

Stronger, faster, better: Measuring your physiology for optimal performance

Prof. Robert McLaughlin

ARC Centre of Excellence for Nanoscale Biophotonics

University of Adelaide

robert.mclaughlin@adelaide.edu.au

Microvessels are important

- Microvessels
 - < 200µm diameter
 - Critical for healthy tissue nutrition and function
- Heat regulation
 - Increased blood flow near the skin surface to lose heat
 - Exercise can change microvessels to improve our heat regulation
- Disease
 - Diabetes
 - Kidney disease (nephropathy)
 - Nerve damage (neuropathy)
 - Eye damage (retinopathy)
 - Cardiovascular disease
 - Microvessels can provide non-invasive indicator of systemic disease

Australian Government Australian Research Council

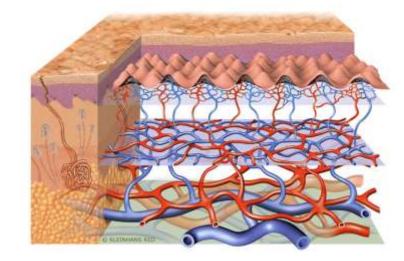
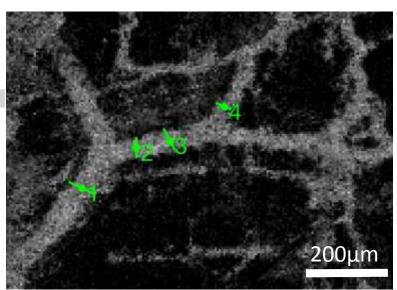


Image courtesy of Skin Care Forum, BASF Personal Care and Nutrition GmbH. www.skin-care-forum.basf.com

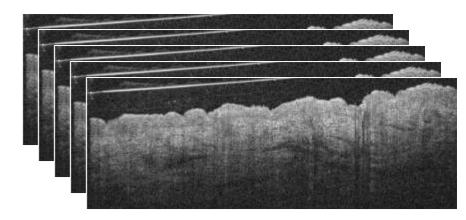


Overview of research

Our research

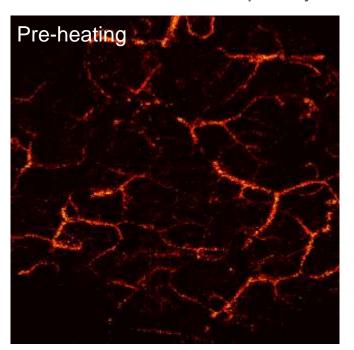
- Non-invasive assessment of microvessels
- Optical imaging
- Have developed automated quantification algorithms
- We can measure blood flow speed and volume
- Measure to depth of approx. 1mm

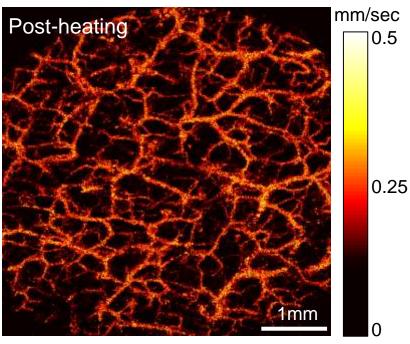
Point	Diameter	Speed	Flow
	(microns)	(microns/sec)	(picolitres/sec)
1	67	118	417
2	50	137	269
3	56	119	291
4	38	111	126



Optical imaging

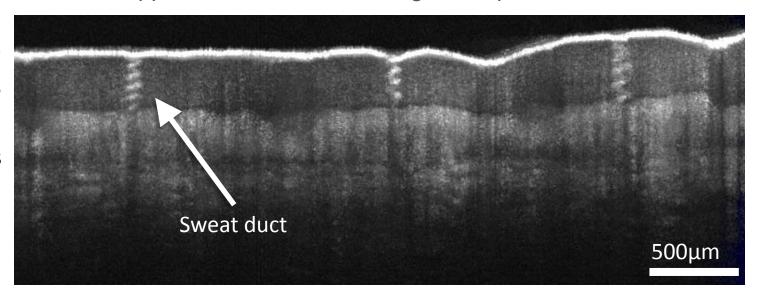
- Optical coherence tomography
 - Non-invasive optical imaging technology
 - Analogous to ultrasound, but uses light waves instead of sound
 - Scanner available as off-the shelf component from multiple manufacturers
 - Builds up high resolution 3D volume of tissue
 - Resolution approx. 10-20 microns





Human experiments

- 8 human subjects
 - 5mm x 5mm field-of-view
 - Quantified change in blood flow in response to heating
 - Collaboration with Prof. Danny Green, University of Western Australia
 - We are able to quantify these changes

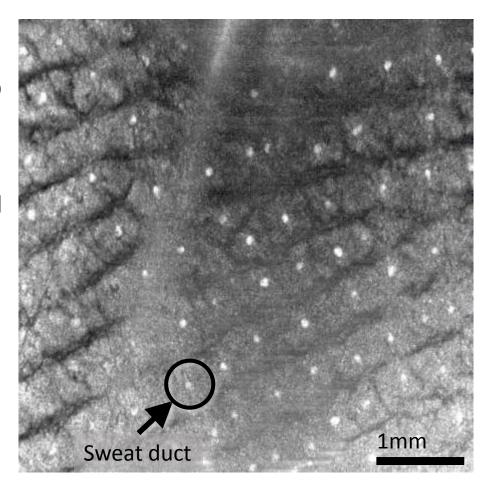


Sweat ducts

- Optical imaging to gain a broader understanding of heat regulation
- Sweat duct imaging
 - OCT image shows cross-sectional view of a human palm
 - Sweat ducts appear as small coils through the epidermis

Skin surface Epidermis

Dermis



Sweat ducts

- Sweat duct imaging
 - OCT image taken parallel to skin surface, through epidermis
 - Sweat ducts visible as small white dots
 - 5mm x 5mm field of view

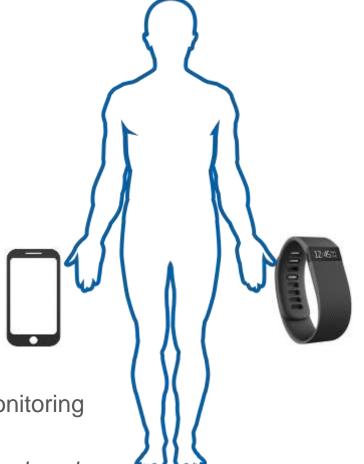
Trends and drivers

- Societal & Technical trends and drivers
 - Optical imaging allows non-invasive imaging of physiology
 - Imaging is only half the story...
 - Automated quantification algorithms provide data to drive decisions
 - More data allows better decisions
 - It is critical to make data gathering cheap, robust and easy

Inexpensive optical probes

- Example: Miniprobes
 - Provide functionality of \$10,000 scanhead for \$495

Miniprobes



Future trends

- 10-20 years
 - 24/7 monitoring of my physiology
 - My phone monitors where I go
 - My fitbit monitors how much effort I exert
 - My GPS monitors traffic
 - When will I get probes that monitor my health?
- Gaps in knowledge
 - How do we seamlessly integrate 24/7 monitoring
 - How do we gather and process the data
 - Assessment of microvessels is a useful test cast

