

Resilient Cognition – project update

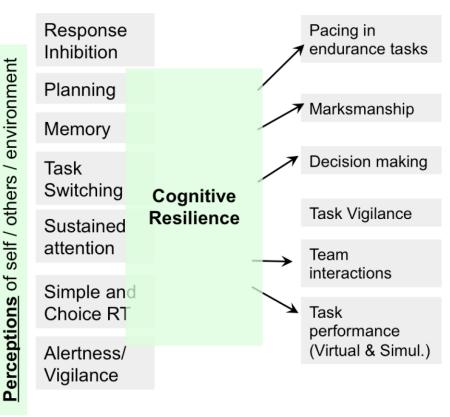
Richard Keegan, Kristy Martin, Ben Rattray, Sarah Robinson, David Pyne, Andrew McKune, Julien Periard

Aim

- Formulate a conceptual framework for studying cognitive resilience and military decision-making from an integrative perspective, spanning:
 - physiological,
 - psychological and
 - cognitive factors; and
 - how best to protect, develop and support these capabilities

Conceptual framework – Step 1

Determine the physiological and psychological factors that contribute to resilient cognition


Demographic information

Fatigue (physical + mental)						
Current training load						
Sleep (+nutrition?)						
Accumulated exp. / training						
Altitude / pressurization						
Heat / cold						
Personality						
Psychological attrib. / techniq.						
Physical + mental wellbeing						
Coping resources (access and usage)						

Social support

Clear roles, comms. etc.

- flexible and/or variable Integration

Sub-types of resilience

Cognitive Resilience	Sub-type	Description	Key issues
	Resistance	Cognitive performance not affected by stressors	Duration, regulation, management
	Tolerance	Cognitive performance is affected but remains functional	Duration, regulation, management
	Recovery	Cognitive performance was undermined but returns to previous	Acute vs. Chronic, Severity of impact
	Positive Adaptation	Resources, processes or both increase to facilitate increased performance	Acute vs. Chronic, severity, management
	Negative / (mal)adaption	Resource or processes are damaged/detrimented and do not return to previous levels	Acute vs. Chronic, severity, management

Types of Cognitive Performance

Task / context specific	Task performance (Virtual & Simul.)	Comms protocol + effectiveness	Exercises and simulations	Brightfox scenarios / M-A-P	
	Situational awareness	Marksman- ship	Tactical decision- making	Strategic decision- making	
	Psycho- motor vigilance	Meta- cognition	Self- regulation	Problem Solving	Oxygen Altitude 20.47 % 800 m Humidity 28.9 % 05-Apr-16 35.0 °C 357.49 PM EST
	Pattern recognition	Task Inhibition	Working Memory	3-D rotation	05-Apr-16 3-37-49 PM EST
Lab-based	Exec func. ('bandwidth')	'Drive'	Arousal	Attention	*

