
UNCLASSIFIED

A Review of Machine Learning in Software

Vulnerability Research

Tamas Abraham 1 and Olivier de Vel 2

1Cyber and Electronic Warfare Division
2Principal Scientist

Defence Science and Technology Group

DST-Group�GD�0979

ABSTRACT

Searching for and identifying vulnerabilities in computer software has a long and rich history,
be that for preventative or malicious purposes. In this paper, we investigate the use of Machine
Learning (ML) techniques in Software Vulnerability Research (SVR), discussing previous and
current e�orts to illustrate how ML is utilised by academia and industry in this area. We �nd
that the primary focus is not only on discovering new approaches, but on helping SVR practi-
tioners by simplifying and automating their processes. Considering the variety of applications
already in evidence, we believe ML will continue to provide assistance to SVR in the future
as new areas of use are explored and improved algorithms to enhance existing functionality
become available.

RELEASE LIMITATION

Approved for Public Release

UNCLASSIFIED



UNCLASSIFIED

Produced by

Cyber and Electronic Warfare Division
PO Box 1500
Edinburgh, South Australia 5111, Australia

Telephone: 1300 333 362

c© Commonwealth of Australia 2017
AR-017-005
October, 2017

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED



UNCLASSIFIED

A Review of Machine Learning in Software

Vulnerability Research

Executive Summary

Computer software, like any other product, may contain faults. Some may be benign, others
can have serious implications to the operation and security of the systems they are deployed
on. Flaws in software that can be exploited for malicious purposes by an attacker belong to the
the class of software vulnerabilities. Research into computer software vulnerabilities has a long
and rich history, be that for preventative or malicious purposes, and has increased relevance
to Defence as it tries to maintain a high level of information assurance of its systems.

In this report we review the use of Machine Learning (ML) techniques in Software Vulnerability
Research (SVR), and discuss previous and current e�orts to illustrate how ML is utilised by
the various researchers in this area. It is intended as an accessible introduction to those not
yet fully immersed in both �elds of study and to also encourage the identi�cation of and
further research into the problems �tting the speci�c goals of the reader. For this reason,
the description of individual articles is kept short to highlight only the techniques employed
and their intended purposes. A short introduction to basic concepts and techniques of both
Software Vulnerability Research and Machine Learning is also provided.

By conducting this review, we �nd that the primary bene�t of ML in SVR is not only in
the discovery of new approaches, but also in helping SVR practitioners by simplifying and
automating their processes. Considering the variety of applications already in evidence, we
conclude that ML will continue to provide assistance to SVR in the future as new areas of use
are explored and improved algorithms to enhance existing functionality become available.

UNCLASSIFIED



UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED



UNCLASSIFIED

Contents

1 INTRODUCTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.1 Software Vulnerability Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 LEARNING IN SOFTWARE VULNERABILITY RESEARCH. . . . . . . . . . . . . . . . . . 6
3.1 Source code analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Coding practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Clone detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Error detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.4 Bug �xes and patching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.5 Mitigation and prevention. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.6 Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Binary code analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.1 Data structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Program structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Dynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Symbolic execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.5 Malware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.6 Attribution of binaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figures

1 Program analysis for vulnerability research, adapted from Cohen [27] . . . . . . . . . . . . . . . . . . . . . . 4

UNCLASSIFIED



UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED



UNCLASSIFIED

DST-Group�GD�0979

1. Introduction

Creating computer software is a non-trivial, complex process that can often yield code that
contains some �aws and weaknesses. Veri�cation of large code bases can be di�cult, or is
sometimes ignored due to costs, resulting in operational systems that can break down, or be
manipulated due to the unexpected and undesirable behaviours they exhibit. Although the
severity of software security errors is variable, some can be su�ciently serious to be able to
be exploited to cause critical harm to users by lost productivity, loss of intellectual property
or even physical damage. Dowd et al. [30] terms the subclass of software �bugs� that can
be exploited for malicious purposes as vulnerabilities, although practical exploitation of a
vulnerability may not always be possible in a particular context or be suitable for the goals of
an attacker. E�orts to counter the issues caused by vulnerable software has created studies in
Software Vulnerability Research (SVR).

Research into vulnerabilities a�ecting computer systems is not only limited to software. Our
focus in this paper, however, is on software-based vulnerabilities, and we do not consider
hardware or system architectures. Software itself can be analysed as source code or binary,
providing multiple paths to �nding vulnerabilities. Research processes into software vulner-
abilities can be routinely di�erentiated into pursuits for discovery, analysis and exploitation,
with mitigation included as a preventative activity [73]. Each stage explores a di�erent facet of
dealing with vulnerabilities, often requiring long and laborious input from practitioners such
as code auditors. Automation plays an important part in many SVR activities, nevertheless
currently it is via human interpretation that most vulnerability discoveries are made. In-
creasingly, Machine Learning (ML) techniques are incorporated into SVR processes to further
decrease the need for manual interaction. When applied successfully, ML algorithms can guide
users towards most likely solutions and potentially uncover previously unknown vulnerabili-
ties. The goal of this paper is to catalogue e�orts within SVR that utilise machine learning in
order to highlight the state of current undertakings and identify possible areas where further
contributions could be made in the future.

