
An Experimental Platform for Heterogeneous Multi-Vehicle Missions
Rapidly enabling complex, fault-tolerant behaviours in a real-world environment

Eric Schoof, Chris Manzie, Iman Shames, Airlie Chapman, Denny Oetomo

University of Melbourne

Melbourne, Australia

{eschoof, manziec, iman.shames, airlie.chapman, doetomo} @unimelb.edu.au

Abstract—This paper documents the development of an

experimental platform that can be used to test and validate

collaborative multi-vehicle algorithms and to explore the

collective behaviors that arise. Unlike existing platforms, sensing

and communication are explicitly considered, enabling realistic

scenarios to be tested and prototyping of systems to be facilitated,

thereby accelerating the development of next generation systems

for defense and civilian applications.1

Keywords—coordinated autonomy; networked dynamic

systems; teaming; multi-vehicle robotics

I. INTRODUCTION

Research into autonomous robotic systems has been
ongoing for many years. Coordinated autonomous systems
that allow many agents to cooperatively execute tasks are still
in their infancy but are highly desired in many settings. For
example, using a single vehicle in a search and rescue
application means the mission area must be explored serially,
and if the vehicle fails, the mission will terminate prematurely.
If instead multiple vehicles can be used as in [1]–[3], then the
mission area can be explored more effectively whilst the loss
of any one vehicle can be compensated by the remaining
vehicles to retain mission completion goals. Other examples
include the missile seduction problem using multiple
Unmanned Aerial Vehicles (UAVs) [4].

The simplest form of communication amongst multiple
agents is to assume all agents can directly communicate with
one another and all decision making is performed at a single
location. This is undesirable as the tractability of the approach
decreases with the number of agents and furthermore it
introduces a single point of failure for the mission, namely the
centralized computing node. The alternative (and more
intuitive) approach is each agent is a member of a coordinated
autonomous system in which communication and computation
requirements depend only on the agents around them.
Information spreads through the network over ever-changing
active communication links in a decentralised manner, thus
requiring that collective behaviour amongst the multiple
vehicles satisfies the overall mission objectives.

1 The authors acknowledge the support of the Competitive Evaluation
Research Agreement (CERA) grant, “Shared Control Framework for
Collaborative Human Robot Teams”.

 To ensure mission objectives are met, the algorithms used
within individual agents in an autonomous robotic system, and
their collective behaviour, will need provable guarantees of
their performance in this complex environment. This
collective behaviour should then be validated in an appropriate
emulation facility. To achieve this goal requires the analysis
of networked dynamic systems [5]–[7], multi-robot
simultaneous localization and mapping (SLAM) [8]–[12],
fault-tolerant communication networks [13], [14], and clock
synchronization [15]–[17]. Whilst individually these tasks
have received different levels of attention, to date there is
limited (if any) examples of combining these capabilities into
a single platform for prototyping collaborative emergent
behaviour of multiple robotic agents.

When developing new algorithms targeting multi-vehicle
environments, it can be difficult to capture real-world
behaviour as there is often a disconnect between scientific
simulations, and real-world execution. This is mainly due to
the inherent difficulty of operating many vehicles with
potentially faulty algorithms, and the similarly inherent low-
fidelity models used to simulate such groups of vehicles.
Many groups have developed distributed hardware platforms
to look at various research questions. For example, the
Kilobot platform by K-Team was one of the first platforms to
scale to large numbers of autonomous agents [18]. Each agent
costs only a few dollars, has limited sensing and
communicates with agents in their very-near proximity, and
has a novel locomotion method involving micro vibrators to
rotate and translate through the environment. The Kilobots,
however, do not move or sense in a way that mirrors typical
real-world scenarios, and the on-board computation limits
what an individual agent can do on its own. The Robotarium
at Georgia Tech [19], [20] is probably one of the most novel
distributed hardware-in-the-loop (HIL) simulators, as it allows
submission of code to be run on a real group of ground and
aerial robots and will produce a recording of their behaviour.
However, all computation and sensing is performed centrally,
making it difficult to extrapolate the performance of the
experiment to true distributed settings.

