 

B. Materials 

1) Tactical Team Simulator 

Participants interface with the robotic vehicle through the 

Tactical Team Simulator (TTS). The TTS is configured with 

15 motion actuated seats with a monitor mounted on the front 

wall of each cubical and a Windows Surface tablet configured 

to support switching between TO and SC (Figure 1). Within 

the current study, one of the seats was configured for TO of 

the robotic vehicle and another was configured for the 

confederate robot driver.  

2) The Simulated Scenario 

The simulated scenario was created using Virtual Battle 

Space (VBS: Bohemia Interactive) to create an environment 

where a human and robot was working together on a mission. 

In the current study, the simulation was made to resemble a 

humanitarian relief mission whereby the participant was 

tasked with two tasks; a primary task of locating supply drops 

that have been scattered throughout the map and a secondary 

task in monitoring the robotic vehicle as it traversed the 

fictional island. Within the simulation the participant is 

represented as an avatar that is situated within an optionally 

crewed platform capable of autonomous driving on a fixed 

pre-defined path (waypoint navigation). Within the mission, 

participants were exposed to two modes of operation: SC and 

TO. Throughout the designated route, the robotic vehicle 

encountered 12 scenarios involving unsealed roads, obstructed 

roads, and harsh terrain that caused the robot to become erratic 

(e.g., veers off course or stops entirely). In such cases, 

participants were required to attend to the situation and make 

the decision to manually work through the obstacle (assume 

control), typically by driving around the obstacle, before 

returning to SC (relieving control).  

 
Figure 1. The TTS (Left) and the Tablet display with robotic 

interface (Right) 

3) Trust in Automation Assessment 

To measure how trust was calibrated over time, a 12-item 

trust questionnaire was used [7]). The scale consists of 12 

items that included statements such as “the system is 

deceptive” and “the system is reliable”. Participants ranked 

their agreeableness from 1(not at all) to 7(extremely). All 

scores from the twelve items were added to provide a total 

between 12 and 84 (low and high trust in automation, 

respectively). The Scale was used after exposure to the pre-

trial training and once again post-trial. Differences in scores 

were used to guide the interview schedule. 

4) Interview Schedule 

The interview schedule comprised of two components; (1) 

semi-structured Critical Decision Method (CDM) questions 

which focus on the cognitive aspects of decision-making at the 

point of transition and (2), open-ended interview questions 

relating to technology usage which provided an inductive 

perspective on how participants viewed and approached 

technology usage (e.g., tell me a story about a time when a 

technology system has been unreliable or reliable). In this 

instance, the critical incidents refer to the transition between 

SC and TO, and vice versa.  



C. Participants 

 Using a convenience sample, participants were at least 18 
years old, had corrected-to-normal vision, and were proficient 
in English. Additionally, participants were required to possess 
a current driver’s licence and had no reported history of 
adverse symptomatology relating to screen use. Based on this 
criterion, a total of 11 participants (M = 7, F = 4) was included 
in the final analysis. Ethics approval was obtained prior to 
conducting the study. 

Procedure 

 Before commencing the trial, participants filled out a pre-
experiment survey containing a demographic questionnaire and 
the Trust in Automation assessment. Additionally, each 
participant was taken through a tutorial on how to operate the 
vehicle and interface with the robot. On commencement of the 
mission, one investigator assumed the role of the robot by 
teleoperating within a separate non-visible station within the 
TTS. The other investigator alternated between monitoring the 
participant on a third TTS unit that was configured to provide a 
god’s eye view and observing the participant’s behaviour. At 
the end of the trial, observations by both investigators were 
exchanged and discussed (e.g., near-crash and detour 
frequencies). On average, trials lasted 40 minutes and upon 
completion, participants were required to fill out post-trial 
surveys and took part in an interview lasting approximately 30 
minutes.  

The Qualitative CDM data was analysed in accordance 
with best practice and was theoretically guided by the 
Recognition-Primed Decision (RPD) Model [7]. To integrate 
the qualitative and quantitative data, the Pillar Integration 
Process (PIP; [6]) was utilized as a guiding framework. The 
PIP is a recent iteration of the joint display technique used for 
cases where both quantitative and qualitative data exist for the 
same case and are available for joint examination. Using a 
four-step process involving listing, matching, checking, and 
pillar building, the PIP was completed following the initial 
quantitative and qualitative analyses.  

IV. RESULTS 

Data from the qualitative CDM analysis revealed 
differences in the types of cues as well as the cognitive 
strategies and behavioural responses for each transition. For the 
human operators, vehicle speed and the severity of the 
obstruction (e.g., a tree branch in the way versus an unfinished 
road) held primacy for the transition from SC to TO. In 
contrast, with the decision to give back control (i.e., TO to SC), 
the visual cue of a straight road, (as indicated by the primary 
display and the topographic mini-map), was combined with the 
interpretation of previous rejection patterns. To clarify, a 
rejection is an instance where the human operator incorrectly 
initiates a request to give back control (TO to SC), which may 
be contingent upon factors such as an incomplete navigation of 
the obstacle. In relation to rejection, the CDM analysis also 
revealed that the majority of participants also expressed a 
strong desire for the robot to display the reason for rejection 
alongside the error message. The following section discusses 
an emergent theme in the context of a narrative process that 
was derived from the PIP.  