2. Background

The focus of this paper is to draw attention to the use of machine learning in software vulner-
ability research. To enable discussion, we introduce both �elds separately with some general
details. Further particulars are given as necessary in subsequent sections when reviewing indi-
vidual publications. What follows here is a simple overview of the two areas of study covered
without, at this stage, highlighting any connections between them.

2.1. Software Vulnerability Research

Classifying software vulnerabilities is not a simple task. The category to which a particular
vulnerability belongs is usually revealed during the analysis of the software error. Sometimes
a type can be anticipated during the vulnerability discovery process since some techniques
implicitly target a limited range of vulnerability types. Tools such as scanners look for bad
constructs such as obsolete library functions and other security-related errors in code. Fuzzing

UNCLASSIFIED
1



DST-Group�GD�0979

UNCLASSIFIED

is the process of supplying software executables with unusual input to cause unexpected be-
haviours like a crash or a memory leak, which can then be investigated in the corresponding
source code. Comprehensive manual code reviews can also be used to uncover errors but they
can be an expensive alternative to other vulnerability discovery approaches. Formal veri�ca-
tion provides mathematical proofs of correctness, and if unsuccessful, can indicate problems.
It is, however, often limited to small code segments or algorithms due to complexity and costs.
Symbolic execution, a technique to analyse the traversal of variable values (inputs) through
program branches is another discovery method although it can su�er from scaling issues like
path explosion.

Some errors in source code may be easy to group although certain vulnerabilities only present
themselves in combination with other factors such as the platform they are deployed on,
and can therefore be di�cult to initially categorise. The diversity of computer architectures,
operating systems, computer languages and the existence of language-speci�c bugs further
complicates analysis. We use the taxonomy given in the book by Dowd et al. [30] as our guide
to de�ne software vulnerability types. Language-speci�c issues include:

• memory corruption such as bu�er over�ows (stack, o�-by-one, heap, global and static
data)

• arithmetic boundary conditions such as numeric over- and under�ows

• type conversion errors (signed/unsigned, sign extension, truncation, comparisons)

• operator misuse (sizeof(), shift, modulus, division)

• pointer arithmetic bugs

• other errors (evaluation order logic, structure padding, precedence, macros/preproces-
sors, typos)

Other vulnerabilities are more complex. Problem categories include those that are present in
practical applications such as in relation to operating systems or application platforms, even
though the underlying issues may be caused by simpler errors such as memory corruptions or
pointer bugs:

• string and meta-character vulnerabilities

• OS-speci�c vulnerabilities (privilege problems, �le permission issues, race conditions,
processes, IPC, threads, environments and signalling issues)

• platform vulnerabilities (SQL injection, cross-site scripting (XSS), cross-site request
forgery (CSRF), �le inclusion and access, shell invocation, con�guration, access con-
trol and authorisation �aws)

An alternate way of categorising vulnerabilities is from the attack perspective. For example,
the Open Web Application Security Project [3] provides a list of attack types and regularly

2
UNCLASSIFIED



UNCLASSIFIED

DST-Group�GD�0979

compiles a list of top contemporary vulnerabilities [1], not all of which are related to source
code or binaries. Of those that are, injection attacks (code, SQL, HTML script, remote �le
and shell) and control �ow hijacking such as over�ows (bu�er, integer, string format) and
heap spray are similar to those we listed above. Other authors like Bletsch provide similar
categorisations that discuss how vulnerabilities can be exploited for example via code re-use
(return-oriented programming (ROP), return-into-libc (RILC), jump-oriented programming
(JOP)) [80].

As vulnerabilities in software get discovered, they are often shared with the wider commu-
nity. The Common Vulnerabilities and Exposures (CVE) is a �dictionary of publicly known
information security vulnerabilities and exposures� [4], currently maintained by the MITRE
organisation. Vulnerabilities are often attached a score to describe their severity, with the
Common Vulnerability Scoring System (CVSS) [40] being one of the most utilised. Services
that provide access to CVEs, scores and other related information include databases such as
the Open Source Vulnerability Database (OSVDB) and National Vulnerability Database U.S.
(NVD), and APIs that allow real-time updates on newly discovered vulnerabilities such as
VulnDB and vFeed. Statistics are often compiled annually on popular exploits based on the
number of vulnerabilities found in di�erent categories, although there may not be a correlation
between the frequency and severity of attacks attributed to each type. For example, Price and
Kouns [46] lists cross-site scripting, SQL injection, cross site request forgery, �le inclusion,
denial of service and over�ow attacks as the most frequently observed abuses according to the
OSVDB in 2014.

