

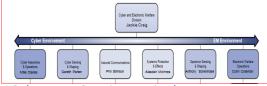
Australian Government **Department of Defence**

Science and Technology

UNCLASSIFIED Approved for Public Release

Cyber and Electronic Warfare Division **DST Partnerships Week 2016**

connects ennovate Science and technology to understand and counter the threat using electronic


means

Cyber & Electronic Warfare Division

Mission: To understand and mitigate threats using electronic means

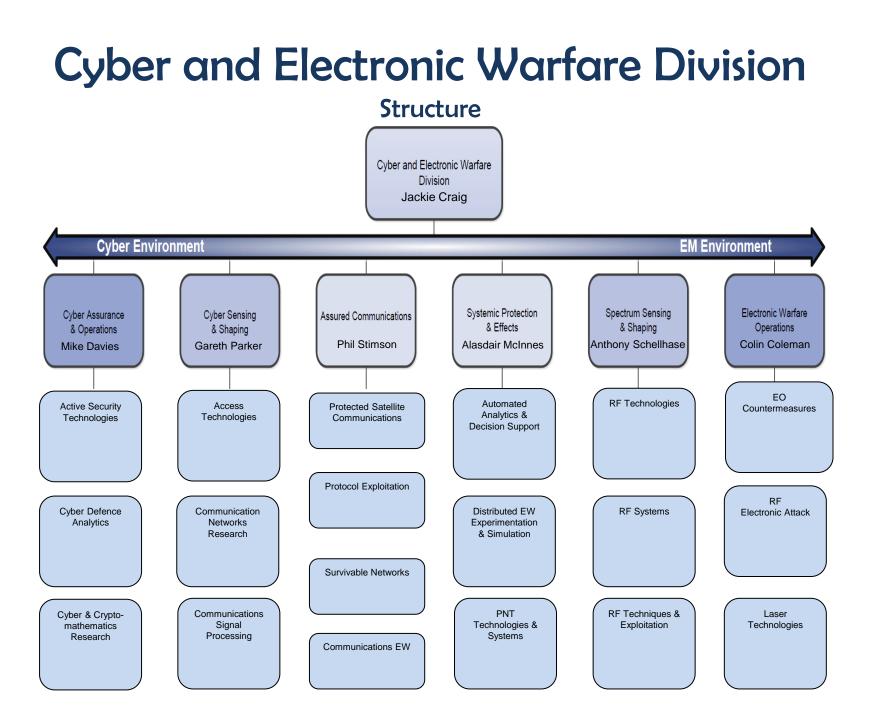
Major S&T Capabilities

- The Cyber-EW Continuum is the convergence of cyber, SIGINT, communications and EW.
- In accordance with national priorities outlined in the Next Generation Technologies (White paper), the Cyber Security Strategy, and increasing requirements from the ADF for cyber S&T, CEWD develops and applies technologies across the cyber-EW continuum to address threats in a datadriven, networked, cyber-physical future

Program

- Strategic Research programs in both Cyber and Future EW, plus others under development), within the DST Strategic Research Initiatives program
- Support for the Defence IIP (Integrated Investment Program, formerly DCP) in transitioning technology developments to capability
- CEWD leverages our internal capability via strong international partnerships, including TTCP and bilateral agreements with other nations
- CEWD has an extensive history of collaboration with academia and Defence industry, and creates opportunities for future collaborative developments

Partnership examples


- Data 61/CSIRO trustworthy cyber (software)
- UNI NSW trustworthy cyber (hardware)
- Northrupp Grumman Digital Video Guard (DVG) and EO Distributed Aperture System (EODAS)
- Ultra Avalon RF sensing and analysis

S&T highlights

- Digital Video Guard (DVG)
- Wideband Global SATCOM Anchoring Monitoring System
- Redwing Program
- LIVE Maritime Situational Awareness
- DIRCM world leading laser research

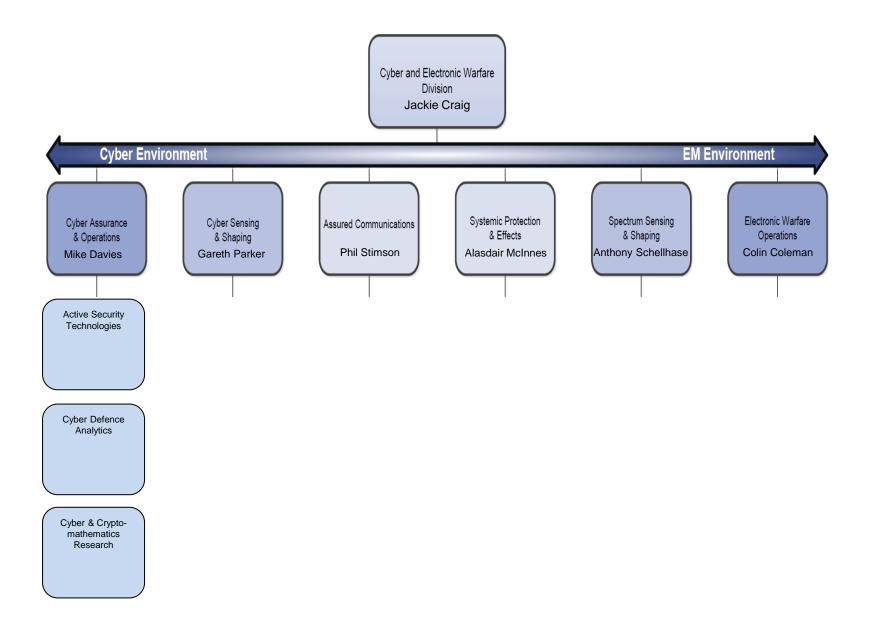
Opportunities to partner with CEWD

- Hinder Autonomous cyber defence
- SCADS Self-organising Communications and Autonomous Delivery Service UAV-based resilient communications
- EODAS Electro-optic Distributed Aperture System Airborne platform 360 degree threat sensing

Australian Government **Department of Defence** Science and Technology

UNCLASSIFIED Approved for Public Release

Cyber Assurance and Operations MSTC


connects innovates To enable autonomous, resilient and effective cyber capabilities with an operational edge

Dr Mike Davies **Research Leader**

michael.davies@dsto.defence.gov.au

Cyber and Electronic Warfare Division Structure

Introduction Cyber Security Dilemma

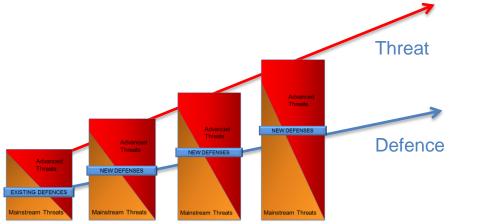
Defenders are losing (or at best playing catch-up), attackers are winning (or at least calling the shots) We develop new measures through advancing our concepts, tools and techniques But then, however, so do the threat actors!

