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Background: How does the ACFR fit in?



Overview

• Motivation

• Background

• Some Definitions

• Sensing Technology
–Radar / Lidar

–Machine Vision

–Coherent Sensor Fusion

• Application Examples
–Mining

–Agriculture / Asset Monitoring

–Security / Defense

• Future Directions

• Shameless Plug



Motivation: Field Robotics in 

Australia 

• Australia leads the world in civilian field-robotic 
applications
– Dirty, Dull and Dangerous is a way-of-life

– Big country

– Small population Innovate or perish

– Low subsidies

• Mining: Rio Tinto’s ‘Mine of the Future’ program
– World’s largest non-military robotics programme

• Agriculture: 1st IEEE Agricultural Robotics Summer 
School held in Sydney, Feb 2015

• Logistics: Port of Brisbane (and now Port Botany)
– World’s 1st fully-automated container-handling terminal

David Johnson   |   Australian Centre for Field Robotics



Some Definitions

• Autonomy is the automation of independent perception, 

learning, control and action.

• Humans are very good at controlling remote vehicles using 

low-quality visual data, as seen by FPV-racing.
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• Much of this is instinctual, 

using context and experience

to ‘fill in the gaps’ and guess 

what will happen next.

• It is not surprising that these 

tasks are difficult to automate, 

but we can make the sensors 

better, the processing faster, 

etc. 
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Perception Challenges

Scale (complexity)

Variability (novelty)

Interaction (not a black box)



Perception Challenge #1:

Scale

Space - Localisation at the mm scale across 
km-wide maps.

Time - Online processing with real-time 
requirements for high speed ground, air and 
water-based vehicles with revisit-times 
ranging from ms to years. 

Frequency - Coherent sensing and 
communications from kHz to THz, optical 
and beyond

Number – Dimensionality of  many different 
variables
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Perception Challenge #2: 

Variability
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• Challenges for computer-vision:
– Illumination
– Object pose
– Clutter
– Occlusions

• Challenges for active sensors
– Attenuation
– Multipath
– Interference
– Sample-aliasing
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Atmospheric attenuation
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Preissner, J. (1978, The Influence of the Atmosphere on Passive 

Radiometric Measurements. AGARD Conference Reprint No. 245: 

Millimeter and Submillimeter Wave Propagation and Circuits.
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Perception Challenge #3: 

Interaction

David Johnson   |   Australian Centre for Field Robotics

• Human Control Interface – User 

interaction, levels of autonomy

• Human Environment – Co-habitation vs. 

isolation

• Natural Environment – Manipulation of

and attenuation by

• Machine Interaction – Systems of 

Systems, collaboration, communication



Some Definitions

• Robustness
• Situational 

Awareness

• Active Sensing

• Coherence

• Active 
Perception
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• Robust to purpose (reliability)

• Minimal false-negatives / false-

positives

• Robust to the environment 

(persistence)

• Minimal unknown failure modes

• Onboard diagnostics

• Robust to the (less-skilled) 

operator (trust)

• Functional safety

• Intuitive operation

• Robust to scale (cost)

• Designed for mass-production

• Full product life-cycle 

considerations

• Spectrum congestion

• Standards compliance

• ‘Big-Data’ processing



Some Definitions

• Robustness

• Situational 
Awareness

• Active Sensing

• Coherence

• Active 
Perception
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Some Definitions

• Robustness

• Situational 
Awareness

• Active 
Sensing

• Coherence

• Active Perception
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Active sensors put a controlled

signal into the environment, and 

measure the interactions between 

that signal and the environment to 

infer information.

Examples:

• RADAR, LIDAR, X-ray Imaging

… use the EM field

• SONAR, Seismic

… use pressure waves

14
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• A portion of the EM spectrum is transmitted, reflects from a 

‘scatterer’, and gets picked up by a receiver.

• 2 ways of forming high-range-resolution:

– A very short pulse in time (TOF)

– A very wide swept-frequency-bandwidth (FMCW)

• Hence to achieve 10mm resolution requires either a pulse width of 

<0.1ns, or a swept bandwidth of 15GHz

15

Range Resolution = Speed of Light

2 x Bandwidth

Range Resolution = Speed of Light x Pulse Width

2

Active Sensing Primer
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(Linear) FM or ToF Waveforms
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• Range resolution improves with 

swept bandwidth 

• Velocity resolution improves with 

sweep time 

• Range to a target is measured by 

running a counter from the time a pulse 

is transmitted until the echo is received.

