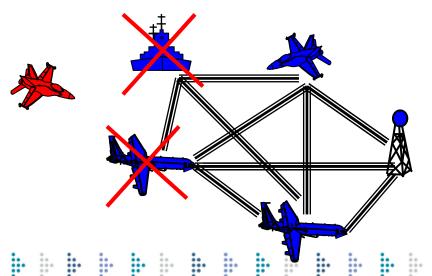
Theme 1 - Autonomy Resilience

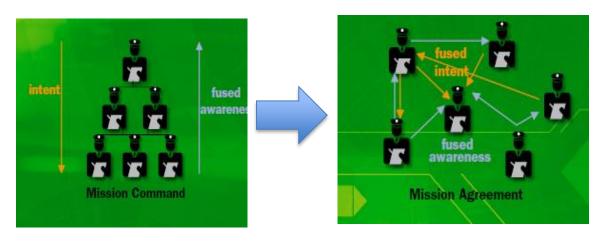


Dr Jason Scholz Research Leader Trusted Autonomous Systems

Ubiquitous Command and Control (UC2)

Year	Торіс	Journal
1999	UC2 concept	IDC Conf
2005	Dialectic comparison to NCW	ICCRTS Conf
2007	UC2 concept detailed	IDT Journal
2012	Legal Agreement Protocol	Book Chapter
2012	Blueprints for Fusion, Resource Management & Policy Control	Int. Fusion Conf (3 papers)

UC2 is "unity with diversity"


UC² System A UC² System is a system of assets, all of which possess a similar and significant C² capability. A single asset may contain multiple elements possessing and

similar and significant C² capability

Electronics and Surveillance Research Laboratory

UC2 Tenets

- 1. Decision Devolution
- 2. Ubiquity of C2
- Automated Decision Makers & Aids
- 4. Integration
- Distributed & Decentralised
- Socially coordinated
- 7. Management levels

Achieve intent using capability given awareness

Like eBay: Buyers Sellers

Limitations (1)

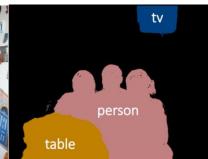
No semantic learning machines in 2005...

Machine learned
Object-level
identification

Semantic labelling

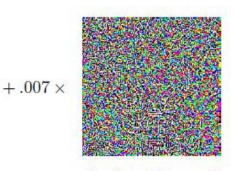
Semantic Attention

Semantic Segmentation



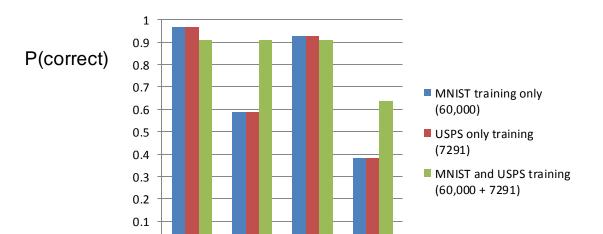
man in black shirt is playing guitar.

A woman is throwing a frisbee in a park.



However, ...

 \boldsymbol{x} "panda" 57.7% confidence


=

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},\boldsymbol{y}))$ "nematode" 8.2% confidence

x + $\epsilon \text{sign}(\nabla_{\boldsymbol{x}} J(\boldsymbol{\theta}, \boldsymbol{x}, \boldsymbol{y}))$ "gibbon" 99.3 % confidence

lan J. Goodfellow, Jonathon Shlens & Christian Szegedy, Explaining and Harnessing Adversarial Examples, http://arxiv.org/pdf/1412.6572v3.pdf

Poor real-world performance on unseen independent data

Shallow ML performance on handwritten digits

Train

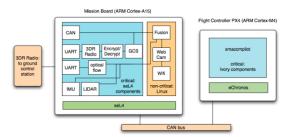
MNIST test USPS test DIGITS test

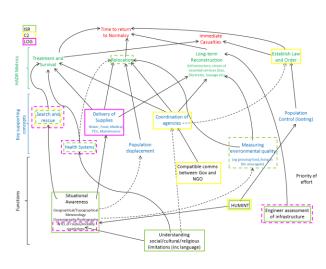
Limitations (2)

Machine decision conceived as automation

Predictable Environments

AUTOMATION


AUTONOMY


Fundamentally
Uncertain
Environments

Gen Helmuth Von Moltke

HA/DR scenario metrics for autonomy