
An Experimental Platform for Heterogeneous Multi-Vehicle Missions 
Rapidly enabling complex, fault-tolerant behaviours in a real-world environment 

 

Eric Schoof, Chris Manzie, Iman Shames, Airlie Chapman, Denny Oetomo 

University of Melbourne 

Melbourne, Australia 

{eschoof, manziec, iman.shames, airlie.chapman, doetomo} @unimelb.edu.au 

 
 

Abstract—This paper documents the development of an 

experimental platform that can be used to test and validate 

collaborative multi-vehicle algorithms and to explore the 

collective behaviors that arise. Unlike existing platforms, sensing 

and communication are explicitly considered, enabling realistic 

scenarios to be tested and prototyping of systems to be facilitated, 

thereby accelerating the development of next generation systems 

for defense and civilian applications.1 
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I.  INTRODUCTION 

Research into autonomous robotic systems has been 
ongoing for many years.  Coordinated autonomous systems 
that allow many agents to cooperatively execute tasks are still 
in their infancy but are highly desired in many settings.  For 
example, using a single vehicle in a search and rescue 
application means the mission area must be explored serially, 
and if the vehicle fails, the mission will terminate prematurely.  
If instead multiple vehicles can be used as in [1]–[3], then the 
mission area can be explored more effectively whilst the loss 
of any one vehicle can be compensated by the remaining 
vehicles to retain mission completion goals.  Other examples 
include the missile seduction problem using multiple 
Unmanned Aerial Vehicles (UAVs) [4]. 

The simplest form of communication amongst multiple 
agents is to assume all agents can directly communicate with 
one another and all decision making is performed at a single 
location.  This is undesirable as the tractability of the approach 
decreases with the number of agents and furthermore it 
introduces a single point of failure for the mission, namely the 
centralized computing node. The alternative (and more 
intuitive) approach is each agent is a member of a coordinated 
autonomous system in which communication and computation 
requirements depend only on the agents around them.  
Information spreads through the network over ever-changing 
active communication links in a decentralised manner, thus 
requiring that collective behaviour amongst the multiple 
vehicles satisfies the overall mission objectives. 
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 To ensure mission objectives are met, the algorithms used 
within individual agents in an autonomous robotic system, and 
their collective behaviour, will need provable guarantees of 
their performance in this complex environment.  This 
collective behaviour should then be validated in an appropriate 
emulation facility.  To achieve this goal requires the analysis 
of networked dynamic systems [5]–[7], multi-robot 
simultaneous localization and mapping (SLAM) [8]–[12], 
fault-tolerant communication networks [13], [14], and clock 
synchronization [15]–[17].  Whilst individually these tasks 
have received different levels of attention, to date there is 
limited (if any) examples of combining these capabilities into 
a single platform for prototyping collaborative emergent 
behaviour of multiple robotic agents. 

When developing new algorithms targeting multi-vehicle 
environments, it can be difficult to capture real-world 
behaviour as there is often a disconnect between scientific 
simulations, and real-world execution.  This is mainly due to 
the inherent difficulty of operating many vehicles with 
potentially faulty algorithms, and the similarly inherent low-
fidelity models used to simulate such groups of vehicles.  
Many groups have developed distributed hardware platforms 
to look at various research questions.  For example, the 
Kilobot platform by K-Team was one of the first platforms to 
scale to large numbers of autonomous agents [18]. Each agent 
costs only a few dollars, has limited sensing and 
communicates with agents in their very-near proximity, and 
has a novel locomotion method involving micro vibrators to 
rotate and translate through the environment.  The Kilobots, 
however, do not move or sense in a way that mirrors typical 
real-world scenarios, and the on-board computation limits 
what an individual agent can do on its own.   The Robotarium 
at Georgia Tech [19], [20] is probably one of the most novel 
distributed hardware-in-the-loop (HIL) simulators, as it allows 
submission of code to be run on a real group of ground and 
aerial robots and will produce a recording of their behaviour.    
However, all computation and sensing is performed centrally, 
making it difficult to extrapolate the performance of the 
experiment to true distributed settings. 

