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1 INTRODUCTION

Arrays of receivers are used in many fields - in
radio, radar, sonar, seismic exploration, ultrasonic
diagnosis, and so forth - to detect weak signals,

to resolve closely-spaced targets and to estimate
the bearing and other properties of a signal source.
This tutorial paper is concerned only with the
theory of receiving arrays, which is common across
several fields. A limited theoretical development is
first presented to introduce the mathematical basis
and the terminology of the topic. Then a brief re-
view is made of several array processing techniques
with some discussion of theory and performance. No
attempt is made to cover practical implementations,
hecause the technologies involved can differ widely
between one application and another. For example,
radar systems with very wide bandwidth and which
demand real-time outputs are unable at present to
use certain advanced processing techniques; on the
other hand, in some seismic exploration applications,
it may be acceptable for results to be available
some time after the measurements are taken, so
time~consuming computation is less of a problem.

In all that follows, we consider only idealised
arrays - i.e., those in which there are no cross-
couplings between individual receivers. The
receivers are assumed to sample the spatial field
without distorting it. We further assume that the
spatial field in the vicinity of the array is homo-
geneous (an assumption that is often valid when all
signal sources are distant from the array) and that
all receivers have the same sensitivity. (If there
are variations in the responses of receivers, the
changes needed in the theory are usually trivial.)

In section 2 to 4 we consider beamformers of various
kinds. Developments in estimation are addressed in
section 5. The application of some important
spectral analysis techniques to array processing is
outlined in section 6. Then in section 7 adaptive
processing techniques are covered briefly. Finally,
some discussion is given in section 8.

2 'CONVENTIONAL BEAMFORMER

2.1 Beamforming
The principles of conventional beamforming were
established many decades ago. Consider a linear
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array, as shown in fig. 1(a).
arriving from a direction aormal to the array
(i.e., broadside) arrives at all the receivers in
phase, and so if summed the signal outputs from the
receivers will add in phase and reinforce one
another; signals from other directions will not be
in phase, and so will not be reinforced.

A plane wavefront

If it is desired to receive narrowband signals from
some other direction than broadside, we simply
shift the phases of the receiver outputs by appro-
priate amounts to bring all the receiver outputs
into phase before summing (fig. 2(a)). More
generally, if the signals are broadband, we time-
delay the receiver outputs appropriately before
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summation. This process is called ‘beamsteering’.
It can readily be seen that the same principles can
be extended to arrays of arbitrary geometry in two
or three dimensions: we simply insert the appro~
priate time delays, as illustrated in fig. 3. Most
of the theoretical development in this paper will
relate to narrowband processing in the frequency
domain.

It is evident that the technique is not confined to
plane wavefronts: curved wavefroats may similarly
be catered for. However, in this paper we consider
only plane wavefronts.

If we plot the average power output as a function
of signal direction, we obtain the polar diagram or
polar response, as shown in figs. 1(b) and 2(b). By
convention, the polar response is normalised so that
its response in the beamsteered direction is unity.
In our diagrams, it is plotted in dB relative to
the value in the steered direction. The beamwidth
(i.e., the width of the main lobe, often defined as
the angle between the points at which the power
response falls by half) indicates the ability to
resolve closel y~spaced signal sources; the level of
the sidelobes is a measure of susceptibility to
interference by unwanted signals in directions away
from the main beam. We shall derive an expression
for the polar response later in this section.
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signals). An off-broadside signal is
enhanced by phase-shifting the receiver
outputs so that signals add in phase.
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Figure 3

2.2 Wavenumber Representation

Consider the simple case of a linear array of K
receivers, equally spaced apart by a distance d,
As stated previously, in the remainder of this
paper we assume that all signals and noises are
narrowband. We select a system of coordinates as
illustrated in fig. 4l, Because of rotational
symmetry, we are unable to distinguish between
signals arriving at the same angle 9 to the axis of
the array. For example we cannot deduce whether a
signal is arriving from 8 or (7 - 8), so we need
only consider angles between *1/2.

However, instead of working with angles, it is
convenient to use wavenumber k defined by

k = 2w/},
For a given signal direction, let

k' = (2nsing) /A ¢S
be the projection of k along the axis of the linear

array,

where X is the wavelength at the frequency of
interest,

v \( N pacaveR
Xt
| *:@m/ nd swe.

cy’

Linear array coordinate system. The
array is unable to distinguish between
signals from 6 and (% - 9).

Figure 4

1 The origin is arbitrary and is chosen here for
mathematical convenience.
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8 AN OVERVIEW OF SIGNAL PROCESSING FOR ARRAYS OF RECEIVERS — d’Assumpcao & Mountford

It can be seen that the angular distribution of
signals can be expressed in terms of k' rather than
6. Let y(k') denote the complex spectral amplitude
of the signal as it arrives at the origin. The
phase of that signal arriving at the n-th receiver
is exp(ik'nd); in the absence of any internal
system noise, the total signal received by the n-th
receiver, from all external sources, is obtained
simply by integration2:

X, = f;:y(k') exp(ik'nd) dk'. (2)

Equation 2 shows that x, and y(k') are a Fourier
transform pair. There is therefore a direct analogy
between estimating a spectrum from a time series

and estimating signal strengths from a set of
spatial samples using a linear array of equispaced
receivers. The wealth of techniques developed for
the former case can therefore be applied directly

to the latter. We shall address some of these later.

For a general three-dimensional array, instead of
k' we use the vector k.

(27 cos 8 sin ¢)/2
k = (27 sin 6 sin ¢)/A R 3)
(27 cos ¢)/A

where 9, ¢ are horizontal and vertical angles,
regpectively. The signal at the n-th receiver is
then

xn =/ _y(k) exp(i k.z,) dk, (4)

where z, is the co-ordinate vector of the n-th
receiver and (.) denotes a dot product.