A. Trust Calibration 

One of the major themes that emerged was the concept of 

trust and how it calibrates with increased exposure to the robot 

across multiple transitions. This calibration process was found 

to be multifaceted, with participants actively engaging in 

strategies to “feel out” the robot by testing its capabilities. One 

of these strategies is the decision to hold onto TO for a longer 

period. One of the distinct findings from this process is the 

role that rejection plays, particularly in the transition from TO 

to SC. This is exemplified in the following quote: 

 

After using it a couple of times, I can’t recall which ones 

[referring to transitions] exactly, but after there was some 

sharp bends. Having tried to relieve control a few times 

and it rejected me, I used information on how it doesn’t 

like to be handed over control for some situations, and 

assumed the thinking behind it. Once I realised that it 

didn’t like that, I kept driving until it was a straight road 

and then handed it over. Yea trial and error from the 

rejections. That was the main thing. 

B. Pillar Integration 

By applying the PIP, a narrative timeline of the trial was 

constructed (Figure 2) A high number of the rejections 

occurred before transitions 3 and 4, or temporally between 5 

and 20 minutes into the trial. The initial rejections provided an 

initial baseline of expectations which would influence how 

long participants would stay in TO for. Rejection rates also 

affected the participant’s estimation of the robot’s capabilities 

such that participants with higher rejection rates in the early 

stages of the experiment remained in a stage of guessing (i.e., 

should the robot take this obstacle, or should I take over) well 

into the later stages.  

By phase 5 of narrative timeline, where transitions were 

routine and there were no more cases where the robot rejected 

a takeover request, rejection no longer factored into the 

calibration process. In this way, it is plausible to assert that the 

calibration process reached an equilibrium point (a stability of 

rejection rate), and rejection becomes less relevant by this 

point. 

 

Figure 2. A narrative timeline of the 6 phases of trust 

calibration 



V. DISCUSSION 

This study examined the phenomena of trust calibration in the 
context of transitioning between TO and SC. One of the key 
findings is the role that rejection plays within the trust 
calibration process, particularly within the early stages of 
interaction. Within the current study, the experience of 
rejection served as a prompt for a re-assessment of robot’s 
capabilities because it was interpreted by human operators as 
an incorrect judgement of what the robot can do. For instance, 
a high frequency of rejections was interpreted as the robot 
being insufficient to handle a given obstacle, and therefore 
decreases confidence and trust in the robot for that task. As a 
corollary, a lower frequency of rejections may speed up the 
trust calibration process because the robot is viewed as 
competent. In this way, the experience of rejection provides a 
systematic feedback loop for the assessment of expectancy (an 
important construct relating to both trust and trust calibration 
[4,11]), and exists as a salient heuristic for transition-specific 
decision-making. This line of research can be extended in 
several ways. For example, future research could examine the 
influence of the frequency of rejections on the time it takes to 
calibrate trust and the influence of pre-trial training that 
incorporates a rejection module (e.g., the correct information-
processing of rejection) on the time it takes to calibrate trust. 
This would assist in clarifying whether the rejection dynamics 
exists as a product of training effects or the novelty of the 
scenario. 

 This study also revealed that the frequency of rejections has 
a role to play within the early phases of the trust calibration 
process. More specifically, experiencing a high number of 
rejections meant that human operators spent more time trying 
to understand the robot’s capabilities through testing and 
observing. This had two outcomes: an increase in time spent in 
TO and more cognitive effort spent to assess the robot’s 
capabilities. As a noted caveat, cognitive effort was not 
measured directly but instead was inferred from the narrative 
accounts of individuals who expressed frustration with 
experiencing a high number of rejections. Although there are 
minor consequences for these outcomes within the current 
study, there are safety and performance considerations when 
extrapolated into mission-critical settings. For example, an 
increase in time in TO implies that the human operator is in-
the-loop for an extended period, or more than what is required 
[3]. In this way, the limited attentional bandwidth that human 
operators are bound to is spent on calibrating trust instead of 
mission-related tasks, thus potentially affecting performance.
 Finally, the current findings also have implications for 
communication within a human-robot teaming context. In a 
shared decision-making paradigm where humans and robots 
have joint control, each party needs to have insight into the 
decision-making process [13]. In human-human teams, this 
process is normally facilitated through bi-directional 
communication and a give-and-take process where teammates 
query for information related to the ongoing mission. Within 
human-robot teams, the capacity for extensive dialogue is 
limited to the design choices within the robotic interface; in 
this case through the communication of rejection. In the current 
study, there was consensus amongst the participants that the 

robotic interface needed to display the reasoning behind each 
rejection. Combined with the salience of rejection, the findings 
imply that, transparency (a correlate of trust calibration [5,11] 
can be facilitated through design and interface decisions to 
expedite the trust calibration process. Future research could 
examine the effects of different modalities of rejection-specific 
communication on the trust calibration process. 

VI. CONCLUSION 

 The trust calibration process is an important barrier towards 
the appropriate exploitation of RAS. By employing a mixed-
methods framework, the current study provided a narrative 
account of the trust calibration process and highlighted the role 
that rejection plays within that process. Collectively, the 
findings suggest that rejection has a prominent role within the 
trust calibration process and thus warrants further research.  
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