

Australian Government

Department of Defence Defence Science and Technology Organisation

Cyber and Electronic Warfare Division DSTO Partnerships Week 2015

Science and technology to understand and counter the threat using electronic means

Dr Jackie Craig Chief jackie.craig@dsto.defence.gov.au

UNCLASSIFIED

CYBER AND ELECTRONIC WARFARE DIVISION

Assured Communications Branch

....

Develop survivable tactical communications and electronic warfare solutions for contested and denied cyber electromagnetic environments

....

Spectrum Sensing & Shaping

To undertake S&T into RF technologies & techniques that provide situational awareness in a complex RF environment and to defeat the future networked EW, cyber and kinetic threat

effectors

Activities

Groups

RF Systems

RF Techniques

RF Technologies

Development of next generation systems & architectures for multi- function RF intercept systems	Sherlock Pro Version 4.0.0
Development of algorithms and implementations for signal detection & characterisation	
RF phenomenology and technologies for future RF sensors &	Defence Science 4 Technology Organisation Denartment of Defence, Australia

Electronic Warfare Operations

Deny hostile use of the EM spectrum to engage ADF platforms using EW techniques against all elements of the adversary kill chain

Improving weapon and sensor technologies:

Multiple redundant sensor modes

•••

 Novel sensor technologies / new spectral domains

Advanced laser development and demonstration

....

....

.....

Threat guidance system testing and characterisation Countermeasure development and validation

We are about denying the adversary knowledge.

Australian Government

Department of Defence Defence Science and Technology Organisation

Cyber Assurance and Operations MSTC

A critical enabler of effective cyber operations and resilient trustworthy systems

Dr Mike Davies Research Leader michael.davies@dsto.defence.gov.au

Strategic Context

...

Increasing national dependence on ICT: cyber-physical systems pervade

Lag in cyber security, increasing the vulnerability of government, industry and society

Mitigating this vulnerability necessitates that systems be **built**, **defended** and **operated** in a manner which maximises effectiveness within and through cyberspace

Australia's National Security strategy of 2013 highlights the development of "sophisticated capabilities to maximise Australia's strategic capacity and reach in cyberspace..." as a matter of national security

The 2013 Defence White Paper highlights the critical dependency that modern military capabilities have on information systems

DSTO

Strategic Calls: 2014-2019

- Enhanced functionality, productivity and services will continue to drive developments ahead of cyber security
- National security drivers for sovereign operational cyber capabilities will remain
- Commercial developments in cyber security will be many and far reaching
- Generic intrusion detection and protection, and forensic malware analysis tools will become commodity items, and any tailoring will not be a matter of research
- R&D needed before commercial vulnerability analysis and incident response tools appear which can reason about dynamic system properties and context
- Commercial multi-level security products will not have appeared which strike the right balance of cost, performance and security required for high-assurance
- Military deployed networks and more so platforms will continue to lag behind corporate Defence infrastructure in cyber security

CAO Branch Mission:

Enable autonomous, resilient and effective cyber capabilities with an operational edge in the face of ubiquitous encryption, untrustworthy ICT and a highly dynamic, sophisticated and perimeter-less threat environment

CAO Branch Vision:

A critical enabler of effective cyber operations and resilient trustworthy systems

To be by 2019: An integrated major S&T capability in vulnerability discovery and mitigation, future threat estimation, crypto-mathematics, trustworthy systems and cyber autonomy with a critical role in the Australian Defence Organisation's ability to operate successfully within and through cyberspace

Modus Operandi in Core Cyber Security S&T

...

....

....

....

...

Core Impact Areas

....