2.3 Polar Respoase
For a linear array, to steer a beam in a direction
corresponding to a wavenumber projection ko', we
phase-shift the output of the n-th receiver by ky'nd;
the amplitude of the beamformer output is then
Y(1%,') = I xpexp(-iky'nd). (5)
a
The extension to an arbitrary array is
straight forward:
Y(ko) = I xpexp(-i ko.zq). (6)
n
Unless stated to the contrary, the remainder of this
paper applies to arrays of any geometry. Equation

6 can be expressed conveniently in matrix notation.

Let .* denote the complex conjugate of a matrix
or vector,

T its tramspose,

2 The limits of integration over k' have been set
at =, for generality. Of course, |k'|<27/A for
planewave arrivals, but in practice it is gsome-
times necessary to include values of |k'|>2w/a.
For example, in some sonars, signals are encount~
ered which propagate along the mechanical struc-
ture of the array at a velocity less than that
in the medium (water); such signals have a wave-
number such that |k'[>2r/)2 and can legitimately
be included.

3 We denote matrices and column vectors by under-
scored uppercase and lowercase letters,
respectively.

: T .
H = %% the complex conjugate transpose,
and
E{.} an expectation.

Let us define x = {x) ...xy ...xg}T,

and a vector of phase delays
viko) = {vy ..ovy o.owgdT,

where v, = exp(iky.z,). ¢))

For brevity, we shall write v = v(k,) and
vn = vplky) (with the dependence on k, being
understood).

v is often called the 'steering vector', because
when applied to the sensor signals it introduces
the appropriate phases to steer a beam in the
direction defined by k.

The amplitude of the beamformer output is

Y(ko) = vix, (®

and the array output power is

| Y(ko) |2 = vBxxHy, _ (9)

It is often possible to consider the received sig-
nals to be stationary random processes with zero
means4. In what follows we assume that to be the
case. When a single plane wavefront arrives at the
array, x = cu(kg), where ¢ is a zero-mean complex
random variate with signal power E{cHc} = y, and

u = u(kg) is the vector corresponding to the signal
arrival direction (kg). u takes the same general
form as y:

u = {u] ...y .eeugdT (10)
where u, = exp(-ikg.zq).

We define P(ky,) to be the expected or average power
out of the beamformer steered in direction implied
by k4.

Then P(ko) = E{]|Y(ko) |2}

= YHECGoxH) vy

= ulvHu|2.

(11)

When kg = kg, u = v and P(kg) = ukZ. Apart from a
scaling factor 1/(uk2), equation 11 gives the polar
response of the beamformer (as a function of kg).

2.4 Noise Response

In addition to discriminating between a waanted
signal and unwanted signals (interference), the
conventional beamformer 2lso suppresses internal
noise. Consider a simple conventional beamformer
in which there is noise (e.g., receiver thermal
noise) in the receivers. We assume that all the
noises have the same power and that they are all
statistically independent of one another. The
wanted signal is brought into phase and summed, so
its amplitude is increased K time (and hence its
power by K2). However, the noises, being

4 Loosely speaking, they have no D.C. component
and are noise-like with statistics that do not
change with time,
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AN OVERVIEW OF SIGNAL PROCESSING FOR ARRAYS OF RECEIVERS — d’dssumpcao & Mountford 9

independent, will sum with random phase, so their
power is increased only K times. The resulting
signal-to-noise ratio is therefore improved by a
factor of K.

We now quantify the improvement in the more general
case. In what follows, we use the terms "noise"
and "interference" interchangeably, because the
results apply to both internal noise and external
interference, provided only that they add linearly
to the signals at the receiver.

We define signal-to-noise power ratio in the usual
way

_ Change in power when signal present.

SNR (12)

Power due to noise only

The usual parameter used to quantify the perform-
ance of the array against noise is the array gain,
defined as

o) = SNR autput from beam steered at signal direction kg (13)

R at single receiver

If noise and signal are all stationary random
processes, and the noises are statistically
independent of the signal, then the average beam
output power is, as in equation 11,

P(ko) = E{|Y(ko) |2}

(14)

vHGMg + vy

where Vv = noise power, which is here assumed to he
the same for all receivers, and Mg and My are

the normalised cross-spectral matrices for signal
and noise respectively:

E(EEP) = uM_ = ugg# when only signal is present, and

S

E(xxH) = WMy for noise aloae.

When v = u, i.e., when the beam is steered in the
signal direction, we have
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Figure 5 Effect of noise field on array gain.

Simple five~element array of fig. 3, of
radius r:

(a) in spherically isotropic noise, and
(b) in cylindrically isotropic noise.
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P(kg) = uK2 + vullMou. (15)

When only noise is present, the beam output power
in direction kg is

P(kg) = vulMou (16)
and the arfay gain is
Glu) = K%/ (ulM). an

For the special case in which the noises at all the
receivers are independent of one another, My = I
(the identity matrix) and G(u) = K, as we have
previously shown. As can be seen from equation 17,
array gain depends on the covariance properties of
the ambient noise. This is illustrated in fig. S
for a simple circular array in spherically and
cylindrically isotropic noise environments (i.e.,
with distant noise sources uniformly distributed
over a sphere and over a circle, respectively).

2.5 Array Shading
Shading is a well-known technique used to modify

the polar diagram of an array. In brief, instead
of the steering vector v we use a weight vector w,

0
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Figure 6 Polar diagrams illustrating effect of

shading
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10 AN OVERVIEW OF SIGNAL PROCESSING FOR ARRAYS OF RECEIVERS — d’Assumpcao & Mountford

where o= (v coowg coowgdT
Wn ¥ apvp,
and ap is real.