The University of Melbourne is developing a unique 
software and hardware platform to design and test multi-
vehicle coordination algorithms in an environment that is both 
simple to use while still rich enough to capture many attributes 
of the real world.  There are multiple levels of algorithm 
execution, including pure software, mixed HIL, and pure 



hardware – all of which combine to produce an effective 
platform for the testing and validation of collaborative multi-
vehicle teaming algorithms.  

This paper outlines the development of the University of 
Melbourne distributed robotics platform to date, as well as the 
developments we intend to undertake in the future.  The final 
platform will enable rapid prototyping and validation of 
collaborative algorithms for cooperative missions in realistic 
settings and dovetails the algorithmic developments from the 
University of Melbourne, other leading universities, and 
industrial partners. 

The structure of the paper is as follows.  In §II, we discuss 
the architectural overview of our platform.  The existing 
hardware and software developments are presented in §III 
with an accompanying proof-of-concept experiment with 
sample results in §III.C.  Finally, concluding remarks and 
future directions are discussed in §IV.  

II. ARCHITECTURAL OVERVIEW 

In a high-level context, there are several subsystems that 
we consider, which can be seen in Figure 1.  Each of these 
subsystems can be run either in simulation or with hardware-
in-the-loop, to aid in rapid prototyping. 

The most readily simulated subsystems are vehicle 
dynamics and position estimation.  There are many packages 
available, which incorporate high-fidelity models for many 
commonly used vehicles and sensors, and general physics 
simulators, such as Gazebo [21] and nVidia Isaac.  These 
systems aim to replicate the world in a very high fidelity, both 
in terms of physics and sensing.  They also typically require 
large amounts of computational power, and setup can be 
complicated. 

The University of Melbourne robotic platform develops in 
parallel the hardware and accompanying software simulation 
of the testbed.  We explicitly do not use the simulation 
packages above because our focus is on the high-level 
algorithmic development, and we want to keep all software 
bundles as a single package. This provides a powerful 

prototyping and testing environment for distributed 
algorithms. 

III. EXISTING DEVELOPMENTS 

Currently we have developed several hardware modules 
and a software infrastructure to smoothly transition from pure 
simulation to HIL environments.  In this section, we explore 
both, and give some insights into what we will do in the future 
to paint a broader picture of the final vision.  

A. Hardware 

The hardware developed so far consists of a unicycle-style 
ground vehicle (Figure 2) and two custom interchangeable 
sensor modules: a low-cost laser ranging sensor (Figure 3) and 
an identification and relative localization beacon (Figure 4).  
We have opted to build our own hardware, rather than use off 
the shelf options, as we can strictly control the cost, 
computation, sensing, and communications requirements. 

The main factor driving the design of the ground vehicle is 
to make it low cost; it is approximately $A80 for a single unit, 
and nearly half that in bulk.  It is also functional in that it 
contains sensors and additional hardware to enable the unit to 
navigate its environment.  Furthermore, the batteries are 
rechargeable and simple computation can be performed on-
board with an 8-bit, 16MHz processor. 

The laser rangefinder sensor module, seen in Figure 3, has 
eight discrete modules capable of centimetre accuracy ranging 
spanning 5cm - 180cm at a rate of 4Hz, sufficient for many 
mapping experiments.  It has a much more capable 32-bit, 
120MHz processor, and can do moderate processing on-board.  
Further, it has an XBee wireless radio to facilitate 
communication with other agents.  It costs $A50 per unit. 

Figure 1. The platform is split into five logical 
components, each of which can independently be run in 
either simulation or with hardware-in-the-loop. 

Figure 2. Low-cost ground vehicle which can represent 
many real-world vehicles.  Shown next to a $A1 coin for 
scale. 



Finally, the IR beacon, shown in Figure 4, can be used to 
sense neighbouring agents for the purposes of collision 
avoidance.  It functions by emitting a modulated data stream 
from a series of IR LEDs.  These streams can be detected 
using six detectors spaced around the sensor.  The received 
signal strength can then be used to estimate the relative 
position and velocity of the sending agent. 

 This module also addresses the problem of assigning 
agent labels or identifiers within multi-vehicle systems.  This 
issue occurs when many agents use a wireless network to 
communicate, leading to challenges in determining which 
neighbour is nearby and thereby complicating communication 
between specific pairs of agents.  This sensor sidesteps that 
issue because an label, such as a network address, may be 
embedded in the data stream of the sensor.  Higher-bandwidth 
communication devices can be used once the identifiers are 
obtained.  This sensor also has a 32-bit 120MHz processor and 
an XBee radio, and costs $A50 for a single unit. 