CAO Branch engages a client community across the AIC and the ADF consisting of **designers, developers, trainers, managers and operators** of cyber capabilities. Impacting on

- Information systems and environments in general (reflecting the importance of security at *build*)
- Computer network defence (the need to *defend*) and
- Computer network operations (the need to *operate* within and through cyberspace)

Broad Strategic Directions

The strategy reflects the following broad strategic directions of S&T support:

- Increased impact on sovereign capabilities for computer network operations
- Increased impact on the ADF, focussing on trustworthy systems for military operations, and the defence of military platforms
- Increased national shaping to strengthen and partner with the cyber security S&T capabilities of academia and industry

Australian Government

Department of Defence Defence Science and Technology Organisation

Cyber Sensing and Shaping MSTC

Sensing and shaping of communication networks for Cyber

Dr Gareth Parker Research Leader gareth.parker@dsto.defence.gov.au

Cyber Sensing and Shaping MSTC

"Sensing & shaping of communication networks for Cyber"

Context

- Convergence of telecommunications and the internet
- Ubiquitous connectivity, mobile devices and the IOT
- Computers are connected via networks

S&T scope: Communication networks

- Network characterisation & knowledge representation
- Network structures, protocols and behaviours
- Vulnerability discovery and treatment
- Communications technologies

Domain: Intelligence and security

Core knowledge and skills

- Telecommunications and internet architectures & protocols
- Communications and information theory
- Signal processing
- Data sciences

....

....

000

...

...

....

...

 Communications technologies – RF, digital systems, SDR, photonics

Cyber and Electronic Warfare Division

Access Technologies

"Technologies for cyber access and tailored communications" Group Leader: Mr Jon Arnold

Bespoke wireless communications

- High data rate: mm-wave, FSOC
- Low probability of detection waveforms

RF & photonic technologies

- Wearable and other specialised antennas and RF
- Size, weight and power constrained technologies
- **Reconfigurable modem capabilities** •

Science and Technology for Safeguarding Australia •••

DSTO

Communications Signal Processing

"Physical and cross-layer processing of wireless networks" Group Leader: Dr Jeff McCarthy

Signals analysis

....

• Signal collection, enhancement and geolocation

DSTO

Waveform security

.....

...

....

....

• MIMO, multichannel and diversity techniques

Software defined radio solutions

...

Communication Networks Research

"Telecommunications core networks and the internet"

Group Leader: Dr Peter Dickinson

Characterisation

• Topology, traffic flow, and temporal aspects

....

DSTO

Network knowledge representation

 Modelling and analysis of global multilayered communications networks

Network vulnerabilities

- Understanding how routing protocol vulnerabilities can be exploited by an adversary
- Techniques and technologies for detection, protection and mitigation

Specific Areas for Collaboration

Body Worn Antennas and RF

Aim

To develop new technologies for efficient antennas and RF that are safe for body worn applications in future tactical communications

Current collaborations

University of Adelaide (via PhD research of **Deshan Govender**)

Areas for expanded collaboration

- Mobile power technologies
- Flexible materials for RF and DC power distribution and antennas

Our approach

- Fabric antennas
- 'Metamaterials'
- Printed structures

....

....

....

Contacts

Mr Adrian Caldow Adrian.caldow@dsto.defence.gov.au (08) 7389 5861

Wireless Security

Aim

To explore vulnerabilities in wireless communications systems and develop physical layer approaches to enhancing security

Areas for expanded collaboration

- Cross-layer approaches
- Tactical communications
- Cryptography
- Wireless sensor networks security
- Protocol jamming

Our approach

 Physical layer – LPD, MIMO, diversity

...

...

....

....

Contacts

.

DSTO

....

....

000

...

Dr John Kitchen john.kitchen@dsto.defence.gov.au (08) 7389 6431

Internet Traffic Profiling

000

....

...

...

....

....

DSTO

.....

Aim

- Categorise high rate traffic
- Blind change and abnormality detection

Areas for expanded collaboration

- Data science for network analysis
- Summarising bulk historical network data
- Algorithm development for distributed processing

Our approach

- Characterisation of summarised data (i.e. NetFlow)
- Statistical and machine learning techniques to mathematically enhanced protocol-based network knowledge

Contacts

Mr Darren Webb <u>darren.webb@dsto.defence.gov.au</u> (08) 7389 4132

Routing Security

Aim

Secure critical infrastructure by protecting the internet control plane

Current collaboration US Dept Homeland security

Areas for expanded collaboration

 Investigate the utility of route monitors to protect paths and network reachability.