It has long been known that, by reducing the
magnitude of the weights a, as we move from the
centre towards the edges of the array, the sidelobe
levels are reduced, but at the cost of increasing
the beamwidth3,

Low sidelobes are usually desirable to reduce the
effect of interfering signals. More complex design
procedures, such-as those used by Dolph [1] many
years ago, permit a high degree of polar diagram
control. Figure 6 gives an example of the result
of Dolph-Chebyshev shading; the sidelobes all have
the same peak level which has been selected to be
much lower than the levels for the conventional
beaaformer.

Array output power is calculated using the same
formula as for coanventional beamforming, but with v
replaced by w in equation 14.

2.6 Superdirectivity

It is sometimes desirable to use a given array at
low frequencies - i.e., when the spacing between
adjacent elements is appreciably less than half a
wavelength. Conventional beamforming then yields a
broad beam. However, by appropriate choice of the
weight vector w, it is possible to generate narrow
beamwidths and the array is then called "super-
directive". But there is a penalty: as the
frequency is reduced, the magnitude of the weight
required becomes large, making the practical
implementation of superdirectivity difficult; the
precision of computation is increased as is
susceptibility to receiver noise. Examples of
superdirective arrays are given later.

3 POLAR DIAGRAM CONTROL

We have described the technique of using real
weights (shading) to reduce sidelobes or to narrow
the main lobe at low frequencies (superdirectivity).
It is possible to generalise and use complex weights
to control the shape of the polar diagram. There
are many different rationales for selection of
techniques and some are briefly introduced in this
section.

3.1 Minimum Bias

Another technique for reducing sidelobes is to
select the set of weights which minimises the total
volume under the polar diagram, while constraining
the response in one direction (the ‘beamsteered’' or
'boresight' direction) to a value of unity. This
process is called Minimum Bias Beamforming because
it minimises the bias, imposed by noise sources in
directions away from the main beam, on the estimate
of signal strength [2, section V]; it tends to
optimise performance in isotropic noise. A typical
polar diagram is shown in figure 7.

3.2 Null-steering
Shading techniques and the minimum bias process

described previously reduce sidelobes in general
and are effective where interfering signal sources

5 Shading is in fact analogous to windowing in
spectrum analysis.
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Theoretical polar diagram for minimum

bias estimator. Ten-element circular

array, r/X = 0.25, where r = radius of
array.

Figure 7

are smoothly distributed around the array. However,
very often one is faced with interference (whether
accidental or deliberate) from distant sources. It
is then desirable to generate a polar diagram with
nulls in the directions of the interfering sources.

One of the earliest successful techniques to
generate a single null is called DICANNE (3,4],
illustrated in fig. 8. The idea is basically
simple: a beam steered in the direction of the
interference is used to estimate its waveform; this
estimate is subtracted from the receiver outputs.

! scaraacri—foscar §
§
20— oeiay Seas72, oacay N
P : : :
: H : ; :
ARRAY
ELEMENTS St PRE - PROCESSED
EST/arATOR flsurenrs
Blary
Figure 8 DICANNE beamformer to steer single null.

Finally beams are steered in the direction of the
wanted signal in the usual way but using
appropriately modified delays. It can be shown
that, with a single strong interfering source, the
performance of this process is similar to that of
the optimal beamformer described in section 4.1.

DICANNE steers a single null., In general, for an
array of K receivers, it is possible to generate
nulls in (K-1) directions, while constraining the
response in the desired direction to unity. 1In one
method {2, section VIII], we first form a (KxK)
matrix R whose first column is the vector corres-
ponding to the wanted signal, and whose remaining
columns are the vectors corresponding to the

(known) directions of the unwanted noises - that is,
the directions of the K-1 nulls. In other words,

R = (uvy ... vgl — (18)

Next we invert R and use its first row as our
steering vector. It is evident that the response
in the wanted direction will be unity and that the
responses in the directions of all the (K-1) inter~
ferences will be zero. A typical polar diagram is

March, 1984



AN OVERVIEW OF SIGNAL PROCESSING FOR ARRAYS OF RECEIVERS — d’Assumpcao & Mountford 11

shown in fig. 9. This processor has been called
the 'Maximum Likelihood Estimator' because it was
originally derived by maximising the likelihood
function. (This processing technique should not be
confused with Capon's maximum likelihood method,
described in section 4.2.)

ANGLE (Degrees)

50 100 150 200 250 300 350
s T T T L] ¥

\\ CONVENTIONAL /7

MAX LIKELIHOOD /

N R
AR N A

Eanl !,/

-35} '
_apk

Figure 9 Polar diagram for beamformer steering
(K-1) nulls. Ten-element circular
array, r/A = 2.5, where r = radius of

array.

3.3 Bounds on the Polar Diagram

Mull-steering techniques (such as those described
in section 3.2) impose equality constraints - i.e.,
they force the response to be unity in the direct-
ion of the wanted signal, and zero in the directions
of the interfering sources. However, it is often
found that forcing the polar diagram to take a
specific value in one direction causes severe
distortions elsewhere. For example, if we attempt
to steer a null too close to one side of the main
lobe, the main lobe will be distorted on the other
side; and if we try to steer two nulls, one on
either side of the main lobe, the sidelobes else-
where can increase to an unacceptable level, as
illustrated in figs. 10 and 11 [5].

In practice, we often do not have to (nor, indeed,
wish to) force equality, but need only specify upper
and/or lower bounds on the polar diagram - in other
words, we impose limits, that are acceptable. Now,
instead of solving a problem with equality con-
straints, we have inequality constraints. Evans [6)
outlines some recent interesting work in which
bounds are placed on the voltage response of an
array. Separate inequality constraints are imposed
on the real and imaginary parts of the voltage
response. There would then in general be infinitely
many sets of weights {w) ... wg}, each of which
would produce a voltage response meeting the con-
straints. It is natural to choose that set for
which wHw is minimum, because large weights can
introduce problems in computational accuracy and
cause an increase in system noise. The prohlem
then becomes one of quadratic minimisation subject
to linear inequality constraints.