E�orts to mitigate the impact of software vulnerabilities have also produced various strategies
and solutions. Although full error prevention may not be achievable, there are expectations
on software producers to minimise the possibility of their product containing vulnerabilities.
These include comprehensive testing and �xing errors during the development cycle, providing
�xes after the release of software, and writing code in what are considered secure programming
languages. A list of vulnerability discovery techniques that can be utilised prior to releasing
software as a preventative measure, such as software testing, fuzzing and program veri�cation
(theorem proving, abstract interpretation, model checking) are listed in Vanegue [82]. Mod-
elling code execution using graphs such as abstract syntax trees (AST), control �ow graphs
(CFG), program dependency graphs (PDG) and code property graphs (CPG) can be help-
ful in identifying issues during development. Additional mitigation techniques for use after
the software has been released has also been provided by OS and hardware manufacturers.
Data Execution Prevention (DEP)/No eXecute (NX), Address Space Layout Randomisation
(ASLR), instruction-set randomisation (ISR), run-time checking (canaries, LibSafe), program
shepherding, Control Flow Integrity (CFI), Data Flow Integrity (DFI) and Control Flow Lock-
ing are some of the technologies currently in use, see [80]. Software tools to perform various
discovery tasks are readily available, both commercial and open source [87].

Program analysis is central to the problem of analysing software behaviour. Theoretically, 
the identi�cation of a software bug is undecidable, i.e. it is not possible to write a program 
to represent and compute all possible executions of another program in the general case [67]. 
In practice, some program behaviours may be ignored as not being relevant to the current analysis. 
However, this can result in either under approximation�the    exclusion of possible valid behaviours 
that may contain bugs , and over approximation�the      inclusion of possible

UNCLASSIFIED
3



DST-Group�GD�0979

UNCLASSIFIED

Figure 1: Program analysis for vulnerability research, adapted from Cohen [27]

but invalid behaviours�increasing complexity and resource requirements. Figure 1 organises
a number of program analysis techniques into a graph highlighting the style and automation
levels of individual methods. Static analysis, which is undertaken without executing the pro-
gram, can provide good code coverage and reason about all possible executions but cannot
analyse the executable environment such as the operating system and hardware. Dynamic
analysis, on the other hand, is undertaken while the program is executing or by instrumenting
the program to analyse behaviour. However, it can only reason about the observed execution
paths and not all possible program paths.

2.2. Machine learning

In this section we provide a short overview of machine learning concepts, and highlight some
of the relevant techniques that we encounter in the publications discussed later in this paper.
Many di�erent taxonomies exist for categorising ML techniques. For convenience, we use the
book by Barber [13] as the reference source for this section unless speci�c references are given.

The �eld of machine learning concerns itself with the automated exploration of data, resulting
in descriptive models that can be used for prediction. Generally, two main styles of learning
are recognised: supervised learning builds its models from labelled data sources and focuses
on the accuracy of prediction, while unsupervised learning concentrates on providing compact
descriptions from unlabelled data. Aside these two main styles, several variations can be
observed. Anomaly detection looks for outliers in the data that deviate from built models.
Online learning is able to continually update models as new data becomes available. Active
learning can build better models by requiring more data from the regions of the environment
which the current model does not su�ciently describe. Reinforcement learning is able to
interact with the environment in a trial and error fashion to create models that are optimised

4
UNCLASSIFIED



UNCLASSIFIED

DST-Group�GD�0979

according to some form of reward. Finally, semi-supervised learning utilises both labelled and
unlabelled data, using one type of data to improve on models that can be created from the
other type of data alone.

A large range of algorithms have been proposed and developed over the years within the above
learning styles. Supervised learning mostly uses one of many types of classi�ers that predict
the group (class) a data point belongs to. This is a form of discrete learning as the output
is limited to a set of values. When the result is required to be within a value range (i.e. it
is a continuous variable), regression is the technique used. One of the simplest classi�cation
algorithms is the K-nearest neighbour (kNN) algorithm that determines the class label of a
data point by looking at the labels of its K nearest neighbours and selecting the most frequent
one, an example for instance-based learning where the decision about the class is made using
examples in the data set rather than a model built from it. The Naïve Bayes classi�er is
a probabilistic algorithm that assumes conditional independence between the variables that
describe the data to simplify the building of a generative model. The class label of a point
is estimated by the probabilities of the data and their conditional probabilities given the
di�erent labels using Bayes rule. Other classi�cation techniques �t linear models to the data
and determine class membership based on the position of a data point respective to a decision
boundary calculated from known examples. Logistic regression is a classi�cation algorithm that
uses a maximum likelihood function to approximate the probability of a data point belonging
to a class. Linear Support Vector Machines (SVM) produce a hyperplane to separate the
classes in such a way that the distance between the nearest point on each side of the plane is
maximised.