• The echo is detected when the received 

signal envelope exceeds a 

predetermined threshold

• Knowing the signal propagation velocity 

it is possible to calculate the range to 

the target
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Equivalent resolution using AM or FM
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ACFR Radar Sensors
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Examples of Lidar Sensors

HDL-64E HDL-32E VLP-16

# Lasers 64 32 16

Max Range (10% refl) 50m 50m 50m

Field of View (H / V) 360 / -24.8 to +2 360 / -30 to +10 360 / -15 to +15

Scan Rate 5 - 15 Hz 5 – 20 Hz 10 Hz

Points per Scan ~140k ~70k ~30k (x2)

~ Cost (AUD) ~$60k ~$30k ~$10k

Communications Standard Ethernet (UDP) Ethernet (UDP) Ethernet (UDP)
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More Examples of Lidar Sensors

UTM-30LX VZ-1000 LMS-Z620

# Lasers 1 1 1

Max Range (10% refl) 30m (cal board) 700m 750m

Field of View (H / V) 270 / N.A. 360 / 100 360 / 80

Scan Rate 40 Hz 120 V-lines / sec 20 V-lines / sec

Points per Scan ~1k 122000 pts / sec 11000 pts / sec

~ Cost (AUD) ~$5k ~$250k ~$150k

Communications Standard USB 2.0 GbE 100Mbps Ethernet
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Some Definitions

• Robustness

• Situational 
Awareness

• Active Sensing

• Coherence

• Active 
Perception
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Bajcsy (1998) - Active Perception

“Intelligent data acquisition”

[Closing the perception-action loop]

Bottom-up: Data driven

Top-down: Goal driven

Haykin (2006) - Cognitive Radar Networks
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Additional Information in the data
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Some Definitions

• Robustness

• Situational 
Awareness

• Active Sensing

• Coherence
• Active 

Perception
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• Coherent (multi-modal) sensing
– Correlation of pre-processed data to 

associate data across multiple 
spectral bands.

• Coherent Active Perception used 
to adapt  sensor parameters to the 
environment. Based on:

• Context

• Experience (prior information)

• External cues

• For example:  Vision-guided RF 
tomography
– UWB radar prone to boundary-layer 

disturbance

– Structured-light or Stereo Vision 
provides highly accurate geometric 
surface model

– Combined solution allows this 
disturbance to be removed from the 
raw radar signal



Multispectral

Hyper-spectral
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Multi-Modal Sensor Fusion:

Lidar & Hyper-Spectral



Multi Modal Sensor Fusion:

Lidar & Radar

James Underwood |   Australian Centre for Field Robotics

• Multi-modal resilient perception

• Simultaneous data association and classification



Optically Derived Simulation 

Environment

• Complex target signatures remain poorly understood
– Polarisation

– Prevalence of Diffraction

– Electrically large scenes

• MMW Radar and Side-scan Sonar operate in the 
optical regime within their respective domains

• Optical ray-tracing renderers therefore provide the 
capability for  developing radar/sonar simulation 
engines to assist:
– Characterisation of existing sensors

– Understanding of complex scatterer behaviour

– A means to potentially identify and classify targets
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Our Approach

• Within an existing ray-tracing renderer ‘pbrt’ we 

implemented both physical and geometric optics 

modifications to provide:

– Frequency Dependence

– Polarisation Dependence

– Phase Dependence and Interference

– Geometric Edge Diffraction

– Of these, diffraction is the main stumbling block, requiring 

quite sophisticated edge detection.

– The Uniform Theory of Diffraction [Kouyoumjian and Pathak] 

is then applied, however finding a smooth transition between 

specular and diffractive behaviour proved elusive. 
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Experimental Validation
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• 94GHz FMCW radar (on its side)
– 5 deg elevation (now azimuth) beam-width

– 0.5 deg azimuth (now elevation) beam-width

– 7cm range-resolution

• 90mm (Power-) Cube

• 150mm dihedral reflector

• 1:40 Scale model haul-truck
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Rotating Cube

• PowerCube Actuator, rotational accuracy of 0.01 deg

29



Scale Model Haul Truck
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From Radar to Sonar

• DST Group DSP project: Real-time Sonar Simulation

• Based on Nvidia Optix GPU
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Ground-Truthed Virtual Environment
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Beall, Chris, et al. "Bundle adjustment in large-scale 3D 

reconstructions based on underwater robotic surveys." OCEANS, 

2011 IEEE-Spain. IEEE, 2011.
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Complex Object Simulation

• Vertices: 206113

• Faces: 389552

• File size: 36.5 MB

33Trevor Anderson, David Johnson   |   Australian Centre for Field Robotics



Integration with MOOS
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Simulated 
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Integration with MOOS
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Result - Video
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Using a Ray Traced simulator to perform 

model based classification.
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Not mine!