However, in most practical cases, one is interested,
not in the voltage response of the array, but in its
power response. We may then proceed to minimise the
array weights, as before, but now impose limits on
the array power response. The problem then becomes
one of quadratic minimisation subject to quadratic
inequality constraints - a far less tractable
problem. One has to resort to a numerical solution
which is rather cumbersome. However, preliminary
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results [7] suggest that worthwhile improvements
are possible. There is scope for further research
work in this field.

4 OPTIMAL BEAMFORMING

In section 3, we considered techniques for generat-
ing nulls in the polar diagram, which are very
effective when noise is due to a few unwanted plane
wavefront arrivals whose directions are known. Here
we address the problem of selecting a set of
weights to maximise the signal-to-noise ratio for a
more general case.

4.1 Unconstrained Optimal Beamforming
We make the same assumptions as before (i.e., the
signal and noise are independent of one another,
and both are zero-mean stationary random processes);
in addition, we make the critical assumption that
we know the cross—spectral matrix (EN) of the
noise, and that My is nonsingular.
Let w be some general complex set of weights. The
array gain is then

G(w) = |whu |2/ (whmyw) (19)

as before.

This can be easily shown to be a maximum when
v =Ml (20)
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12 AN OVERVIEW OF SIGNAL PROCESSING FOR ARRAYS OF RECEIVERS — d'Assumpcao & Mountford

In other words, the set of weights which maximises
the signal-to-noise ratio is obtained by premulti-
plying the signal arrival vector by the inverse of
the noise cross-spectral matrix. Resubstituting
_equatxon 20 into equation 19, we find that the
maximum gain is

GO lu) = uimy-ly . (21)

Applying the Kantorovich Inequality [8] we confirm
that the gain of the optimal beamformer is always
greater than or equal to that of conventional
beamformer:

I € Gope / Geonv
s{(xmax/kmin)% + (Amin/xmax)%}z/aa (22)

where Gopt and Geopy are the gains of the optimal
and conventional beamformers, respectively, and
Amax and Apjn are the maximum and minimum
eigenvalues of My, respectively.

In practice, it is generally observed that the
improvement of the optimal over the.conventional
beamformer is greatest when My is ill-conditioned

i.e., when Agax >> Amin- (23)

As mentioned earlier, the gain of a conventional
beamformer reduces to K when the noises are
independent (i.e., My = I); the optimum weights w
under that condition .also reduce to the steerlng
vector u of the conventional beamformer (see
equation 10).

Figure 12 illustrates the potential array gain
improvement over a conventional processcr, obtained
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Figure 12 Array gain for optimal beamformer.

Five-element circular array of fig. 3;

(a) gain for optimal beamformer with no
uncorrelated self-noise,

(h) gain for optimal beambormer with
receiver self-noise of -17 dB
relative to ambient noise,

(c) gain for conventional beaformer.

Note the large improvement at low

frequencies of the optimal over the

conventional beamformer.
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using the optimal processor in a spherlcally
isotropic (i.e., uniformly distributed) noise field.
At frequencies where the spacing between adjaceat
elements is about half a wavelength, My = I and

the gain approximates K as discussed above. At
lower frequencies, the array becomes superdirective
and the improvement over conventional processing is
quite striking. However, its performance is very
sensitive to ilnaccuracies.

It is instructive to consider results when dif-
ferent optimisation criteria are used. For narrow—
band signals in gaussian noise, Edelblute et al [9}
have shown that we have the same processor (i.e.,
the same set of weights w) whether we maximise
array gain, whether we minimise signal distortion
in signal waveform estimation, or whether we derive
the optimum detector (i.e., the likelihood ratio
detector). The same processor also results from
maximum likelihood estimation of certain signal
parameters-for example, direction of arrival [10].

For broadband signals, however, there are differences
using different criteria: the weights take the from

(D) = AU~ Lu(h) o (24)

where f = frequency, and A(f) defines a filter which
depends on the spectra of signal and noise. The
form of A(f) depends on the actual optimisation
criterion used [9].

4.2 Coustrained Optimal Beamforming

The unconstrained optimal beamformer uses prior
knowledge of the noise cross-spectral matrix (My)
to suppress the noise power out of the array.
Unfortunately, My is not usually known and needs

to be estimated by measuring the array cross—
spectral matrix when signal is absent. However, if
the estimate of My inadvertently contains a
contribution due to the wanted signal, then the
signal itself will be treated as noise and will
also be suppressed.

Capon [11] has devised a beamformer, akin in some
respects to the unconstrained optimal beamformer,
which overcomes this difficulty. It has proven
very effective in practice and is now widely used.
The technique in effect selects the set of weights
W in such a manner that the power out of the beam-
former is minimised, while the polar respoase in
the direction of the desired signal is constrained
to unity. In other words, w is selected so as to
minimise E(wHxxHw) = wHRw, subject to wHu = 1,
where R = E(E;H) is the cross-spectral matrix of
the noise plus signal (not normalised).

An attack _on this problem using a Laplace
multiplier is straightforward and yields

w = Rlu/(ulfiR"lo). (25)

N

The power out of the array is
wiRy = (ufiR=1u)-1.

Capon's technique is widely known as the Maximum
Likelihood Method, a term that is arguably a
misnomer because its derivation differs from that
normally used for maximum likelihood estimation.
As with the unconstrained optimal beamformer, any

March, 1984



AN OVERVIEW OF SIGNAL PROCESSING FOR ARRAYS OF RECEIVERS — d’dssumpcao &J’Mountford 13

signal received from a direction off the exact
steered direction is regarded as interfereace and
tends to be suppressed. In this way, this processor
provides high resolution. Needless to say, one has
therefore to be particularly careful that the beam-
steered direction is in fact that of the desired
signal, lest that signal be suppressed. To make
the beamformer less sensitive to perturbations in
signal direction, several authors ,e.g., [12,13],
have suggested imposing equality constraints to
broaden the main lobe of the polar diagram. A
compromise is then struck between resolution and
sensitivity.,

Constraints can also be imposed on the magnitude of
the weighting vector w in a number of ways, such as
Zfwi| <¢ or Lwl <c (where c is some constant). By
doing this the sensitivity to internal noise and to
errors (such as an error in the steered direction)
can be reduced.