Our approach

- Assess threats using emulated models of computer networks
- Investigate effectiveness of emerging security measures

Contacts

Mr Chris Wiren <u>chris.wiren@dsto.defence.gov.au</u> (08) 7389 6572

Network Emulation

Aim

Develop sophisticated emulations of computer networks with a specific focus on the control plane (i.e. network routing)

Areas for expanded collaboration

- Emulation of networks at scale
- Extension of emulator capability
- Develop traffic models that can be used to inject traffic into emulation

Our approach

- Utilise the Common Open Source Research Emulator (CORE)
- Emulate networks of interest such as enterprise networks

Contacts

Mr Shaun Voigt <u>shaun.voigt@dsto.defence.gov.au</u> (08) 7389 7527

Emerging Communications Technologies

Aim

Investigate future communications technologies that are likely to have a significant impact on Defence and National Security.

Areas for expanded collaboration

- Software Defined Networking
- The Internet of Things
- Name data networking

DSTO

Our approach

Engage in regular technical exchanges with academia, and industry in areas of mutual interest.

Contacts

Peter Dickinson

Peter.dickinson@dsto.defence.gov.au

(08) 7389 6158

Australian Government

Department of Defence Defence Science and Technology Organisation

Systemic Protection & Effects MSTC

Force-level Cyber and Electronic Warfare with effective command and control

Mr Alasdair McInnes Research Leader alasdair.mcinnes@dsto.defence.gov.au

Outline

- MSTC mission \bullet
- Where we fit •
- Strategic context •
- Key challenges and responses
- Main activities
- Summary ullet

SPE Mission

....

Maximise Australian Defence & National Security capability through the integration of force-level Cyber and EW with effective command & control.

Integrated Cyber EW

DSTO

Cyber-Electronic Warfare Continuum

Key External Trends – and Objectives

- Increasingly numerous, networked, EM-capable platforms - An effective complex adaptive C4ISTAREW capability
- Increasingly complex EM environments
 - An effective EW Battle Management capability a step towards the above
- Threat evolution networked, software-driven
 - Comprehensive threat M&S capability
 - Effective experimentation capability
- Emergence of Cyberspace as an operational environment
 - Mission Assured Cyber Dependent Operations
- Critically reliant on cyber-physical systems
 - M&S and experimentation capabilities for cyber aspects
- Increasingly reliant on PNT
 - Assure own PNT, deny adversary PNT
 - Protect civilian PNT

Science and Technology for Safeguarding Australia

DSTO

Automated Analytics & Decision Support Group

- Primary Impact Domains
 - Military Platform Survivability
 - Mission Assurance
 - Critical Infrastructure Protection
- S&T Focus Areas
 - Situational Awareness
 - Threat Analytics
 - Process Modelling & Mining
 - Automated Reasoning, Planning & Execution

...

...

....

...

- Autonomous & Intelligent Systems

DSTO

Positioning Navigation and Timekeeping Technologies & Systems Group Major Activities

- Primary Impact domains
 - Operate in GPS-denied conditions
 - Deny satellite navigation to adversaries
 - Alternative PNT technologies

S&T focus areas

- International collaboration
- Anti-jam technologies & techniques
- Novel denial techniques
- Future technologies for accurate, stable timing

DSTO

DSTO Science and Technology for Safeguarding Australia

....

Distributed Electronic Warfare Experimentation

and Systems Group Main Activities

- Modelling, Simulation & Analysis
 - Force Level EW Synthetic Environment
 - Detailed Threat Modelling
- Experimentation
 - EW Battle Management
 - Shared EW Testbed
 - Tactical Networks
- Co-development

- Advanced Passive Surveillance Capability

- Geolocation

DSTO

DSTO Science

DSTO

Summary

000

34

- SPE branch is focused on force-level EW & cyber
- Developing and testing effective C2 tools & techniques

Integrated Cyber EW

Australian Government

Department of Defence Defence Science and Technology Organisation

Divisional Wrap-up