÷

A Challenge

How can we decrease the chance of just making incremental improvements which get outpaced?

And increase the

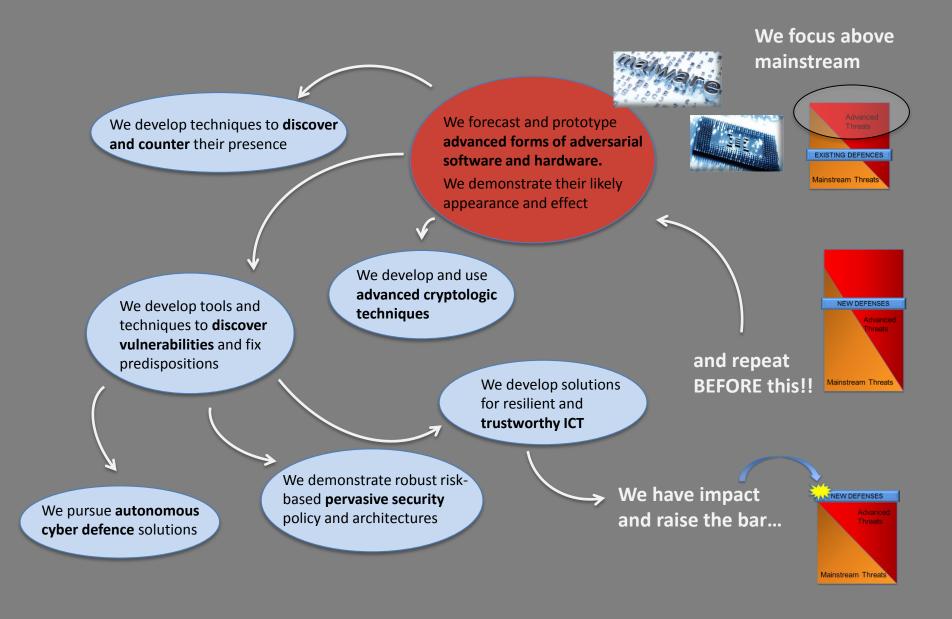

sustainable game-

changer?

...

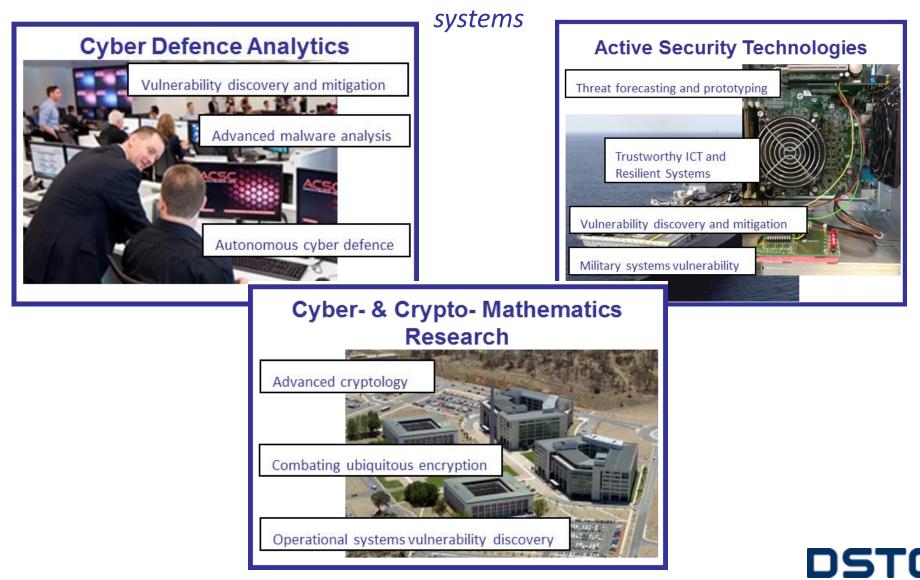
....

chance of producing a

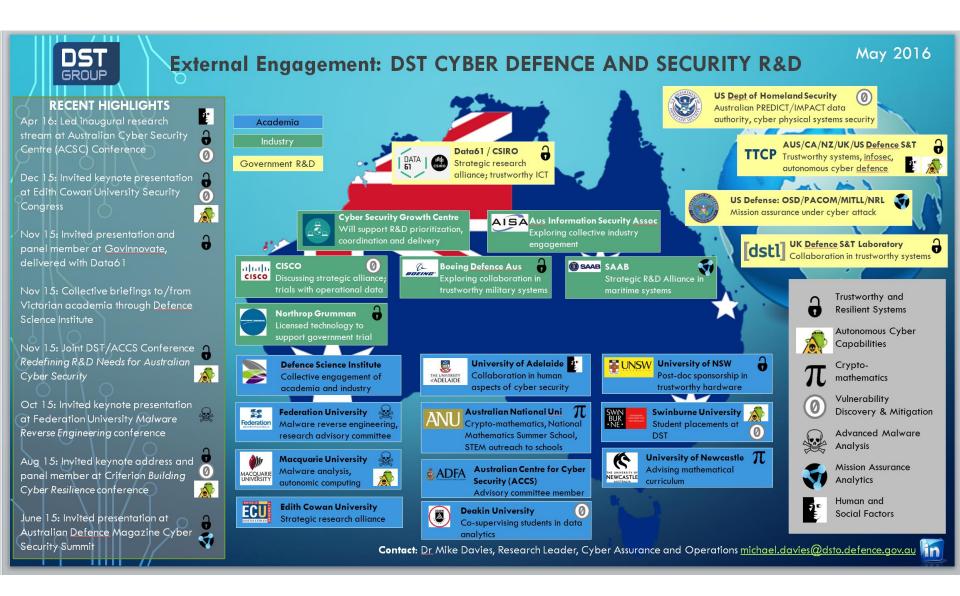


New DEFENSES Advanced Treats Advanced Treats Mainsteam Threats Mainsteam Threats Mainsteam Threats

What qualities do we need from the Australian R&D community?...