5 ESTIMATORS

The processors considered so far rely on reducing
external noise and interference by controlling the
polar diagram - i.e., by generation of nulls steer-
ed in appropriate directions, and low sidelobes.
Implicit in this approach is the assumption that we
know the signal arrival direction.
can be valid in, for example, point-to-point radio
communications, but in many other applications such
as passive sonar we do not usually know the signal
direction - perhaps, not even whether a signal is
present at all. What is often done in cases where
it is required to detect a signal whose direction
is unknown is to estimate, signal strength versus
direction: an increase in estimated signal
strength in a particular direction can indicate the
presence of a signal source. Much theoretical
effort in array processing is therefore directed
towards the search for better estimators of signal
angular distribution.

5.1 Linear Estimators

The beamforming techniques discussed in the preced-
ing sections can all he used as estimators: the
power output from a beam (obtained by squaring the
modulus of the output of the beamformer) gives some
estimate of the signal strength received from the
beam direction. By generating many such overlap-
ping beams, covering all directions of interest, we
can estimate the distribution of signal strength
versus direction.

These beamformers are all linear estimators of
power, in the sense that the contributions from
individual signals add linearly. 1In general, all
the techniques discussed so far share one weakness:
the effect of a signal source away from the beam
direction is to cause an increase in the estimate
(unless the direction of the former happens to
coincide with a null in the polar diagram), so the
estimate is biased positively. A similar bias is
produced by receiver noise.

5.2 Non-Linear Estimators

Improvements in the performance of estimators are
possible if we do not confine ourselves to linear
estimators.

Here we address the case in which we know or can
assume the directions of arrival of signals. We

set up a model in which there are N random signal
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This assumption’

sources in known directions; the s1gna1 from any
one source arrives at the receivers with known time
d1fferences, and the total signal received by one
receiver is simply the sum of the individual con-
tributions from all the sources. In practice, one
rarely knows the directions of all the sources; what
is done is to make N large, and to assume that the
sources are distributed (either equally or unequally)
over the arcs of interest. We confine ourselves to
cases in which N3K. We outline briefly here the
approach, which is covered in detail ian [2].

At a given fequency, let y, be the complex spectral
component of the signal arriving from the n-th
source at some reference point, and let

y=1Iy ...y§IT.

We assume that the sources are random and
independent of one another:

E(YiYm) = $jSinm- 27)

and define ¢p, = the phase of the signal from the
n-th source arriving at the m-th receiver

vmn = exp(idpy),
¥V = [vgy] (& KxN matrix) and , as before,

Xk = the complex spectral component of the
signal.received by the k-th receiver.

It is not difficult to see that

(28)

X =

I$

The cross-spectral matrix of the receiver outputs
is then

R = E(xx)

= ysyH, (29)

where § = [dejk] is a diagonal matrix whose
diagonal elements are the signal
strengths which we wish to estimate.

Given the observed cross— spectral matrix R what we
do is to select the N dlagonal elements of S so as
to match R = VSVH to R in some sense. Several

new processors s have been derived usging this simple
model; these are summarised below.

Least-Squares Fit Estimator:

Select S to minimise l§:§|2' 6

Comprises the conveantional beamformer followed by
further processing.

Diagonal Fit Estimator:

Let Q be any hermitian symmetric matrix such
that XQXH = R. Select that Q for which the sum
of the off-diagonal elements has the least-square
value. Use the diagonal elements {q,,} as the
estimates of the diagonal elements of S.

Comprises the minimum bias beamformer (see section
3.1) followed by further processing.

6 B l denotes the Euclidean norm of a matrix.
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Iaverse Fit Estimator: .
Make gflg = I, by minimising |§f{5|, subject
to the constraint that Tr(R™IR) = K.

Comprises the Capon 'maximum likelihood' beamformer
(section 4.2) followed by further processing.

Maximum Likelihood Estimator:

For signals with a normal distribution, make
R™IR = I, by minimising |R™IR|, subject to the
Constraint that Tr(ﬁf{é).: K.

Degenerates to a linear estimator when N=K (see
section 3.2).

5.3 Deconvolution

Suppose we have a directional receiver which is
physically rotated and pointed in different direct-
ions to estimate signal angular distrivution.
Because of the finite width of the beam and the
presence of sidelobes, the estimate of signal
strength in one direction will be biased by signals
in other directions. The resultant estimate will in
fact be the result of convolving the true signal
angular distribution with the receiver polar
diagram. If we know the latter, we can in principle
use a deconvolution process to minimise the effect
of the polar diagram. This techanique was first
applied decades ago by Bracewell and Roberts [14]
to the case described above, in which the shape of
the polar diagram is independent of steered direct-
ion. It can be extended to the general case of a
beamsteered array of arbritrary geometry, the shape
of whose polar diagram varies as the steered
direction changes.

Another well-known deconvolution process is based

on removal of the effects of strong interference
falling in the sidelobes by estimating the inter-
ference strength (from a beam steered at it),
computing the polar response in the direction of the
main beam, and subtracting that computed response
from the main beam output. This process is then
repeated for any other strong source which may be
present; it is useful when used to remove bias
caused by a few large interferences.