The University of Melbourne is developing a unique
software and hardware platform to design and test multi-
vehicle coordination algorithms in an environment that is both
simple to use while still rich enough to capture many attributes
of the real world. There are multiple levels of algorithm
execution, including pure software, mixed HIL, and pure

hardware – all of which combine to produce an effective
platform for the testing and validation of collaborative multi-
vehicle teaming algorithms.

This paper outlines the development of the University of
Melbourne distributed robotics platform to date, as well as the
developments we intend to undertake in the future. The final
platform will enable rapid prototyping and validation of
collaborative algorithms for cooperative missions in realistic
settings and dovetails the algorithmic developments from the
University of Melbourne, other leading universities, and
industrial partners.

The structure of the paper is as follows. In §II, we discuss
the architectural overview of our platform. The existing
hardware and software developments are presented in §III
with an accompanying proof-of-concept experiment with
sample results in §III.C. Finally, concluding remarks and
future directions are discussed in §IV.

II. ARCHITECTURAL OVERVIEW

In a high-level context, there are several subsystems that
we consider, which can be seen in Figure 1. Each of these
subsystems can be run either in simulation or with hardware-
in-the-loop, to aid in rapid prototyping.

The most readily simulated subsystems are vehicle
dynamics and position estimation. There are many packages
available, which incorporate high-fidelity models for many
commonly used vehicles and sensors, and general physics
simulators, such as Gazebo [21] and nVidia Isaac. These
systems aim to replicate the world in a very high fidelity, both
in terms of physics and sensing. They also typically require
large amounts of computational power, and setup can be
complicated.

The University of Melbourne robotic platform develops in
parallel the hardware and accompanying software simulation
of the testbed. We explicitly do not use the simulation
packages above because our focus is on the high-level
algorithmic development, and we want to keep all software
bundles as a single package. This provides a powerful

prototyping and testing environment for distributed
algorithms.

III. EXISTING DEVELOPMENTS

Currently we have developed several hardware modules
and a software infrastructure to smoothly transition from pure
simulation to HIL environments. In this section, we explore
both, and give some insights into what we will do in the future
to paint a broader picture of the final vision.

A. Hardware

The hardware developed so far consists of a unicycle-style
ground vehicle (Figure 2) and two custom interchangeable
sensor modules: a low-cost laser ranging sensor (Figure 3) and
an identification and relative localization beacon (Figure 4).
We have opted to build our own hardware, rather than use off
the shelf options, as we can strictly control the cost,
computation, sensing, and communications requirements.

The main factor driving the design of the ground vehicle is
to make it low cost; it is approximately $A80 for a single unit,
and nearly half that in bulk. It is also functional in that it
contains sensors and additional hardware to enable the unit to
navigate its environment. Furthermore, the batteries are
rechargeable and simple computation can be performed on-
board with an 8-bit, 16MHz processor.

The laser rangefinder sensor module, seen in Figure 3, has
eight discrete modules capable of centimetre accuracy ranging
spanning 5cm - 180cm at a rate of 4Hz, sufficient for many
mapping experiments. It has a much more capable 32-bit,
120MHz processor, and can do moderate processing on-board.
Further, it has an XBee wireless radio to facilitate
communication with other agents. It costs $A50 per unit.

Figure 1. The platform is split into five logical
components, each of which can independently be run in
either simulation or with hardware-in-the-loop.

Figure 2. Low-cost ground vehicle which can represent
many real-world vehicles. Shown next to a $A1 coin for
scale.

Finally, the IR beacon, shown in Figure 4, can be used to
sense neighbouring agents for the purposes of collision
avoidance. It functions by emitting a modulated data stream
from a series of IR LEDs. These streams can be detected
using six detectors spaced around the sensor. The received
signal strength can then be used to estimate the relative
position and velocity of the sending agent.

 This module also addresses the problem of assigning
agent labels or identifiers within multi-vehicle systems. This
issue occurs when many agents use a wireless network to
communicate, leading to challenges in determining which
neighbour is nearby and thereby complicating communication
between specific pairs of agents. This sensor sidesteps that
issue because an label, such as a network address, may be
embedded in the data stream of the sensor. Higher-bandwidth
communication devices can be used once the identifiers are
obtained. This sensor also has a 32-bit 120MHz processor and
an XBee radio, and costs $A50 for a single unit.