Science and Technology for Safeguarding Australia

Modus Operandi in DST Group Cyber Assurance and Operations S&T



DST Cyber Assurance and Operations Branch

A critical enabler of effective cyber operations and resilient trustworthy

Connect, Partner, Collaborate, Innovate

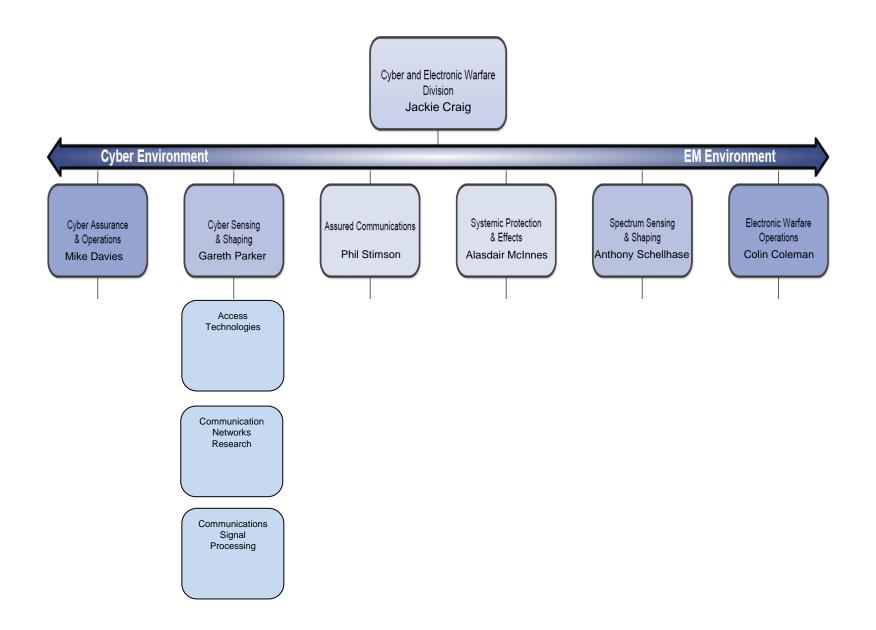
.

Australian Government

Department of Defence Science and Technology

UNCLASSIFIED Approved for Public Release

Cyber Sensing and Shaping MSTC


Sensing and shaping of communication networks for Cyber

Dr Gareth Parker **Research Leader** gareth.parker@dsto.defence.gov.au

Cyber and Electronic Warfare Division Structure

Cyber Sensing and Shaping MSTC

"Sensing & shaping of communication networks for Cyber"

Context

13

- Convergence of telecommunications and the internet
- Ubiquitous connectivity, mobile devices and the IOT
- Computers are connected via networks

S&T scope: Communication networks

- Network characterisation & knowledge representation
- Network structures, protocols and behaviours
- Vulnerability discovery and treatment
- Communications technologies

Domain: Intelligence and security

Core knowledge and skills

- Telecommunications and internet architectures & protocols
- Communications and information theory
- Signal processing

GROUP

Data sciences

H٠

÷

 Communications technologies – RF, digital systems, SDR, photonics

Access Technologies

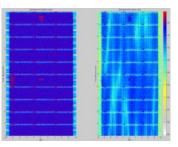
"Technologies for cyber access and tailored communications" Group Leader: Mr Jon Arnold

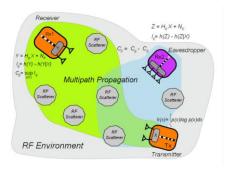
Bespoke wireless communications

- High data rate: mm-wave, FSOC
- Low probability of detection waveforms

RF & photonic technologies

- Wearable and other specialised antennas and RF
- Size, weight and power constrained technologies
- Reconfigurable modem capabilities


Communications Signal Processing


"Physical and cross-layer processing of wireless networks" Group Leader: Dr Jeff McCarthy

Signals analysis

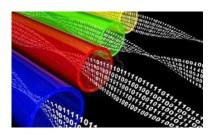
• Signal collection, enhancement and geolocation

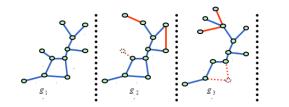
H٠

Waveform security

• MIMO, multichannel and diversity techniques

Software defined radio solutions




Communication Networks Research

"Telecommunications core networks and the internet" Group Leader: Dr Peter Dickinson

Characterisation

• Topology, traffic flow, and temporal aspects

Network knowledge representation

 Modelling and analysis of global multilayered communications networks

Network vulnerabilities

- Understanding how routing protocol vulnerabilities can be exploited by an adversary
- Techniques and technologies for detection, protection and mitigation

Specific Areas for Collaboration

17 **I** Science and Technology for Safeguarding Australia

Body Worn Antennas and RF

Aim

To develop new technologies for efficient antennas and RF that are safe for body worn applications in future tactical communications

Current collaborations

- University of Adelaide (via PhD research of Deshan Govender)
- CSIRO battery technology & conducting fabrics

Areas for expanded collaboration

- Mobile power technologies
- Flexible materials for RF and DC power distribution and antennas

Our approach

- Fabric antennas
- 'Metamaterials'
- Printed structures

ŀ

....

÷

...

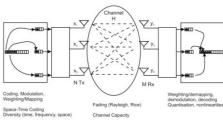
....

Contacts

Mr Adrian Caldow <u>Adrian.caldow@dsto.defence.gov.au</u> (08) 7389 5861

Wireless Security

Aim


To explore vulnerabilities in wireless communications systems and develop physical layer approaches to enhancing security

Areas for expanded collaboration

- Wireless network characterisation
- Cross-layer approaches
- Wireless sensor networks security

Our approach

 Physical layer – LPD, MIMO, diversity

H-

÷

÷

.

....

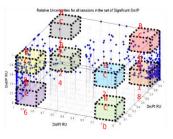
Contacts

Dr John Kitchen john.kitchen@dsto.defence.gov.au (08) 7389 6431

Internet Traffic Profiling

....