We illustrate these deconvolution techniques by re-
porting work by Gray [15] who has studied a process
using the complex outputs of an array steering N
beams. Given these N conventional beamformer out-
puts as a first estimate of the signal distribution
vector y, the problem is to refine the estimate.
The assumptions and terminology are as in section
5.2; from equation 28, x = Vy. The output of the
conventional beamformer is

Yo = VHx/NK 7, (30)

Then if y; is the signal distribution vector after
the j-th iteration, the array output would be

Xxj = ij, and the corresponding output of the
conventional beamformer would be Wy;, where

W= VHY/NK. The error in the estimate is then

The iterative algorithm is

Fj+l = ¥j * E5 = Yo + (I - Wyj. (31)

7 Gray used NK instead of the more usual K in the
denominator to ensure convergence of his
processing algorithm.
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The iterations converge to the minimum bias
estimator of section 3.1.  Gray has also invest-
igated a second iterative deconvolution process
based on beam powers, which interestingly converges
to the least-squares estimator of section 5.2.

5.4 Eigenvector Technique

Here we briefly describe a differeat approach to
the problem of estimation of weak signal strength
in the presence of strong interference. Consider
an array whose receiver noises are independent of
one another, in the presence of only a single
signal. The cross-spectral matrix of the receiver
outputs is then

R = wuufl + 1 (32)

It is easy to show that the largest eigenvalue of R
is (uK+v), with u/K as the corresponding eigenvector.
A similar result obtains for an array with one inter-
fering arrival much stronger than all the others.

Under these circumstances it is possible to esti-
mate the dominant eigenvalue and its corresponding
eigenvector and subhtract their contributioas from
R, effectively removing the effect of the inter-
Ference. The weaker signals can then be estimated
from the resultant matrix.

The technique involves computing the largest eigen-
value (Apax) and its corresponding normalised eigen-
vector (p), and then selecting that signal wave-
vector kj such that the Euclidean distance getween
the corresponding signal vector Eﬂﬁl) and K2p is
minimised. u(k]) then provides an estimate of signal
direction, and Apyx an estimate of signal strength.

This strong siﬁnal can be excised by subtracting
Amaxu(kj)u(ky)H from R. If another predominantly
strong signal now appears in the difference

Rl = R - dpaxu(kpulk)H,

one can repeat the process on Rj. In this way, the
influence of strong signals on the cross-spectral
matrix can be removed (or at least substantially
reduced) iteratively. The resulting matrix can then
be used in any of the processors (e.g., optimal,
maximum likelihood method) to detect weaker signals.

6 APPLICATION OF MODERN SPECTRAL ESTIMATION
TECHNIQUES

Just as signals from unknown directions can be
detected by first estimating signal strength as a
function of angle (see section 5), so signals of
unknown frequency can be detected by estimating the
power spectrum and then searching for lines.
Spectral estimation techniques have in recent years
evolved rapidly, for this and other applications.
As mentioned earlier, by using the analogy between
frequency and wavenumber such techniques can be
applied to array processing. Some of the more
important of these techniques are discussed in this
section, with reference to their application to
array processing where relevant.

6.1 Pole~Zero Modelling

A major thrust in spectral analysis research has

been in the use of models which assume that the
waveform whose spectrum is to be estimated has been

March, 1984



AN OVERVIEW OF SIGNAL PROCESSING FOR ARRAYS OF RECEIVERS — d’Assumpcao & Mountford 15

obtained by passing zero-mean white noise through a
time-invariant linear filter, as shown in fig. 13.
The transfer function of the filter is estimated,
and hence the power spectrum of the waveform. Such
models can be applied directly to the processing of
signals from equispaced linear arrays, but in most
cases much work remains to be donme to extend them
to arbitrary array geometries. In what follows, we
outline the techniques as they are used for spectral
analysis of a time series; the usual analogy can be
drawn for estimating signal angular distribution
using an array.

WHITE LINEAR O8S5ERVED
NOISE FILTER WAVE LORAL,
Figure 13 Pole-zero model.

If the input to the filter consists of the noise
sequence {yn}, then the output sequence Ix,} is
given by

q p
Xn = .z bj Ya-j - (k) % i (33)

j=0

Taking the z-transform of equation 33, we find that

the transfer function H(z) of the filter is rational
H(z) = B(z)/A(z), (34)

where A(z) and B(z) are pélynomials of order p and

q respectively,

exp(-i2nfAt) is the unit delay operator

step delay. .

Z-l =
and At =

The estimated power spectrum is given simply by

P(x) = H(z) H(1/2z). (35)

The estimation techniques can be divided broadly into
three classes, depending on the type of filter used:

WNITE NOISE

PROCESS.

AYTOPEGRLSS 18
AWOCLSS

Figure 14 Autoregressive (AR) process.

wuiTE nOISE
PROC LSS

R m m -t

Figure 15 Moving average (MA) process.
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i)  All-pole or autoregressive (AR) model, in
which H(z) = 1/A(2), and x, = y, - 81 Xp—-1i
uses recursive filter with feedback'paths as
shown in fig. 14.

ii) All-zero or moving average (MA) model, in
which H(z) = B(z), and x4 = § bj Yn-j 3
uses feedforward paths as shgwn in flg. 15.

iii) General pole-zero or autoregresslve-mov1ng-

average (ARMA) model, in which H(z) = B(z)/A(z)
and equation 33 applies,

Because the AR model comprises a set of resonant
filters, it is capable of high resolution and has
therefore received much attention.

6.2 Maximum Entropy Spectral Estimation

If we are given the complete autocovariance

fuaction {r(n)} of a stationary time series, where

rp = E{xg*xnenlt, then its power spectrum is given by
o -

= L r(n) exp(-i2mfnat),

(£) (36)

where At is the interval between samples.

In practice, we have only a finite observation
period, so in conventional spectral estimation we
use some estimator such as

8(E) = 1 aln) r(n) exp(~i2nfnac), (37)

-N
where a(n) is some suitable weighting function.