It is worth noting that the use of XBee radios in a
laboratory environment can result in a network where all
agents are connected to each other, which makes testing true
multi-agent algorithms difficult. In our scenario, a variable
attenuator can be added between the XBee IC and the antenna,
significantly reducing the communication range, and allowing
true distributed algorithms to be validated.

B. Software

As our platform is intended to be used to rapidly develop
and validate distributed algorithms, we chose to use MATLAB
for its ease of use and prevalence in the control development
community. Algorithms requiring an additional performance
boost can typically be ported to C/C++ with minimal effort
once the algorithm design has been confirmed.

One method to enable rapid prototyping of algorithms is to
have both a simulated mode and a hardware-in-the-loop mode
for each component. For example, a sensor will typically

observe characteristics of the environment around it. If a map
of the environment is provided a priori the sensor
measurements may be approximated.

We have developed many MATLAB classes that can be
used to structure and execute simulations. For example, codes
have been written to communicate with both physical and
simulated agents, allow localization by external motion
capture, SLAM, and a priori recorded trajectories. There is
also code to incorporate sensor observations from laser
rangefinders, estimated sensor observations using a sensor
model and a provided map, or replaying a recorded set of
sensor observations.

The vehicles themselves can also be simulated in an
analogous way using a model of their internal dynamics or
using the physical vehicles in the loop. They may also be
automatically controlled using trajectories provided a priori,
or via a controller connected to a computer.

One often overlooked component is the scheduler or clock.
Each device in the simulation environment has its own clock,
which may operate at a different rate than the other clocks.
This is because real-world clocks are imprecise and suffer
from drift. While typically not noticeable over short time
scales, this error can become problematic when integrated
over longer periods. Further, most analytic guarantees on
control algorithms are generally only satisfied when all agents
observe each other at the same rate. For example, if one
vehicle executes its observation and control loops much faster
than its neighbours, it will be influenced more by the network
than will the network by it. Consensus-style algorithms are
particularly susceptible to clock drift, and many theoretical
guarantees are only provided when agents are synchronized.

C. Initial Results

We have currently tested our platform on some canonical
mapping and localization examples. In Figure 5, we can see a
mapping example where the range sensor in Figure 3 is
simulated. In parallel, the real data from a physical sensor is
used to construct a complimentary map on-board the ground
vehicle. This example highlights the ability to toggle between

Figure 3. Laser rangefinder module with eight solid-
state sensors.

Figure 4. IR Beacon used for identification and sensing
relative agent positions.

simulated and physical execution of the algorithm in a unified
environment.

We are using this platform as a prototype for defence
applications, such as enabling teams of robotic agents navigate
uncertain environments like disaster areas to find wounded
survivors.

IV. CONCLUDING REMARKS AND FUTURE WORK

We have developed a preliminary platform and
corresponding software stack for designing and testing highly-
scalable multi-agent algorithms that perform well in non-
laboratory settings. This was achieved by writing simple
software classes that can run all aspects of an experiment in
simulation, and that allow each component to also run
independently in hardware. The software is installed as a
single set of MATLAB files, allowing installation without
significant customization, for example with ROS or a
standalone simulator. The hardware itself is inexpensive,
allowing experiments to cost-effectively scale to many agents.

There are several improvements that are planned for our
platform. First, we will integrate coarse human inputs into the
planning and control of the distributed autonomous robotic
systems. Second, allowing humans and robots to interact with
each other in predictable and intuitive ways will allow many
real-world scenarios to be executed more naturally. We also
intend to extend the hardware platform into the UAV space,
both quadrotors and fixed-wing vehicles, and the unmanned
underwater vehicle (UUV) space. Finally, we will create a
more comprehensive dataset of maps and sensor models to
facilitate testing a wider variety of configurations in
simulation.

REFERENCES

[1] Z. Yan, N. Jouandeau, and A. A. Cherif, “A survey and analysis of

multi-robot coordination,” Int. J. Adv. Robot. Syst., vol. 10, 2013.

[2] L. E. Parker, “Current State of the Art in Distributed Autonomous

Mobile Robotics,” in Distributed Autonomous Robotics Systems 4,
no. November 2002, G. Bekey and J. Barhen, Eds. Tokyo: Springer,

2000, pp. 3–12.

