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Abstract— In this article, an active protection system design 

using a Q-learning based reinforcement learning (RL) is 

described and evaluated. It is applicable in the context of 

defending against fully observable threats that possess high 

mobility. The Q-learner is implemented with an Artificial 

Neural Network, which is a model-free RL method to solve 

what is effectively an optimal control problem that can be 

difficult to solve analytically. Numerical experiments are 

provided to illustrate the performance of Q-learning under 

various approaching directions of the high mobility threat. 

Finally, discussions for further improvements with applying Q-

learning as well using substituting with policy-optimization RL 

techniques are provided.  
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I.  INTRODUCTION  

Active protection systems (APS) are required to prevent 

guided anti-tank missiles/projectiles from hitting and 

damaging stationary/mobile land-based military assets [1]. 

Examples include entities such as an Armored Personnel 

carrier (APC). One strategy, applied as part of an APS is 

through applying soft-kill techniques. Under the umbrella of 

techniques applied for soft-kill strategies, one approach is to 

seduce the incoming threat using a decoy [2]. Such a decoy 

needs to be able to make agile control decisions under tight 

time constraints since the type of threat (e.g. guided anti-

tank missiles) can be highly mobile [3]. The threats can 

approach the asset from any direction. The decoy needs to 

be able to successfully cope and defend the asset by drawing 

the missile threat away from the asset appropriately under 

motion constraints. In this paper, a machine-learning (ML) 

based control approach is applied for designing the decoy 

controller. The motivation for applying a ML-controller is to 

illustrate the application of this type of decoy-controller. 

Machine learning controllers are being developed for 

scenarios where there is a need to rapidly infer solutions for 

complex problems (e.g. complex dynamics) in a memory 

efficient manner [4]. This will become more important when 

extending the context to support the complex problem of 

coordinated multi-decoy strategy to defend several vehicles 

against multi-axis threats.  

 

In this paper, reinforcement learning (RL), which is a 

powerful set of techniques within ML based control, has 

been selected. In RL, an agent interacts with an unknown 

environment over a certain period of time. At each time-

step, the agent observes the state, takes an action, and 

receives a reward or penalty as the result of its action. The 

goal of the agent is to learn an optimal policy (i.e., a 

mapping from states to actions) that maximises its long-term 

return. In the long run, those actions that yield the higher 

rewards according to the current knowledge of the 

environment will be chosen to enhance the cumulative 

rewards [6]. RL algorithms are divided into the dynamic 

programming family and policy optimization family [7]. 

Here, we are looking at the dynamic programming family 

where we apply the well-known Q-learning for this 

decoying problem. Q-learning is a relatively well 

understand algorithm within RL. Therefore, it has been 

chosen as the method to devise the controller. For more 

advanced situations, there is a wide variety of emerging 

algorithms to choose from such as given in [8].  

II. RESEARCH PROBLEM/CONTEXT 

The threat such as an anti-tank missile is assumed to have an 

on-board seeker to find, track and guide the missile towards 

the target [3]. Using an IR/RF emitter, the decoy can present 

an IR source with suitable heat signature or mimic the RF 

signature of the target and can then seduce the threat 

towards the target [9]. RF seeker equipped threats appear to 

be less common than those using IR techniques. In the 

context of IR threats, for the passive IR variety with no 

man-in-the-loop, it is the author’s view that seduction 

methods such as one described in this paper may have some 

usefulness as part of the countermeasure strategy. The decoy 

has to manoeuvre in such a manner to separate as far from 

the target as possible in angle with respect to the threat 

while adhering to some geometric constraints. The 

constraint introduced here is that the separation distance 

between the decoy and the range information of the decoy 

and the target to the missile cannot differ by more than 50 

meters. This constraint is added to observe if the Q-

algorithm is capably of solving the tightly constrained 

control problem with good predictive behaviour. Here, the 

notional application of the constraint is associated with 

preventing the threat from being alerted it is being seduced. 

This constraint may need to be suitably modified when 

applied to the land-domain. The seduction capability of the 

decoy payload in this problem is considered to be perfect. 

The representation of decoy goals and constraints is shown 

visually in the diagram given in Figure 1. In Figure 1, ps 

denotes the true target, pm denotes the threat and pi denotes 

the decoy. The arrows in the diagram depict the transition of 

each entity in a single time-step. The symbols suffixed with 

′ (e.g. 𝑝𝑖
′) next states after the transition states at the end of 

the single time step. The angle 𝜃  shows the direction of 

motion selected by the decoy controller,  

https://en.wikipedia.org/wiki/Anti-tank_missile


 

 

 

 

Fig. 1. Block diagarm depicting the form of function approximator 

The decoy is initially co-located with the true-target. The 

goal for the decoy controller is find the policy (rule for 

actions) that will steer the decoy in the direction of 

maximum miss distance. Without loss of generality, we 

assume that the true target is moving north with a constant 

speed starting from the origin of the Cartesian coordinate 

system. The threat missile in this instance, is assumed to 

home in towards its respective target by applying the widely 

applied Proportional Navigation (PN) guidance law [10].  