÷


.

Aim

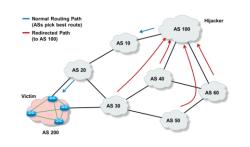
- Categorise high rate traffic
- Blind change and abnormality detection

Areas for expanded collaboration

- Data science for network analysis
- Summarising bulk historical network data
- Algorithm development for distributed processing

Our approach

- Characterisation of summarised data (i.e. NetFlow)
- Statistical and machine learning techniques to mathematically enhanced protocol-based network knowledge


Contacts

Mr Darren Webb <u>darren.webb@dsto.defence.gov.au</u> (08) 7389 4132

Routing Security

Aim

Secure critical infrastructure by protecting the internet control plane

ŀ

÷.

....

Current collaboration US Dept Homeland security

Areas for expanded collaboration

 Investigate the utility of route monitors to protect paths and network reachability.

Our approach

- Assess threats using emulated models of computer networks
- Investigate effectiveness of emerging security measures

Contacts

.

.

Mr Chris Wiren <u>chris.wiren@dsto.defence.gov.au</u> (08) 7389 6572

Network Emulation

Aim

Develop sophisticated emulations of computer networks with a specific focus on the control plane (i.e. network routing)

Areas for expanded collaboration

- Emulation of networks at scale
- Extension of emulator capability
- Develop traffic models that can be used to inject traffic into emulation

Our approach

- Utilise the Common Open Source Research Emulator (CORE)
- Emulate networks of interest such as enterprise networks

...

÷

Contacts

Mr Shaun Voigt

shaun.voigt@dsto.defence.gov.au

(08) 7389 7527

...

....

Science and Technology for Safeguarding Australia

Emerging Communications Technologies

Aim

Investigate future communications technologies that are likely to have a significant impact on Defence and National Security.

Areas for expanded collaboration

- Software Defined Networking
- The Internet of Things
- Name data networking

Our approach

Engage in regular technical exchanges with academia, and industry in areas of mutual interest.

Contacts

Peter Dickinson

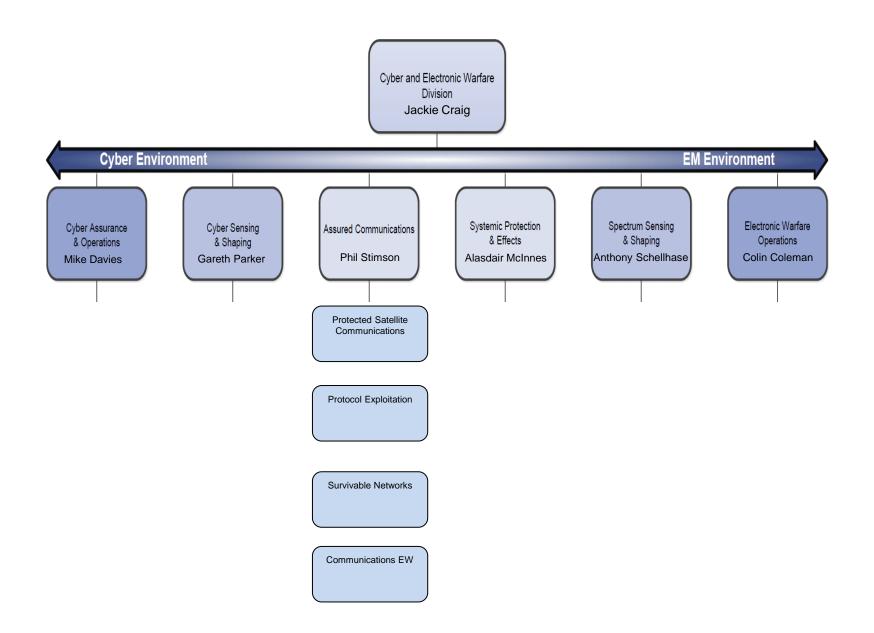
Peter.dickinson@dsto.defence.gov.au

(08) 7389 6158

3 **July 19 July 19 Jul**

Australian Government **Department of Defence** Science and Technology

UNCLASSIFIED Approved for Public Release


Assured Communications MSTC

To develop survivable tactical communications and electronic warfare solutions for contested and denied cyber electromagnetic environments

connects ennovate **Philip Stimson Research Leader** philip.stimson@dsto.defence.gov.au

Cyber and Electronic Warfare Division Structure

Background

26

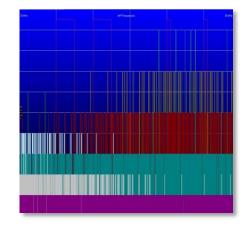

- Current ADF communications capability needs evolution.
- Threats to communications are increasing and evolving with time.
- Focus needs to be on operating in complex & dynamic behaviours.
- Commercial solutions do not offer the full capability.

- Collaboration with Allies is mutually beneficial and agreements call for enhanced mutual reliance. A substantial contribution from Australia is needed.
- Research in future protected military communications is required.

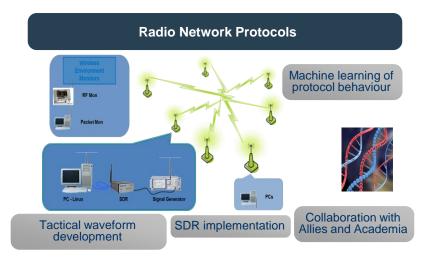
We need to develop survivable tactical communications and electronic warfare solutions for contested and denied cyber electromagnetic environments

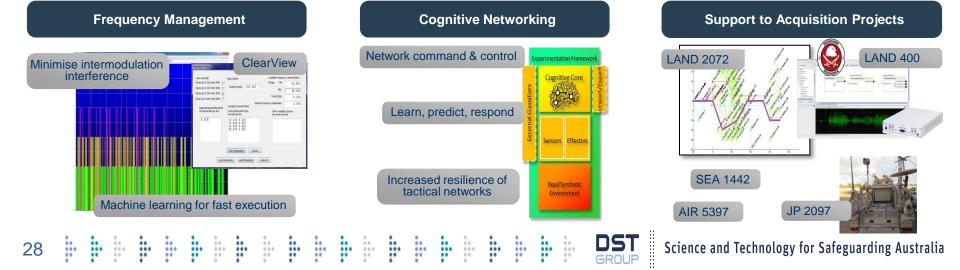
Challenges

- Spectrum congestion
- Anti-satellite weapons
- Autonomous systems
- Software defined radios make it easy to create dynamic, zero-day, threats
- Widely available COTS electronics can now challenge MILSPEC systems