It is worth noting that the use of XBee radios in a 
laboratory environment can result in a network where all 
agents are connected to each other, which makes testing true 
multi-agent algorithms difficult.  In our scenario, a variable 
attenuator can be added between the XBee IC and the antenna, 
significantly reducing the communication range, and allowing 
true distributed algorithms to be validated. 

B. Software 

As our platform is intended to be used to rapidly develop 
and validate distributed algorithms, we chose to use MATLAB 
for its ease of use and prevalence in the control development 
community.  Algorithms requiring an additional performance 
boost can typically be ported to C/C++ with minimal effort 
once the algorithm design has been confirmed. 

One method to enable rapid prototyping of algorithms is to 
have both a simulated mode and a hardware-in-the-loop mode 
for each component.  For example, a sensor will typically 

observe characteristics of the environment around it.  If a map 
of the environment is provided a priori the sensor 
measurements may be approximated.  

We have developed many MATLAB classes that can be 
used to structure and execute simulations.  For example, codes 
have been written to communicate with both physical and 
simulated agents, allow localization by external motion 
capture, SLAM, and a priori recorded trajectories.  There is 
also code to incorporate sensor observations from laser 
rangefinders, estimated sensor observations using a sensor 
model and a provided map, or replaying a recorded set of 
sensor observations. 

The vehicles themselves can also be simulated in an 
analogous way using a model of their internal dynamics or 
using the physical vehicles in the loop.  They may also be 
automatically controlled using trajectories provided a priori, 
or via a controller connected to a computer. 

One often overlooked component is the scheduler or clock.  
Each device in the simulation environment has its own clock, 
which may operate at a different rate than the other clocks.  
This is because real-world clocks are imprecise and suffer 
from drift.  While typically not noticeable over short time 
scales, this error can become problematic when integrated 
over longer periods.  Further, most analytic guarantees on 
control algorithms are generally only satisfied when all agents 
observe each other at the same rate.  For example, if one 
vehicle executes its observation and control loops much faster 
than its neighbours, it will be influenced more by the network 
than will the network by it.  Consensus-style algorithms are 
particularly susceptible to clock drift, and many theoretical 
guarantees are only provided when agents are synchronized. 

C. Initial Results 

We have currently tested our platform on some canonical 
mapping and localization examples.  In Figure 5, we can see a 
mapping example where the range sensor in Figure 3 is 
simulated.  In parallel, the real data from a physical sensor is 
used to construct a complimentary map on-board the ground 
vehicle.  This example highlights the ability to toggle between 

Figure 3. Laser rangefinder module with eight solid-
state sensors. 

Figure 4. IR Beacon used for identification and sensing 
relative agent positions. 



simulated and physical execution of the algorithm in a unified 
environment. 

We are using this platform as a prototype for defence 
applications, such as enabling teams of robotic agents navigate 
uncertain environments like disaster areas to find wounded 
survivors. 

IV. CONCLUDING REMARKS AND FUTURE WORK 

We have developed a preliminary platform and 
corresponding software stack for designing and testing highly-
scalable multi-agent algorithms that perform well in non-
laboratory settings.  This was achieved by writing simple 
software classes that can run all aspects of an experiment in 
simulation, and that allow each component to also run 
independently in hardware.  The software is installed as a 
single set of MATLAB files, allowing installation without 
significant customization, for example with ROS or a 
standalone simulator.  The hardware itself is inexpensive, 
allowing experiments to cost-effectively scale to many agents. 

There are several improvements that are planned for our 
platform.  First, we will integrate coarse human inputs into the 
planning and control of the distributed autonomous robotic 
systems.  Second, allowing humans and robots to interact with 
each other in predictable and intuitive ways will allow many 
real-world scenarios to be executed more naturally.  We also 
intend to extend the hardware platform into the UAV space, 
both quadrotors and fixed-wing vehicles, and the unmanned 
underwater vehicle (UUV) space.  Finally, we will create a 
more comprehensive dataset of maps and sensor models to 
facilitate testing a wider variety of configurations in 
simulation. 
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Figure 5. Mapping example using simulated version of 
the laser rangefinder sensor. 