Mine, Rockan!

Area Surveying – Data Gathering MLO Detection Classification

• 2nd DSP Project: Model-based closed-loop sonar perception
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Mugshot Simulator

• Only interested in mugshots  Only simulate 

mugshots

• Effectively assumes detection is a solved problem

– Most likely as a result of 1st pass detection by existing ATR 

algorithm

• Research Question: Can we determine a path that 

best discriminates between one type and another?
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Cube Manta ’Cylinder’ Rockan
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Interactive Mugshot Visualisation

• Often the effect of a parameter on the sonar image 

isn’t intuitive

• Human intuition is developed around interacting with 

things – making a change and seeing the response
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• Require parameter independent classification…

• Sonar imaging process is not determinate

– Require probabilistic method

• Has many parallels to image identification

40

The Classification Problem

Cylinder:

Rockan:

??
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Image Comparison

• 2D Cross Correlation
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Gibbs Sampling the full parameter 

space.
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• Randomly samples 

the parameter space

• Samples are rejected 

according to the 

correlation value

• Final sample 

distribution reflects 

probability density
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Non-Destructive Evaluation of Power 

Poles using RF Tomography 
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This technology is portable, non-ionising, potentially license-free and capable of 

high-resolution penetrative imaging over short distances

5 million wooden power poles in 

Australia

~1 billion worldwide



Transmissive results
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More Ground Truth Required: Faculty of 

Health Sciences owed us a favour 

45David Johnson   |   Australian Centre for Field Robotics



Reflection-mode scanning



Next generation system: Multi-modal

• Rotate around pole rather 
than vice versa.

• Arm kinematics don’t 
allow in-plane rotation –
hence require actuated 
carriages.

• Each carriage equipped 
with stereo-vision sensor 
to reconstruct external 
geometry and detect 
deformations.
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• Bistatic reflection-mode images use geometry to 

allow phase/amplitude correction of waveform – true 

coherent active perception system!



Perimeter Surveillance

• Detection of low RCS targets (<-40dBm2) at 2 - 50m, 

in clutter.

• Low-cost Doppler-radar mesh network

– Currently 2, building 20 more
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Summary

• Perception is not a solved problem – particularly 

when robust operation is essential.

• Active sensing is often complementary to passive 

(vision-based sensing), but more effort

• Active/Cognitive/Agile Sensing/Perception/Radar is a 

mean to close the action-perception loop

– Adapting the system to seek refuting evidence of a 

hypothesis 

• Various examples of how these ideas are being 

actively researched in the defence, mining, asset-

monitoring and security domains have been shown.

– I’m interested in solving your real-world problems (with radar)
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Future Directions

• System-level rather than platform-level sensor 
coherence.

• Dealing with those robustness issues identified at the 
start, particularly decentralised processing and 
communications

• Dealing with levels of autonomy – balancing coupled 
action/perception/learning with high-level tasks

• Dealing with complex dynamic environments 

• Dealing with adversity
• (Didn’t mention my student projects on semi-autonomous FPV 

racing!)

• LIVE-ACTION (WAR) ROBOT GAMES.
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IROS 2016 Workshop: 

State Estimation and Terrain Perception

Topics of interest (including…)

• Onboard sensing for 3D mapping of unstructured environments

• Modelling and handling of uncertainties, drift, and outliers

• Terrain representation and estimation

• Integration of dynamical models and kinematic constraints

• Integration of prior knowledge (terrain type, maps, beacons)

• Dealing with dynamic environments

• Sensor failures, reliability and redundancy

• Tackling difficulties in outdoor perception (sunlight, low light, smoke, rain)

• Experimental results and full system integration in real world applications

David Johnson   |   Australian Centre for Field Robotics
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Questions?