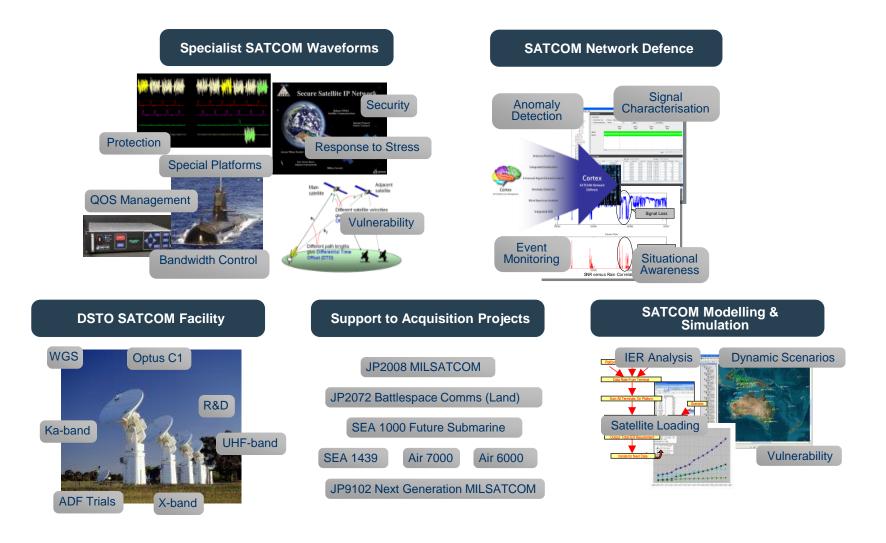

-

.


27



Protocol Exploitation



Interference Suppression Technology

Protected Satellite Communications

DS

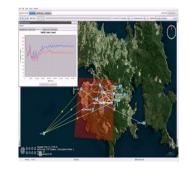
ŀ **.** . -. . -.... ***

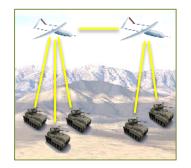
29

Survivable Networks

- HARLEQUIN optimisation planning tool for tactical networks
 - Research completed
 - Interested in commercialisation

- OPAL distributed tool to support tactical networks during operations (end-to-end connectivity possible to maintain)
 - Research well advanced


 SCADS – distributed tool to support tactical networks during operations (end-to-end connectivity NOT possible to maintain)


÷

- <u>Survivable Communications and</u> <u>Autonomous Delivery Service</u>
- Research recently started

÷

30

GROUP

Science and Technology for Safeguarding Australia

Electronic Countermeasures Development

- The ADF and OGAs operating in current operational theatres face extremely high level threats from Improvised Explosive Devices (IEDs)
 - Rely on a suite of counter IED systems to reduce their vulnerability.
 - e.g. Force Protection Electronic Counter Measures (FPECM)

....

- CEWD operates a world leading FPECM Countermeasures Development & Validation (CMD&V) program focussing on:
 - In-depth IED threat characterisation
 - Countermeasure technique development
 - Countermeasure device development
 - Hardware-in-the-loop validation testing
 - Over-the-air testing

. . .

31

CMD&V Automated Test Benches

Over-the-Air Trials

- Directly Supporting Operations:
 - ADF Theatres

Domestic Engagements

Display - SCADS

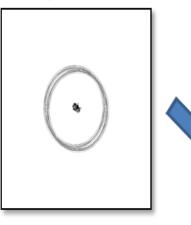
- <u>Survivable Communications and Autonomous</u>
 <u>D</u>elivery System
- Self Organisation of multiple UVs to facilitate radio communications in a highly contested/denied RF environments
 - Currently, focus on UAVs

.

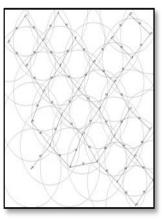
Data ferrying

32

 Minimal to no communications required to achieve complex movement patterns


.

....


Data ferrying UAV in an urban environment

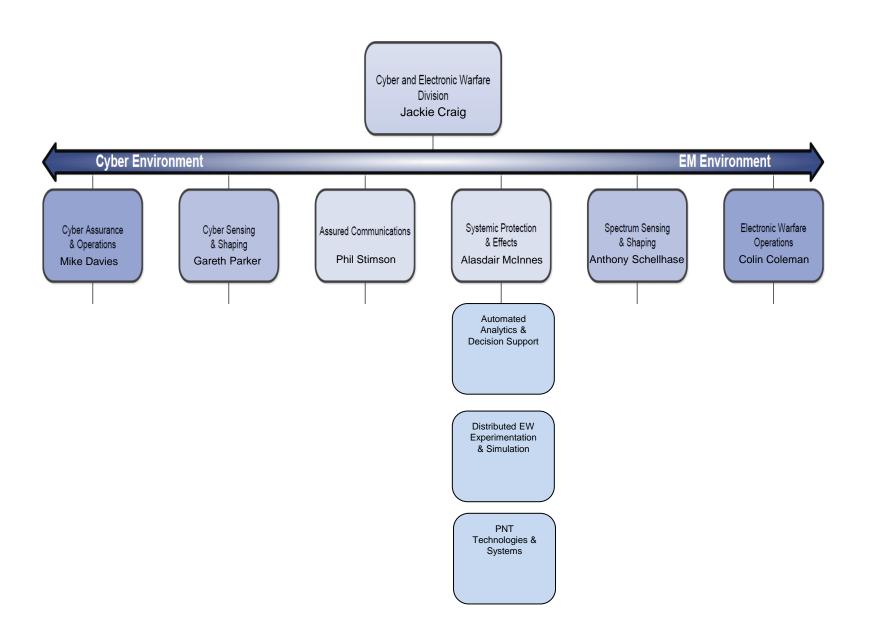
Data ferrying nodes applying a simple local rule

Resulting emergent behaviour

Science and Technology for Safeguarding Australia

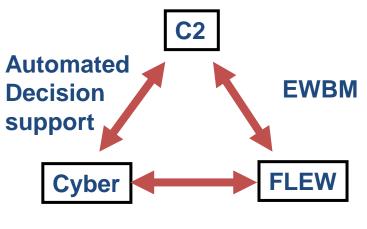
Australian Government

Department of Defence Science and Technology UNCLASSIFIED Approved for Public Release


Systemic Protection & Effects MSTC

Maximise Australian Defence & National Security capability through thedevelopment and delivery of solutions for the integration of force-level Cyber and EW with effective command & control

connectoren Innovate Alasdair McInnes **Research Leader** alasdair.mcinnes@dsto.defence.gov.au


Cyber and Electronic Warfare Division Structure

SPE Mission

....