In equation 37, we make the implicit assumption
that the autocovariance function is identically
zero outside the observation period. (By analogy,
for a linear array of equispaced receivers, we make
the assumption, for the narrowband case, that the
spatial autocovariance function is zero for
distances greater than the length of the array.)

In a classic paper, Burg [16] pointed out that such
an assumption is unreasonable. There are infinitely
many band-limited spectra ¢(f) whose autocovariance
is identically equal to the finite set of observed

{r(n)}:

r(n) = J; (38)

o(£) exp(i2nfnrt) df, n=-N,...0,...N.

Burg argued that there was a rationale in selecting
that spectral estimate which made the least assump-
tions regarding the behaviour of the time series
outside the observation period, while remaining
consistent with the observations. Such a spectrum
is the most random, or has maximum entropy.

Specifically, he maximised the entropy

H =/ In ®(£) df (39)
subject to equation 38.
The resulting maximum entropy method (MEM) has
received much attention in the literature. It has

been shown [17] that the MEM fits, in a least-
squares sense, an AR process of order K to the
observed data. (For array processing, K would be
the number of receivers.) It is capable of high
resolution and has been found to be particularly
useful for estimating spectra from short samples of
data. Practical considerations often constrain the
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number of receivers which can be put into an array
so the MEM is valuable because of the high
resolution it provides.

Let us denote the power spectrum estimated by an nth
order AR process by Pap{®)(£). It has been shown

(18] that the power spectrum estimated using Capon's

maximum likelihood method (see section 4.2), Pyr(f),
is in fact related to the AR estimate as follows:

1 1 K 1
.1t - (40)
PlD) K mEl PARCRCE

where both Py (£) and Pog(m)(£) are calculated
using the same autocovariance matrix of order K.

6.3 Linear Predictive Spectral Estimation

Wiener linear prediction techniques can also be
used to estimate spectra. Ian this case, the
applicability of the technique does not rely on the
frequenc y-time/wavenumber-space analogy, and so the
technique is not confined to equispaced linear
arrays; it can readily be applied to arrays of
arbitrary geometry.

Suppose we wish to estimate the spectral output of
the L-th receiver of an arbitrary array, from a
linear combination of the spectral outputs of the
remaining K-1 receivers. Ia other words, we have

a
X, =

~ I Vg Xy (41)

m#L
One criterion for selecting the set of weights {wy}
is the minimise the meaan-square error between our
estimate x and our observation xp; i.e., we
minimise

% 2

€ = E(le - xL| ). (42)

It is convenieat to define a vector w whose entries
areall arbitrary except wy, = 1. Then we have

e = E(]ufx|2)

(43)

= wiR w,

where R = E(xxH) as before.
The problem then is to minimise € subject to the
constraint that wp = 1, or equivalently, that

e Ty (44)

.—I‘-—
where e, is defined to be a vector whose L-th
element™is unity and with all other elemeats zero.
The solution is readily obtained using a Laplace
multiplier:

-1’

R~ le
w o= _—=_ZL__
- Tr~1
& Re

When this technique is applied to spectrum estimat-
ion, the estimated power spectrum is given by the
mean-square error (€) divided by the power spectrum
of the predictor coefficients. Johnson [19] argues
that by analogy the estimate of signal distribution
is

- == = (45)
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Note that L is arbitrary - i.e., we may select any
one of the receivers. It can be argued that the
'best' choice of L is that which minimises the
mean-square prediction error, which is given by the
reciprocal of the smallest diagonal element of R™1,
However, it appears that the choice is by no means
clear in practice (19].

7 ADAPTIVE PROCESSING

The processing techniques described above require
the computation of a weight vector w on the hasis
of a priori knowledge of the amhient noise eaviron-
ment of the array. The assuamption is also
implicitly made that the noise field properties do
not change with time, so that the weight vector is
also time-invariaat.

Although not unknown, the assumption of complete a
priori knowledge of the noise environment of a re-
ceiving array is rarely valid in practice, so it is
usually necessary to adapt the weights in some way
to the environment. Some of the most significant
advances in array processing in recent years have
been in the field of adaptive processing. We out-
line here two of the more important techniques.

7.1 Adaptive Weight Vector Update

Widrow et al [20,21] pioneered an approach in which
the weights are iteratively adapted to minimise the
least-mean-~square error between the actual array
output gsignal and some desired signal. They operated
in the time domain, but the technique can equally
be applied in the frequency domain.

Exact minimisation of the least-mean-square error
involves solution of the Wiener-~Hopf equationm,
requiring inversion of the KxK covariance matrix,
which is computationally demanding for an adaptive
processor. Instead, Widrow used a steepest decent
algorithm to minimise the instantaneous error, thus
neatly avoiding the need to store and invert the
covariance matrix. However, the technique involves
the injection of a pilot signal to simulate the .
signal to be detected, when it is known that signal
is absent.

Subsequently, Frost [22] derived an adaptive proces-
sor which overcomes the need for a pilot signal.
While Widrow's algorithm is an adaptive implement-
ation of the optimal beamformer (section 4.1),
Frost's derives from Capon's MLM Beamformer
(section 4.2). The problem is posed as adjustment
of the weight vector w to minimise the array output
power E{|Y(k)'2}'_3§g§, using a steepest descent
technique, subject to the constraint that

uby =1. 8 (46)
The exact solution, given earlier in equation 25
involves 5?1. However Frost {like Widrow), uses

55? as an approximation to R, thereby greatly
simplifying the computations.