III. Q-LEARNING CONTROLLER  

The central idea of Q-learning is to recognise and learn the 

sequence of actions through trial and error. By receiving a 

reward when performing an action, the agent learns about 

the quality of its action choices for a given state. The agent 

stores this knowledge it observes for each state-action pair 

in a form of a Q-value, denoted by 𝑄(𝑠, 𝑎) . Here, 𝑠 

represents the state of the system which includes 

information from the agent and the environment in which it 

operates. The action 𝑎 is the chosen action from the set of 

feasible actions. Over time, the agent learns the optimal 

action-value function 𝑄∗(𝑠, 𝑎) which is the unique solution 

of the following Bellman's equation 
 

𝑄(𝑠𝑘 , 𝑎𝑘) ← 𝑄(𝑠𝑘 , 𝑎𝑘) + 𝛼(𝑟𝑘+1 +  𝛾 max𝑎 𝑄(𝑠𝑘+1, 𝑎) − 𝑄(𝑠𝑘 , 𝑎𝑘))    (1) 

 

In Equation 1, 𝛼 = (0; 1] is the learning rate, 𝛾 = [0; 1] is the 

discount factor, ak is the action taken at time k, and rk+1 is 

the reward received in the next state. Q-learning has been 

proven to converge to the optimal policy when a finite state-

action space is present [11]. In our case, we applied a 

learning rate to be equal to 1 as there are no stochastic 

transitions. It is generally the case that finding the tabular 

version of the Q-value function becomes challenging for the 

large state space problem due to the onerous task of having 

to having to store all the Q-values in memory for the large 

state space and infeasibility of visiting all the states. One 

way to overcome this problem is to use artificial neural 

networks (ANN) to estimate the Q-values and apply the 

interpolation capability to determine Q-values over the 

spread state-space (Q-surface). A basic form of the 

experience replay technique [12] which retrains multiple 

times on data collected during exploration is also applied. 

Introducing experience replay improves the behaviour of the 

agent when applying the trained Q-learner because the Q-

values produced during training are tuned faster towards 

convergence. Also, due to the random sampling applied, 

when retraining over the same batch of tuples, the data 

presented for supervised learning is made uncorrelated. The 

form of the Q-learner used in our implementation is given in 

the block diagram in Figure 2. The reward/penalty logic 

applied to train the Q-learner can be summarised as follows. 

For each transition of the states shown in Figure 2, if (i) The 

miss prediction associated with the destination state 

decreased or (ii) The collision prediction associated with the 

destination state decreased or (iii) If the range between the 

true target and decoy with respect to the threat exceeded 

beyond the 50 m threshold, a suitable set of penalties scaled 

to the size of the change in the states was applied. This 

penalty was applied to calculate the appropriate Q-value 

estimate for that particular state transition. 

Fig. 2. ‘Block diagarm depicting form of function approximator 

Many tuples of <st, at, rt, st+1> were collected for transitions 

over multiple episodes in order to give as much coverage of 

the state-space as possible. The function approximator 

applied for Q-learning was simply a multi-layer perceptron 

(MLP) with a single hidden layer. Applying a single hidden 

layer was justified for this problem as the theory for 

function approximation using neural networks only requires 

a single hidden layer with sufficient number of neurons 

[13]. In Figure 2, 𝑑 refers to the miss distance prediction 

between the missile and the target, given the current 

position and velocity of the threat. lthres refers to the range 

threshold constraint between the missile and the agent with 

respect to the threat. ∠𝑝𝑚 refers to direction of the velocity 

vector for the threat. ∠𝑙𝑠,𝑚 refers to the line of sight angle 

between the asset and the threat and 𝑙𝑠,𝑚 refers to the range-

to-go between the threat and the target. Finally, 𝜃 represents 

the action performed by the decoy, which, in this case, is 

simply to adjust its direction of motion.  

 

Since the input features used by the Q-controller are 

continuous, an ANN based approximator is applied to 

estimate the Q-values in place of tabular Q-learning. Large 

miss distance is desirable but a sufficiently large enough 

miss (e.g. >100m) was acceptable. With the range-

constraint, however, violating that early in the engagement 

would be unacceptable as it would have potentially 

triggered a ‘being duped’ signal in the threat. Since 



 

adherence to the range constraint was highly critical during 

seduction, the penalty value for violating this threshold was 

configured as being five times greater compared to penalty 

applied for decrease in miss. In the simulation, this ratio 

worked out to give satisfactory performance.  

IV. SIMULATION CONFIGURATION 

For the problem targeted in this paper, 30 neurons in the 

single hidden layer [14] was applied for the function 

approximator representing the Q-estimator. This choice was 

determined through trial and error. Increasing the number of 

neurons in the hidden layer beyond this did not improve 

results in terms of maximizing miss/adhering to range 

constraint while reducing training time. Decreasing the 

number of neurons below 30 was not performed but could 

be conducted as future extension to this study. All reported 

results are averaged over 20 episodes of training for each 

choice of missile angle. The simulation was setup with the 

following initial conditions for initial conditions of the 

threat, false target and asset. 