 Maximise Australian Defence & National Security capability through the integration of force-level Cyber and EW with effective command & control.

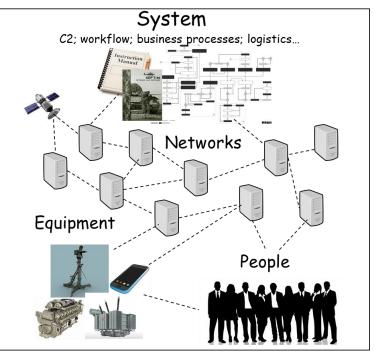
Integrated Cyber EW

• DSTO Science and Technology for Safeguarding Australia

Automated Analytics & Decision Support Group

Primary Impact Domains

- Military Platform Survivability
- Mission Assurance
- Critical Infrastructure Protection


S&T Focus Areas

- -Situational Awareness
- Threat Analytics
- Process Modelling & Mining
- -Automated Reasoning, Planning & Execution
- -Autonomous & Intelligent Systems

...

....

....

DSTO Science and Technology for Safeguarding Australia

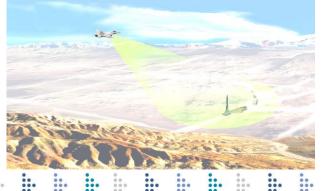
Positioning Navigation and Timekeeping Technologies & Systems group major activities

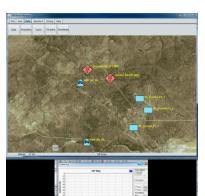
Primary Impact domains

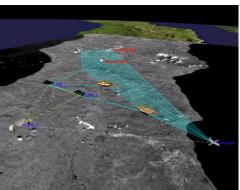
- Operate in GPS-denied conditions
- Deny satellite navigation to adversaries
- Alternative PNT technologies

S&T focus areas

- International collaboration
- Anti-jam technologies & techniques
- Novel denial techniques
- -Future technologies for accurate, stable timing

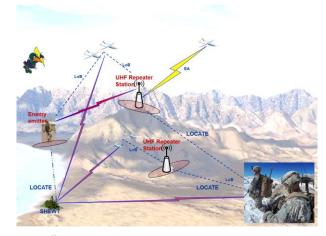

DSTO




DSTO Science and Tec

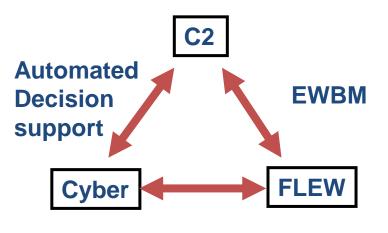
Distributed EW Experimentation & Systems group main activities

- Modelling, Simulation & Analysis
 - Force Level EW Synthetic Environment
 - Detailed Threat Modelling
- Experimentation
 - EW Battle Management
 - Shared EW Testbed
 - Tactical Networks
- Co-development
 - Advanced Passive Surveillance Capability
 - Geolocation



DSTO

DSTO Science a


DSTO

Summary

...

39

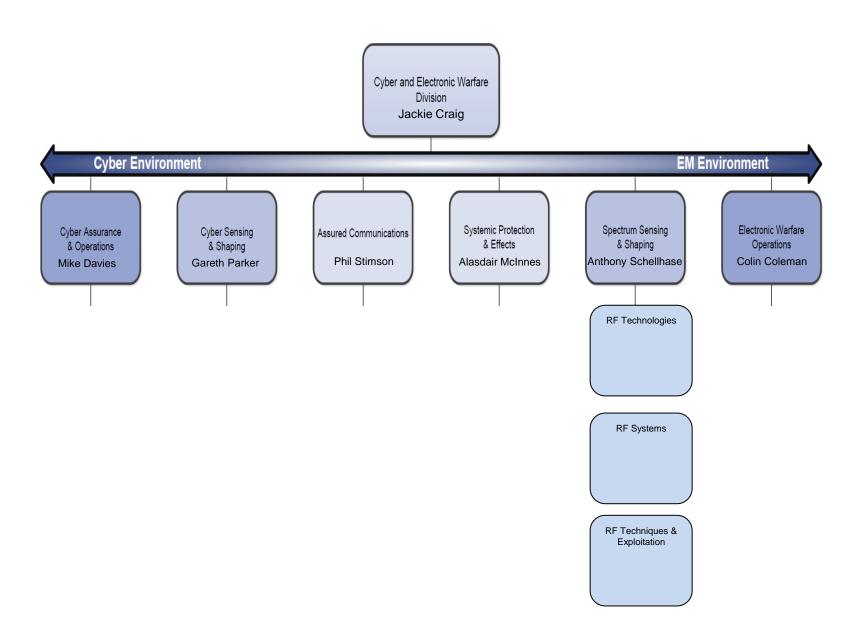
- SPE branch is focused on force-level EW & cyber
- Developing and testing effective C2 tools & techniques

Integrated Cyber EW

Australian Government Department of Defence Science and Technology UNCLASSIFIED Approved for Public Release

Spectrum Sensing and Shaping MSTC

Sensing and shaping the RF Electromagnetic Spectrum


concects there is a the state

Dr Anthony Schellhase Research Leader

anthony.schellhase@dsto.defence.gov.au

Cyber and Electronic Warfare Division Structure

Spectrum Sensing and Shaping MSTC

"Sensing & shaping the RF Electromagnetic Spectrum"

Context

- Rapid evolution and global access to COTS
- Increasing complexity of EM spectrum
- Software-based systems
- Use of spectrum not used in the past
- Networked sensors & systems

S&T scope: RF Electronic Warfare

- Wide-band RF digital sensors and effectors
 Multi-sensor and multi-channel processing
- MSA&E for EW Mission Survivability
- Low SWaP RF technology development
- RF SIGINT big data exploitation
- Cognitive ELINT

Domain: Maritime, Aerospace & National Security

Core knowledge and skills

- Mathematics, Physics
- Electronic engineering, RF engineering
- RFIC, FPGA, Antenna design
- Computer science
- Digital signal processing

DST GROUP

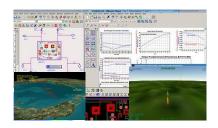
- Numerical modelling, simulation & analysis
- Experimentation

÷

÷

....