In what follows, we use subscripts j to denote
values at the jth jnteration. Using some
appropriate initial weight vector such as wj = u,

8 Actually, Frost addressed the more general case
in which a number of constraints are applied
simultaneously, but for simplicity we impose only
a single constraint. Also, whereas he operated
in the time domain, we work here in the frequency
domain, using notation consistent with that of
the rest of this paper.
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the resulting algorithm at the jth jteration is

wi+1 =Riwj - ay*(K)xj} + uw/k, (a7)

where o is a scalar determining the rate of
convergence of the weights, and P = I-uul/K is a
projection operator.

It can he shown that the process converges if
0 ¢ a < 2/Amax> where Apax is the largest
eigenvalue of PRP.

The power out of the beamformer can be represented
in terms of components due to individual eigenvalues
of PRP. In the case where a single strong inter-
fering source dominates the ambient noise field,
output power and convergence rates can be relative-
ly easily predicted. Some results for experimental
sonar data are presented in reference 23, where

good agreement is shown between predicted and

actual convergence rates.

7.2 Matrix Inverse Update

As mentioned earlier, the exact solution for the
weight vector w - whether for the unconstrained or
cénstrained optimal beamformer - involves the
inverse of the array cross—spectral matrix R.
Widrow and Frost avoid inverting the matrix by
using EEF as an approximation to R.

However, it is possible to adapt R;l as each new
observation xj is made, using Woodguty's identity

[24]:
if Rjsey = (1-0)Rj + axix;h, (48)
then Ri,1”1 ! Ril - g qq (49)
en Rj = 7l - .
A ST {‘*’ 4 }

where q = Ejlﬁ ,

and B {x;BRj1x + (1-0)/a}7L.

The beamformer weights at each iteration can readily
be calculated for a particular steered direction u,
using equation 25 . Note that (a) it is not neces-
sary to compute and store Rjs+1, and (b) the same
!ﬁ+1-1 is used for all the beams to be generated.

Lunde {25) discusses both algorithms and compares
their performance in a particular environment and
concludes that in some cases matrix update out-
performs gradient descent quite convincingly.

8 DISCUSSION
8.1 Choice of Processing Technique.

With the large choice of techniques, the reader may
well be left bemused: which of the many available
options is best? Which should one use?

Regrettably, there are no simple answers. 1In :
computer studies, using artificially-generated data,
it is found (to no one's surprise) that best results
are obtained when the processor model is the same

as the model used to generate the data. For example,
an AR technique gives good results when processing
data using the same AR model. However, if the data
are generated using an AR model of order p, spurious
peaks can result from a processor using an AR model
of order greater then p. Thus even if it is known
(or can be assumed) that the observed data fit an
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AR model (say), it may be necessary to estimate its
order. Considerable effort has been devoted to
studies in this area [26].

Another major factor in selecting a processor is
the extent of - and confidence in - one's knowledge
of the physical world. We have given examples in
which small differences between the model and the
real world can result in serious degradation in
performance: if a beam is steered in the wrong
direction using the maximum likelihood method, it
will tend to suppress the wanted signal; similarly,
if the wavefront is assumed to be plane but happens
instead to be slightly curved, it will be dis=-
criminated against. The more advanced processors,
which seek to increase performance, seem invariably
to do so at the sacrifice of robustness. In this
context, adaptive beamformers are attractive, as
they can be designed to adjust their parameters to
prevailing conditions. Matrix inverse update
processors are of particular interest to this
problem area, especially when used to implement .
constrained optimisation methods. These are likely
to be the subject of continuing research.

In recent years, there have been significant
developments in array processing using modified
spectral analysis techniques. However, it can be
questioned whether a model which is successful in
representing the spectrum of a time series will be
equally relevant in representing the angular distri-
bution of signal sources. For example, there are
situations in which the one signal can travel 'to
the array via two or more paths, with some of the
received multipath signals having some degree of
coherence with one another. Such coherent arrivals
have been given scant attention, and there appears
to be scope here for further study.

In our experience, it is essential tq test proposed
signal processing techniques using experimental
data. It is only then that some understanding can
be gained of appropriate models.

Of course, in the final choice of technique there
are many other practical considerations, such as
cost, complexity and reliability, and whether one
has the luxury of off-line processing or is con-

' strained to producing results in real-time; but

these considerations fall outside the purview of
this paper.

8.2 Array Geometry

Another main area of difference between spectral
analysis and array processing is in the effect of
array geometry. It has long been known that, from
the point of view of performance, symmetry in array
geometry is in general undesirable?. (An extreme
example of a symmetric array is the linear array,
which is incapable of distinguishing between signals
arriving at the same angle to the axis of the array.)
However, we know of no systematic technique to
design an array so as to minimise this effect. The
type of problem that one encounters im practice 1is
to design an array with constraints on dimensions
and/or on the number of elements. Here, also,

there appears to be scope for further research.

One occasionally encounters the situation in which
the geometry of the array is not precisely known.
The challenge then is to process the array signals

9 On the other hand, a symmetrically disposed
array often makes signal processing easier to
implement in practice, because some functions
are rendered repetitive.
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in such a manner as to infer hoth the angular dis-
tribution of signal sources and the array geometry.
Although work is continuing in this field, it, too
falls outside the scope of this paper.

8.3 The Future

It is likely that, in the immediate future, the
present trend of adapting developments from spectral
analysis to array processing will continue. As in-
dicated earlier, much work is still needed to adapt
some of the spectral analysis techniques to arrays
of arbitrary geometry. The fruit of some explor-
ations into this area can be expected shortly.

We have not mentioned many of the new spectral
analysis techniques, which use other models - for
example, a number of spectral lines of unknown
amplitude and frequency in a continuous noise back-
ground. When adapted for array processing, each of
these techniques will need to be tested using
actual experimental data,

In the longer term, it is possible that worthwhile
achievements may result from the collaboration of
researchers into the environment (both signal
propagation and noise) with researchers into array
processing. The models generated should then be
more closely attuned to the physical environment,
taking into account such factors as coherence
between multipath arrivals.
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