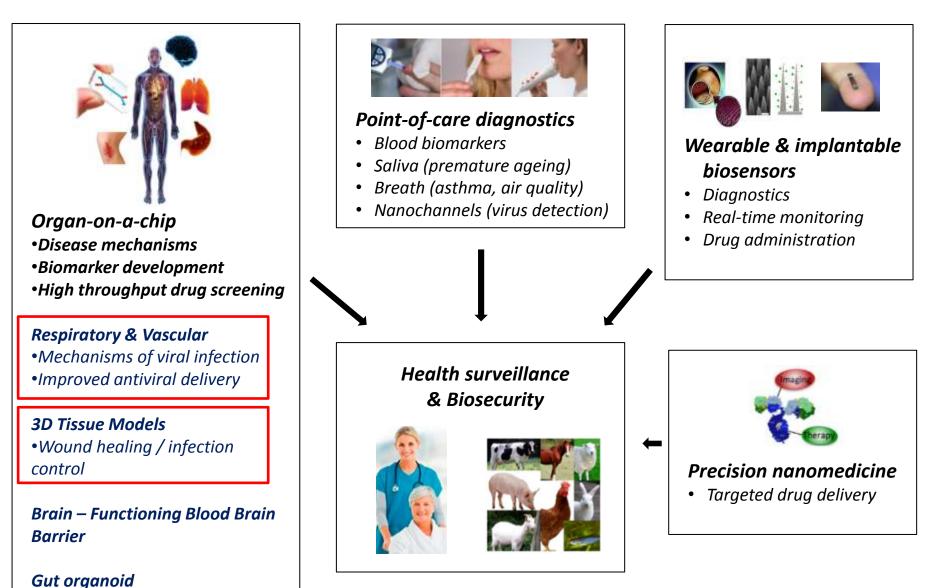

Developing 3D cell culture systems to combat human pathogens & disease

Dr Elizabeth Pharo CSIRO Australian Animal Health Laboratory (AAHL)

Probing Biosystems Future Science Platform

CSIRO Health & Biosecurity


Outline

- CSIRO Probing Biosystems Future Science Platform
- Human 3D cell culture models
 - Lung: respiratory viruses
 - Skin: chronic wound healing, new biomaterials, biosensing
- Challenges

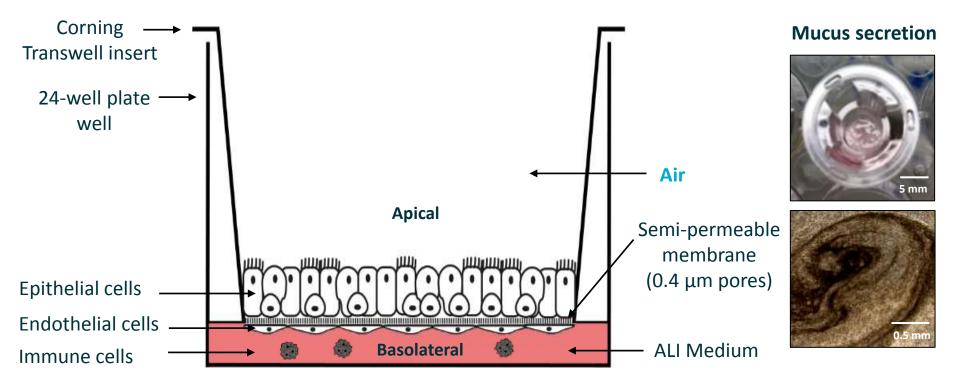
CSIRO Health & Biosecurity

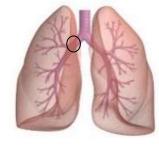
CSIRO Probing Biosystems Future Science Platform

3D lung models to fight emerging respiratory viruses

Respiratory viruses are airborne and highly contagious

- We are vulnerable to pandemics and seasonal flu
 - Human cost
 - Spanish flu (H1N1) 1918: >50-100 million deaths
 - SARS: 774 deaths, MERS: 449 deaths
 - Economic cost
 - Next flu pandemic: US \$3 trillion¹
- Poor diagnostics
- No therapeutics or vaccines
- Animal models costly, not always representative of the response in humans, long lead-time
- New disease models needed



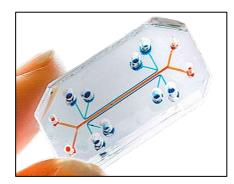

CSIRO Health & Biosecurity

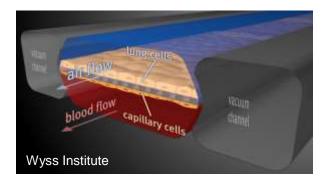
Mimicking the human lung³

- Primary lung epithelial and endothelial cells cocultured on Transwells at the air liquid interface (ALI)
 - Epithelial cells differentiate 21-27 days post-airlift to form ciliated, goblet (mucus-producing), club and basal cells