TABLE I.  SIMULATION CONFIGURATION 

Description Value 

Initial Distance between threat and true target 18000 m 

Speed of true/false target  10.28 m/s 

Speed of high-mobility threat 306 m/s 

PN factor of the threat 4 

Distance constraint: lthres 50m 

 

The author recognizes that, for the land context, the choice 

of initial separation range may need to be made smaller. 

However, this has not been attempted because the Q-learner 

technique is able to scale and the repetition of training is 

time-consuming. However, the experiment can be repeated 

in the future with smaller choice of initial separation range 

if necessary. 

V. RESULTS AND OBSERVATIONS 

The performance of the Q-learner controller under various 

approaching angles of the threats is provided below: 

 

TABLE II.  SIMULATION RESULTS 

Threat Approaching Angle 

(degrees) 
-90 -45 0 45 90 

Miss Distance achieved by 

decoying (m) 
78 825 1218 730 66 

 

As can be seen in Table 2 and Figure 3, the Q-learner 

controller was able to appropriately steer the decoy in order 

to sufficiently maximise the miss performance while 

adhering to the range-threshold constraint for most of the 

flight. 

 

Fig. 3. Performance of Q-learning agent in directing false-target for 

different approach angles of threat. 

The range-threshold adherence can be seen in Figure 3 to 

have applied all cases for most of the flight except for the 

case of the missile approaching from minus 90 degrees. In 

the 90 degree case, it can be seen that the learning agent has 

attempted to restrict the growth in the range-constraint, but 

cannot satisfy it due to the geometry and constraints on the 

false target speed. Otherwise, towards the end of the flight, 

for all cases, it becomes impossible to adhere to the range-

constraint. However, it does not matter at this point for the 

range-constraint to be applied as the asset is now outside the 

sensing beam of the threat. Therefore, violating the 

threshold won’t lead to the threat being alerted that it is 

being duped. The results presented in Figure 3, have only 

been provided for a subset of approach angles for the threat. 

It has been performed for the sake of communicating the 

trained Q-learner’s capability. However, the Q-learner did 

behave appropriately for all other angles of the threat. 

Statistical analysis of the performance becomes relevant 

when allowing for stochastic state transitions. In our case 

following training, the Q-learner will lead to the same miss 

distance for repetitions of the simulation for different angles 

of threat approach. 

VI. FUTURE RESEARCH/DEVELOPMENT PATHWAY 

While the results indicate that the Q-learner can steer the 

decoy to seduce the threat appropriately, proving that it is 

converged is a different matter. This means being able to 

keep performing training until the Q-value evolution stops. 

In theory this happens when the state/action pairs are visited 

infinitely often for all state-action pairs [6]. However, due to 

the curse of dimensionality the state-space to be explored 

fully grows exponentially with number of features. In our 

case we have 5 features, each of which is continuous. Even 

if an ANN were to be applied as the approximator to 



 

perform interpolation under the assumption of smoothness 

with change in q-values, the exploration requirement is still 

very large to get to near converged Q-surface. There have 

been several proposals to speed up the rate of convergence 

of Q-learning such as [15-17]. However, the visual results 

obtained here shown in Figures 3 and 4 suggest that there 

was sufficient training to produce a Q-learner capable of the 

successful completing the seduction task. These results were 

arrived at after 20 episodes of training with the choice of 

reward/penalty framework. So, it could be inferred that the 

trend for the Q-value surface can progress quickly towards 

converging to final q-values. However, to get to converged 

results (as in discovering the most optimal path for decoy 

through converged Q-values), further training maybe 

required. Finally the possibility of scaling this to the 

scenario of a coordinated multi-agent scenario needs to be 

investigated. The multi-agent scenario becomes relevant for 

protecting a group of land vehicles which can employ a 

distributed soft-kill strategy. 

Fig. 4. Performance of Q-learning agent in directing false-target for 

different approach angles of threat. 

Also, the dynamic programming approach is restrictive and 

instead a policy optimisation approach is recommended as 

the pathway to introduce RL learner for problems of this 

nature [18].  

VII. CONCLUSION 

Q-learning control has been used to guide a false-target to 

protect a true target against high mobility threat in a land-

defence application. Results show that, in principle, the Q-

learner based controller can train to seduce the threat for a 

range of approach angles while doing its best to adhere to 

the range constraint following limited training. Since several 

input variables (5) were required to uniquely describe the 

state, it is questionable whether the Q-learner explored the 

state space sufficiently to then have developed a converged 

Q-surface. Despite this, the results show that the controller 

has learned to steer the false target appropriately for the test-

cases. To overcome this limitation, pathways have been 

identified to speed up Q-learning. Also, migration to policy 

optimization based RL approaches to serve as controller 

may be required in order to better provide for guarantees of 

convergence of the trained controller.  
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