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Human-Autonomy Teaming  

UNCLASSIFIED 

 Overall project – Balances two components: 

Autonomy 

Lead: Don Gossink 
  

Human Factors 

Lead: Michael Skinner HAT - Autonomy Team: 

 

• Don Gossink  

• Glennn Moy  

• Darren Williams 

• Katherine Noack 

• Josh Broadway  

• Jan Richter  

• Steve Wark 
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HAT Context 

UNCLASSIFIED 

Recommendations for  
Command & Control of  

Multiple UxVs 
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IMPACT 
 U.S. Project aimed at: 

– Developing Intelligent Multi-UxV Planner with Adaptive 
Collaborative/Control Technologies 

– Key Concept: High-level, goal-oriented plays 
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Recommender System & Play-Monitor:    
      
 Goal: 

– Develop advanced Recommender System(s) to reduce the 
cognitive burden on operators through: 

• Recommendations, alerts and constraints. 

over the top of 

• Lower-Level Autonomy 

 

 

 

UNCLASSIFIED 

“Human  

on the  

loop” 
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Top-Level Architecture: 

User Context Logger 

Recommender  
GUI 

IMPACT / 

Generic Sim 

Human Play 

Recommender 

UNCLASSIFIED 

Play-Based / 
Manual 
Control 

Recommender System 
Simulation 
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HAT Challenge 

 Limited access to IMPACT or other multi-UxV control system 

 Need to integrate recommendations into various (unknown) 
system components 
 Solution:  

 Recommender loosely coupled to the underlying system/simulation. 

 Recommender that can learn recommendations at a range of C2 levels. 

 Recommender techniques that work: 

 When heuristics are not known 

 In new contexts (not previously prepared) 

 

 
 

 

 

UNCLASSIFIED 
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Inspiration & Approach 

 Build something that can learn… (like we learn???) 

 

 

 

 

 

 

 

 

 

 

 

(NB: about gathering and structuring data to learn…not how we learn) 

Self 
Learning 

Learning 
from Others 

Experience 

Logic, Rules 
& Heuristics Reasoning Explaining 

Trying Watching 

Eg: Humans 
try out new 
moves and 

seeing what 
works 

Eg: Humans watch 
a good player and 
learn to  recognise 

good board 
positions 

Eg: Humans 
learn by having 
a new strategy 

explained 

Eg: Humans think 
about what works & 
what others might 
do in response to 

my moves. 

UNCLASSIFIED 
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Techniques & Requirements: 
Self Learning Learning from Others 

Experience 
 

    
• Techniques: Reinforcement Learning 
 

     
• Techniques: Supervised Deep Learning 

 

Logic, 
Rules & 

Heuristics 

     
• Techniques: Monte-Carlo State 

Exploration/Search, Logic, Planning. 

 

  
• Techniques:  Heuristics, Agent (BDI), 

Algorithms, Math/Planning, Abductive 
logic 

UNCLASSIFIED 

Trying: Watching: 

Reasoning: Explaining: 

• Requirements: A simple model that 
machine can control that it can 
undertake re-enforcement learning 
on.  

• Requirements:  Data from expert playing 
a simulation that it can watch. 

• Human Expert or Heuristic player 
that mimics an expert 

• Requirements: Implement efficient 
heuristic/search algorithms for 
exploring large state-space. 

• Requirements:  
• A language for expressing heuristic 

rules.  
• Logic for constraining solutions. 
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Architecture: 

Recommender  
GUI 

IMPACT / 

Generic Sim 

Human Play 

Recommender 

Recommend 
(Prioritise & Combine Agent 

Recommendations) 
 

Explain 

C
h

o
ic

e 
C

o
n

st
ra

in
er

 

UNCLASSIFIED 

Play-Based / 
Manual 
Control 

Simulation 

User Context Logger 

Recommender System 

Deep Learning Agents 

Feature 
Learner(s) 

(Watching) 

Reinforcement 
Learner(s) 

(Trying) 

Rule 
Constrainer(s) 

(Explaining) 

Heuristic 
Player(s) 
(Explaining) 

Observed 

‘Rules & 

Heuristics 

Reinforcement 

Machine-Learnt Play 

Provides  

data to  

Feature 

Learning 

Heuristics and Rule Agents 

Heuristic Play 

Futures  
Explorer 
(Reasoning) 

Recommend 
(Prioritise & Combine Agent 

Recommendations) 
 

Rule 
Constrainer(s) 

(Explaining) 

Heuristic 
Player(s) 
(Explaining) 

Futures 
Explorer 
(Reasoning) 

Reinforcement 
Learner(s) 

(Trying) Feature 
Learner(s) 

(Watching) 



11 

 Recommender Agents: 

– Implemented Recursively: 
• Hierarchy of recommendation agents. 