...

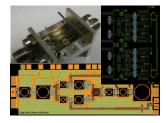

RF Technologies Group

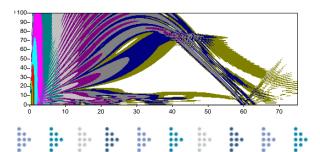
"RF phenomenology, technologies and analysis for future RF sensors & effectors"

Group Leader: Dr Roland Keir (roland.keir2@dsto.defence.gov.au)

Modelling, Simulation & Analysis

• Chip to Ship modelling, simulation & analysis


Array Development


• Broadband, dual polarised array development suitable for active and passive EW systems

RFIC/MMIC Development

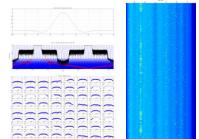
 Miniature RF Technology development for next generation EW

÷

RF propagation Phenomenology

DST GROUP

• Understanding RF propagation capabilities and impact on EW-ISR system performance


RF Systems Group


"Next generation systems and architectures for RF intercept systems"

Group Leader: Dr Kim Brown (kim.brown@dsto.defence.gov.au)

UWB Digital RCVR system

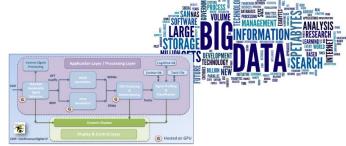
• Improving the POI, sensitivity, fidelity, detection range, SA and threat warning against modern threat emitters

UWB Digital EA

 Improving the capability against the modern wideband threat

Multi-channel Spatial Processing Intercept Array

 Improving capability against emitters that are difficult to detect, locate and identify in a cluttered RF environment

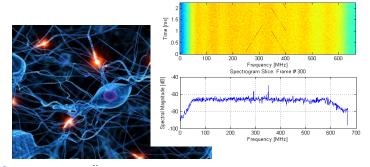

RF Techniques & Exploitation Group

"Algorithms and techniques for RF signal detection and characterization"

Group Leader: Dr Stephen Elton (stephen.elton@dsto.defence.gov.au)

TechSIGINT High Volume Data Processing

- Wideband Automated Signal Processor (WASP)
- Heterogeneous Processing Architectures

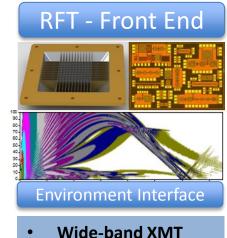


TechSIGINT Analysis Tools & Decision Aids

- Off-line, operator in-the-loop analysis
- Automated mission planning and tactical decision aids for rapid SA & platform VA

Signal Processing Theory & Algorithms

- RF waveform detection & characterisation
- LPI signal detection & exploitation
- Cognitive ELINT



Science and Technology for Safeguarding Australia

Spectrogram Image

Spectrum Sensing and Shaping MSTC

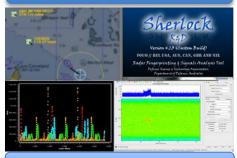
Comprehensive RF Sensing & Shaping

- Wide-band XMT and RCV multichannel apertures
- RFIC & SSPA
- Advanced Test &
 Measurement
- RF Phenomenology
- MSA&E

RFS - Middle

(RFT+RFS+RFTE)

Real-time Intercept


 Advanced RF to DIF RCVR systems

÷

GROUP

- UWB HW/SW
 systems
- Multichannel systems

RFTE - Back End

Offline Processing

- DIF to SA, I&W & INT
- Offline DIF processing for characterization, identification & DF
- Math and stats based algorithmic techniques
- Analysis Tools & TDAs

Spectrum Sensing and Shaping MSTC Successes

÷

The Spectrum Sensing and Shaping MSTC works with industry and international partners to provide capability for the Australian Defence Organisation.

Examples include:

- the Nulka active decoy that, developed as a joint program with the US, is Australia's largest Defence export.
- the STARDUST series of ELINT augmentation processors that are integrated into ADO operations on maritime and air platforms.

Spectrum Sensing and Shaping MSTC

Existing Partnerships

National

- Advanced RCVR transition (Ultra-Avalon, CSIRO)
- Antenna design (Lintek, Puzzle Precision, USA)
- Low SWaP RFEW (BAE, Micreo, MACOM, Macquarie)
- TechSIGINT/TACAIDS (Ultra-Avalon, USA)

International

- ONR/NRL, NUWC, NSWC Crane, NSWC Dahlgren
- USN TENCAP, SPAWAR
- Dstl, DRDC, DTA
- TTCP, SD, ABCANZ, Nulka, PFSD MOUs
- Arizona State University

dstl

CSIRC

Spectrum Sensing and Shaping MSTC Partnership Opportunities₁

We are interested in partnerships that assist with the transition of advanced spectrum sensing and shaping technologies into next-generation capabilities for both Australia and its allies.


RF Spectrum Sensing in the Maritime & Aerospace Domains

- The ability to provide Threat Warning, Indications & Warning and enhanced Situational Awareness of the electromagnetic environment by providing timely information and intelligence. Example technology areas of interest are:
 - Passive ultra-wideband RF digital sensing systems;
 - Passive multi-channel multi-sensor systems; &
 - Cognitive signal processing and analysis.