[3] R. M. Murray, “Recent Research in Cooperative Control of Multi-
Vehicle Systems,” J. Dyn. Syst. Meas. Control, vol. 129, no. 5, pp.

571–583, 2007.

[4] I. Shames, A. Dostovalova, J. Kim, and H. Hmam, “Task Allocation
and Motion Control for Thread-Seduction Decoys,” in IEEE

Conference on Decision and Control, 2017.

[5] A. Chapman, E. Schoof, and M. Mesbahi, “Semi-autonomous
networks: Theory and decentralized protocols,” IEEE Int. Conf.

Robot. Autom., pp. 1958–1963, May 2010.

[6] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in
Multiagent Networks. Princeton, New Jersey: Princeton University

Press, 2010.

[7] E. Schoof, A. Chapman, and M. Mesbahi, “Bearing-compass
formation control: A human-swarm interaction perspective,” in

American Control Conference, 2014, pp. 3881–3886.

[8] M. Walter and J. Leonard, “An Experimental Investigation of
Cooperative SLAM,” in IFAC/EURON Symposium on Intelligent

Autonomous Vehicles, 2004, vol. 37, pp. 880–885.

[9] B. D. Gouveia, D. Portugal, D. C. Silva, and L. Marques,
“Computation Sharing in Distributed Robotic Systems: A Case

Study on SLAM,” IEEE Trans. Autom. Sci. Eng., vol. 12, no. 2, pp.

410–422, 2015.

[10] K. Y. K. Leung, T. D. Barfoot, and H. H. T. Liu, “Decentralized

Cooperative SLAM for Sparsely-Communicating Robot Networks:

A Centralized-Equivalent Approach,” J. Intell. Robot. Syst., vol. 66,

no. 3, pp. 321–342, 2012.

[11] S. Thrun and Y. Liu, “Multi-Robot SLAM with Sparse Extended

Information Filers,” in Robotics Research. The Eleventh Internation
Symposium, P. Dario and R. Chatila, Eds. Berlin, Heidelberg:

Springer, 2005, pp. 254–266.

[12] S. J. Julier and J. K. Uhlmann, “Simultaneous localisation and map
building using split covariance intersection,” in Proceedings 2001

IEEE/RSJ International Conference on Intelligent Robots and

Systems., 2001, vol. 3, pp. 1257–1262.

[13] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of Wireless

Indoor Positioning Techniques and Systems,” IEEE Trans. Syst.

Man Cybern., vol. 37, no. 6, pp. 1067–1080, 2007.

[14] D.-L. Yang, F. Liu, and Y.-D. Liang, “A Survey of the Internet of

Things,” in Computer Networks, no. May, Elsevier B.V., 2010.

[15] A. Giridhar and P. R. Kumar, “Distributed Clock Synchronization

over Wireless Networks: Algorithms and Analysis,” in Proceedings

of the 45th IEEE Conference on Decision and Control, 2006, pp.

4915–4920.

[16] S. Graham and P. R. Kumar, “Time in general-purpose control

systems: The Control Time Protocol and an experimental
evaluation,” in Proceedings of the IEEE Conference on Decision

and Control, 2004, vol. 4, pp. 4004–4009.

[17] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” ACM SIGOPS Oper.

Syst. Rev., vol. 36, no. SI, pp. 147–163, 2002.

[18] M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A low cost
scalable robot system for collective behaviors,” Proc. - IEEE Int.

Conf. Robot. Autom., pp. 3293–3298, 2012.

[19] D. Pickem et al., “The Robotarium: A Remotely Accessible Swarm
Robotics Research Testbed,” in IEEE International Conference on

Robotics and Automation, 2017.

[20] D. Pickem, M. Lee, and M. Egerstedt, “The GRITSBot in its
Natural Habitat - A Multi-Robot Testbed,” in IEEE Internation

Conference on Robotics and Automation, 2015, pp. 4062–4067.

[21] N. Koenig and A. Howard, “Design and use paradigms for gazebo,
an open-source multi-robot simulator,” in 2004 IEEE/RSJ

International Conference on Intelligent Robots and Systems, 2004,

vol. 3, pp. 2149–2154.

Figure 5. Mapping example using simulated version of
the laser rangefinder sensor.