 

– Key Concepts:  
• Decomposing / Triggered Recommender Agents - Elastic autonomy 

• Executable vs Non-Executable Recommendations 

 

 Simulation: 

– Publishes its own capabilities for accepting/executing 
recommendations. 

 

Recommendation Hierarchies 

Recommender 
Agent 

Recommender 
Agent 

Recommender 
Agent 
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1. Simulation 

 Initial UAV Control Simulations 

– Modular/Plug-and-play 
• Ultimately to be replaced by IMPACT 

– Fast 
• In a training mode for rapid learning 

– Machine or Human controllable 

 

 

UNCLASSIFIED 
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2. First Heuristic Recommenders: 

 Initial low-level Executable Recommenders 

 Heuristics & Play Implementations 

– (a) Search for detection 

• Air-Expanding Square at/on a Point 

• Air Sector Search 

• Air Inspect Point 

– (b) Track Detections 

UNCLASSIFIED 
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3. First Reinforcement Recommender 

 Initial Reinforcement Recommender 

– Deep Q Reinforcement Learning : 
• Combines reinforcement learning with deep neural network. 

• Originally used to play Atari Games – DeepMind/Google 

 

– Reinforcement Learning Challenges: 
• Credit-assignment problem 

• Explore-exploit dilemma 

 

UNCLASSIFIED 
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Deep Q Learning 

Credit-Assignment Problem:   

• Q(s, a) represents the maximum discounted future reward when we 
perform action a in state s (and get to state s’ with reward r.) 

– Q s, a = R(s, a) + γ  𝑇 𝑠, 𝑎, 𝑠′𝑠′ max
𝑎′

𝑄(𝑠′, 𝑎′)         - Bellman Eqn  

– Q s, a = r + γmax
𝑎′

𝑄(𝑠′, 𝑎′) 

• Iterative Updates (Training): 

– Prediction: 𝑄(𝑠, 𝑎) 

– Target: r + γmax
𝑎′

𝑄(𝑠′, 𝑎′) 

– 𝑳 = 
1

2
 r + γmax

𝑎′
𝑄(𝑠′, 𝑎′)  − 𝑄(𝑠, 𝑎)

2
 

• Experience Replay:  

– Store all experiences <s, a, r, s’> in memory.   

– Train on random mini-batches 

– Propagates rewards back in time. 
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Deep Q Learning 

Explore/Exploit Dilemma 
• 𝜀 – greedy exploration 

– With probability 𝜀 choose a random action, otherwise go with 
highest Q value action. 

– 𝜀 starts at 1.0 (always random) and slowly decreases (eg to 0.1 – 
mostly policy-based choices) 
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Our Implementation 

– Deep Q Network: 
• Neural network with 2 hidden layers. 

– Theano/Keras implementation 

• Input State Data: (𝑥, 𝑦, 𝑣𝑥, 𝑣𝑦, 𝑠𝑒𝑛𝑠𝑜𝑟𝑥, 𝑠𝑒𝑛𝑠𝑜𝑟𝑦) 

• Output: Actions 

 

– Initial Task: 
• Executable recommendation to track suspect vessel (boat) 

• Feedback from the environment – Reward/Punishment 

 

– Training: 
• Initially Random Choices from a set of actions 

• Train network to predict the value of an action choice given a state 
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Eg: Move Location 
  

Up, Down, Left, Right 

…Eg: Change Velocity 
 

Rotate Left, Right, 
Speed Up, Slow 

Down, Do Nothing 

Eg: 
Correct direction = +ve Reward 

Incorrect direction = -ve 
Reward 

Eg: 
Reward = -(Distance 

from Goal) 

…Eg: Switch Play 
 

Play 1, Play 6, Play 7 

Eg: 
Reward = -(# 

Successful 
Incursions) 
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Example 1: 
Actions: Up, Down, Left, Right   (Constant Velocity, No Pause) 

Reward: -(Distance from Goal) 

UNCLASSIFIED 
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Example 2: 
Actions: Rotate Left, Right, Speed up, Slow Down, Do Nothing 

Reward: -(Distance from Goal) 

UNCLASSIFIED 
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Current/Ongoing R&D: 
 General:  

– Implement Red “avoid detection” behaviour & blue agent vs red agent play  

– Learn/iterate to higher-level strategies / C2. 

 Deep Q R&D: 

– Alternative Neural Architectures: 

• Impact on learning rate 

• Scalability with action-complexity 

– Multi-Agent Learning: 

• Single control agent vs multiple learning agents vs hybrid 

– Human-Guided Learning 

• Learning from human interactions as well as self-generated. 

 Other Recommender Agents: 

– Agent Hierarchies 

• More complex (hierarchical) reward functions and interactions between 
recommender agents 

– Bayesian Inference for threat heat-maps 
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Questions 
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