UNIVERSITY OF

CANBERRA

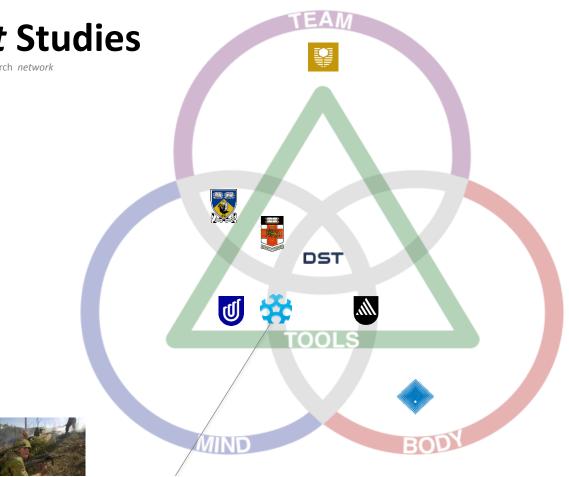
RESEARCH INSTITUTE FOR SPORT & EXERCISE

Characterising responses over time

Performance Mingh forced /voluntary octive/passive

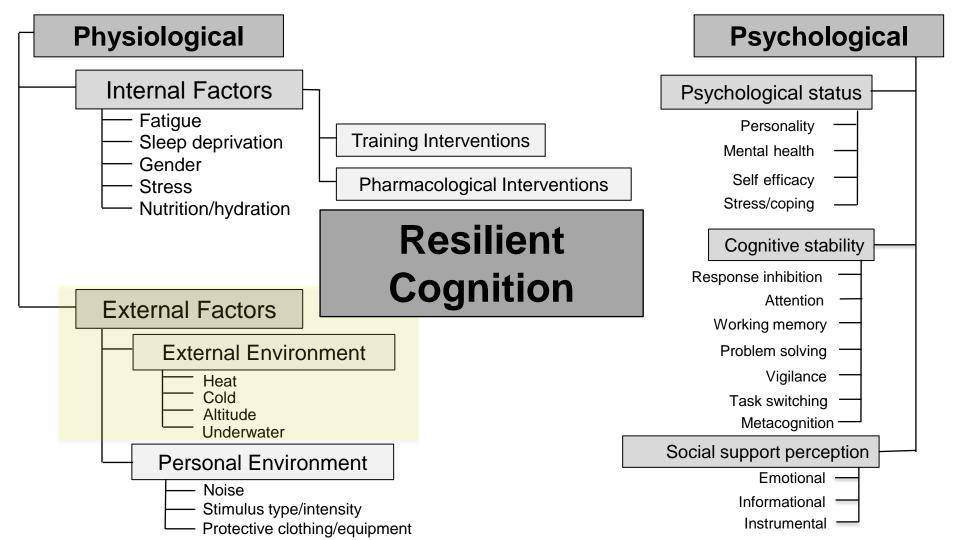
Preparation Stress test/probe

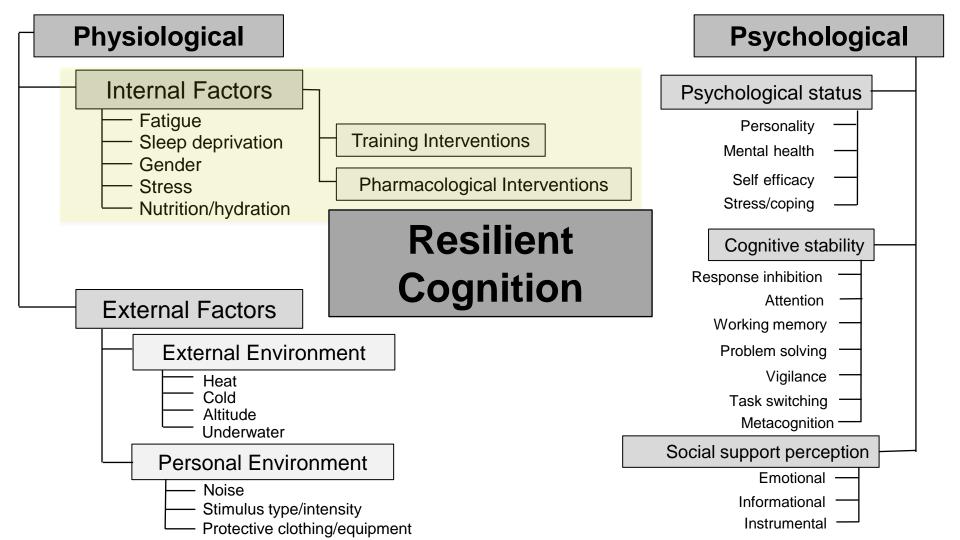
Training


develop-plateauspish

- Numerous challenges / pressures
- 'Noisv'
- Proactive / live management
- What or who would be ideal?

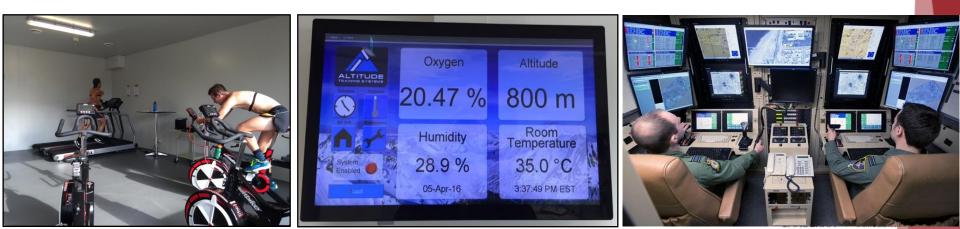
- "Shoring up"
- Confidence / self-efficacy •
- 'Automaticity' right place right time
- Stress testing
- Readiness/resources to adapt
- "Bounce-back-ability"
- Characterizing the stimuli
- Fails lots, fail cheaply, learn


HPR*net* Studies


Human Performance Research network

An integrated approach to enhancing cognition and decision-making under stress **University of Canberra** [Prof Kevin Thompson]

Conceptual framework – Step 2


 Supplement, expand, refine and clarify conceptual framework by gathering *relevant experiences* from *key gatekeepers and stakeholders*

 Longitudinal, wide sweep association study – matching cognitive and performance data to subjective physiology, training load, sleep, genetic data (links to other HPRnet partners)

Step 3 - Testing

- Select and agree levels of 'task specificity'
- Develop suitable 'stressors' and 'challenges'
- Develop a practical approach to monitoring Cognitive Resilience in the field
- Test our associations / predictions
- Interventions

Conclusion

- We have developed a (draft) model for understanding this complex space
 - It's big / cumbersome (but so is real life)
 - It alludes to complexity and dynamic systems (like real life)
 - Clarifies 'the art of the possible'
- We are in a position to collaborate...!
 - We know what we are doing, what we bring to the party, what is within reach

• Ideas changing rapidly – adaptable.... resilient!