CSIRO Health & Biosecurity

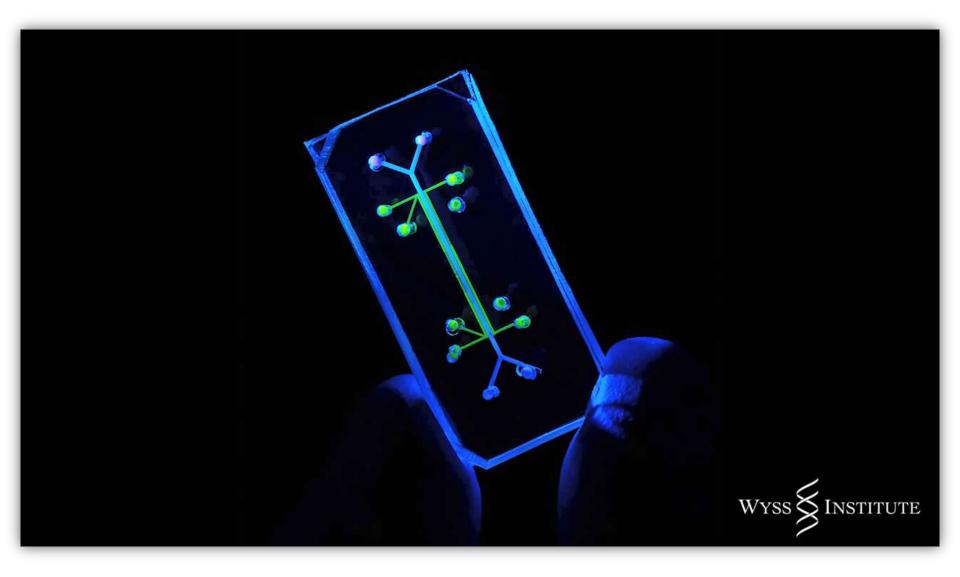
³ Hermanns *et al* (2004) *Lab. Invest*. 84: 736–752


Respiratory virus challenge


CSIR

The next step: human lung-on-a-chip

- 3D microfluidic perfusion device to mimic blood flow
 - More physiologically relevant system
 - Directional flow of nutrients, mechanical stress (breathing)
- Identify new disease biomarkers
- Fast fail therapeutic candidates
- Minimise use of animal models, saving time and money
- Rapid response during a pandemic
- Test bacteria, nanoparticles, chemicals, toxicity



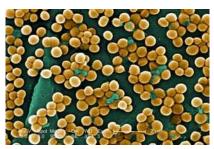
CSIRO Health & Biosecurity

Human lung-on-a-chip

Wyss Institute https://wyss.harvard.edu/; Huh et al (2010) Science 328:1662-1668. Licensed to Emulate, Inc.

3D and 4D skin cell culture systems

Chronic wounds are a huge cost to Australia

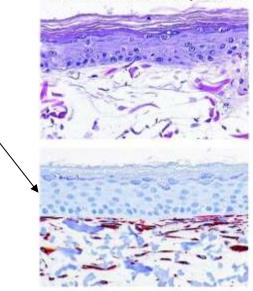

- \$3 billion cost to healthcare system p.a.⁴
- Over 400,000 people affected at any time⁴
 - Associated with diabetes, elderly, immune suppression, severe burns
 - Increased risk of bacterial infection, e.g. *E. coli*, *S. aureus*,
 P. aeruginosa
 - Amputation in severe cases
- Create human skin models to study infection and inflammation

Sally McArthur CSIRO Research+ Science Leader in Biomed. Manufact; Prof. Biomed. Eng. (Swinburne)

- New biomaterials
- Drug and gene delivery systems

ulcers

3D Skin Culture


- Creation of human skin using the Transwell system
 - Keratinocytes differentiated at the air liquid interface (ALI) (epidermis)
 - Fibroblasts and collagen scaffold (dermis)
 - 'Wound' skin culture by slicing or burning
 - Immune cells and bacteria added to simulate infection and inflammation

and

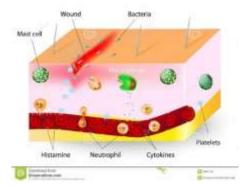
collagen (dermis)

Cell line human skin equivalent Differentiated Submerged culture keratinocytes Culture at Keratinocytes (epidermis) air-liquid interface Fibroblast-Fibroblasts populated

Sally McArthur CSIRO Research+ Science Leader in Biomed. Manufact; Prof. Biomed. Eng. (Swinburne)

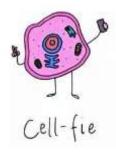
www.csiro.au

scaffold

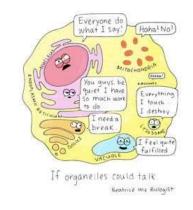

4D Cell culture systems

Combine 3D models with biosensing and reporting

Microfluidic device



3D cell culture system



Cell imaging

Real-time functional readouts

Advanced disease models New medical devices

Sally McArthur CSIRO Research+ Science Leader in Biomed. Manufact; Prof. Biomed. Eng. (Swinburne)

Challenges

Physiologically relevant models

- Reliable, reproducible, scalable
- Cell source is critical
 - Human primary cells / induced pluripotent stem (iPS) cells
- Model complexity
 - Tissue structure (matrix scaffold) / appropriate cell types and numbers
- Sensors and real-time reporting
- 2D monoculture systems still useful
- Animal models needed for comparison

Summary

3D cell culture & organ-on-a-chip models

- Multiple applications
- Complex disease models
- Personalised medicine
- Sensors and functional readouts for real-time patient monitoring
- Advanced healthcare devices to improve patient outcome

CSIRO Health & Biosecurity

Acknowledgments

Health & Biosecurity

- Michelle Baker
- Sinead Williams
- Mary Tachedjian
- Vicky Boyd
- Helen Dacres

Swinburne University

- Sally McArthur
- Aleta Pupovac
- Zay Yar Oo
- Daniel Langley
- Sorel De Leon
- Charlie Wilson

The University of Melbourne

Alastair Stewart

AAHL

- John Bingham
- Megan Dearnley
- Diane Green
- Jean Payne

W

SWINBURNE

UNIVERSITY OF

Manufacturing

- Carmel O'Brien
- Andrew Laslett
- Murat Gel

University of Queensland

• Kirsty Short

Monash University

- Nico Voelcker
- Tony Purcell
- Tony Velkov

CSIRO Health & Biosecurity

THE UNIVERSITY OF MELBOURNE