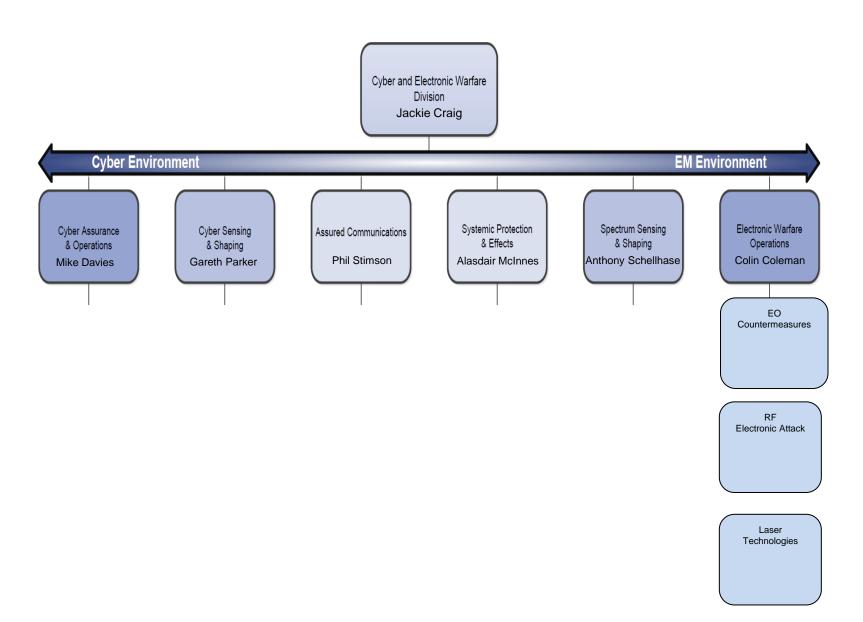
Spectrum Sensing and Shaping MSTC Partnership Opportunities₂

RF Spectrum Shaping in the Sea Domain

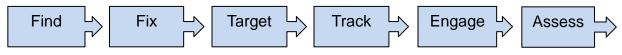
- The ability to determine and shape the electromagnetic environment to the increase the possibility of platform survivability. Example technology areas of interest are:
 - Advanced modelling , simulation and analysis tools for EW mission survivability
 - Manufacturing technologies for packaging microwave and millimetre wave electronics
 - Advanced mathematical models for determining the propagation environment for microwave and millimetre wave frequencies.

Australian Government **Department of Defence** Science and Technology

UNCLASSIFIED **Approved for Public Release**


EW Operations MSTC

connects innovate Conceive, develop and validate effective EW technologies and techniques for the ADF


Dr Colin Coleman **Research Leader** colin.coleman@dsto.defence.gov.au

Cyber and Electronic Warfare Division Structure

Knowledge is the key element of a kill chain

- Avoid being Found or... Know that something exists
- Avoid being Fixed or... Know where it is
- Avoid being Tracked or... Know where continuously
- Avoid being Targeted or... Know what it is
- Avoid being Engaged or... Know with weapon precision
- Avoid being Assessed... Know the result

53 👪

EW Operations seeks to deny knowledge to break the kill chain.

RF Electronic Attack

Dr Anthony Szabo

Task: Counter adversary sensors in the RF domain

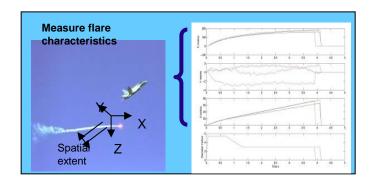
÷

÷

- Challenges: Agile and adaptive radar Passive and networked sensors New operating bands: MMW, VHF
- Research: Cognitive EW techniques Advanced threat emulation Counter-Counter LO
- Partnership: EW applications of machine intelligence RF system development (eg. radar decoys)

EO Countermeasures

Mr Mark Pitt


- Task: Know, detect and defeat threats in the EO domain
- Challenges: Multi-band and imaging sensors (IR/visible/UV) Elaborate sensor processing Short timescales
- Research: Missile and hostile fire detection algorithms High fidelity simulation for CM development and validation Novel methods of threat assessment
- Collaboration: Omnidirectional image processing for TW/SA

÷

55

÷

...

÷

÷

÷

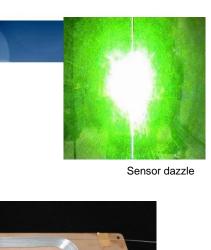
GROUP

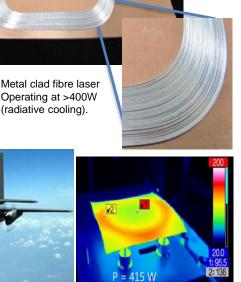
How a DIRCM (sort of) works:

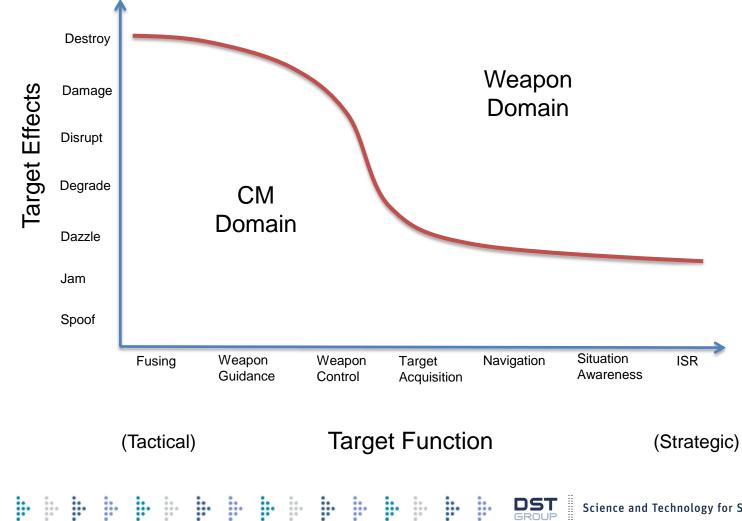
Laser Technology

Task: Develop novel laser technology for defence applications

Challenges: Produce lasers with the desired power, wavelength, beam quality modulation in a compact, robust and efficient package.


- Research: Fibre laser design and fabrication DIRCM laser system development High power directed energy lasers Laser effects testing Laser sensing and response
- Collaboration: Novel laser systems research Advanced DIRCM lasers Laser retro-reflection systems Eye safe laser attention gaining





DIRCM: Mid IR 3 – 5μ

Laser Weapon or Countermeasure?

58

.....

Australian Government

Department of Defence Science and Technology UNCLASSIFIED Approved for Public Release

connects ennovates Discussion