Decision tree classi�ers model sequential decision processes as special graphs, with each node
serving as a feature test, so that di�erent values of a given feature are laid out along separate
branches. The leaves of the tree determine class membership. From any particular example
data set there can be many di�erent trees built, and often a combination of multiple trees
from a single data set are used to build better models. Random forests are such an ensemble
of decision trees aiming to deliver improved predictions over models created as a single tree.
Graphs are also prominent in representing the various forms of neural networks (NN) [14] used
as classi�ers. Neural networks are organised in layers of nodes, containing an input layer and
an output layer, with hidden layers between. Each node corresponds to a function that maps
its input values into a single output value using weights assigned to the connecting edges of the
node. Popular variants of NN classi�ers include the multilayer perceptron (MLP) feedforward
neural network, convolutional neural networks and long short-term memory recurrent neural
networks. Neural networks are also central to deep learning, a machine learning paradigm that
also concerns itself with the learning of the representations of the data.

Unsupervised learning is often associated with cluster analysis, the organisation of data into
groups based on some de�nition of similarity. These can include statistical approaches based
on data distribution, such as using expectation maximisation (EM) to build Gaussian Mixture
Models (GMM). Algorithms exploiting data connectivity are examples of hierarchical cluster-
ing, either built bottom-up, i.e. starting with each data point as a cluster followed by merge
operations, or top-down, starting with a single cluster and splitting according to some strat-
egy. Centroid-based clustering identi�es clusters by determining a selected number of cluster
centres and assigning each data point to the closest one. Density-based clustering, on the other

UNCLASSIFIED
5



DST-Group�GD�0979

UNCLASSIFIED

hand, �nds clusters of points that are close to each other based on thresholds of some distance
measure, and can leave data unassigned as noise if they do not satisfy these requirements.

Associations [5] are rules inspired by market data analysis. They represent if . . . then constructs
that describe strong patterns in the data that occur with some minimum desired frequency.
Finding frequent itemsets, or feature values that occur together more often than others, can
reveal trends in the data. Sequential pattern mining is a learning activity that has the same
goal but analyses data over time, exploiting the temporal ordering of data points to build
models. Genetic algorithms are also rule discovery algorithms that mimic natural selection by
applying crossover and mutation operators to an initial set of data and evaluating the �tness
of subsequent generations until some termination conditions are met.

Learning is usually preceded by pre-processing activities and is followed by tasks such as
model evaluation. Some of the pre-processing includes feature extraction, and the handling of
noise and errors in the data. Feature selection and dimension reduction aim to identify features
relevant to the learning task and to reduce complexity in order to improve the model generated
by the learning algorithm. Both supervised and unsupervised learners can bene�t from this
process. Some important examples include Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), Non-negative Matrix Factorisation (NMF) and Singular Value
Decomposition (SVD). Sampling to reduce data size and balancing input data can improve
the e�ciency and e�ectiveness of algorithms. Using ensemble methods such as bagging and
boosting can improve predictive performance over single learning algorithms. For evaluation
purposes, performance assessment methods are available to appraise the e�ectiveness of an
algorithm. In binary classi�cation, the relationship between the predicted conditions and
actual conditions of data points can be described using several concepts. A true positive
(TP), or hit, is a correctly predicted positive instance. A false positive (FP) is a negative
instance incorrectly predicted as positive. Similar de�nitions exist for true negatives and false
negatives. The true positive rate (TPR), or recall of an algorithm is the ratio of true positives
over all positive instances. The precision is the ratio of TP over the sum of TP and FP,
indicative of the number of mistakes made when predicting positive instances. The accuracy
of the algorithm is the ratio of correctly identi�ed instances (TP plus TN) over all data points.
Many model evaluation methods exist, for example ROC analysis [31]. Combined, they can
not only provide an assessment of an algorithm but determine other learning strategies such
as di�erent feature selection methods or parameter optimisations.

Machine learning has been applied in numerous �elds of study. One that can be relevant to
examining computer programs is Natural Language Processing (NLP), a �eld that concerns
itself with tasks such as language modelling, parsing and speech recognition. Some notable
techniques available for document classi�cation include Latent Dirichlet Allocation (LDA) and
Latent Semantic Indexing (LSI), both modelling text as a collection of topics.

3. Learning in Software Vulnerability Research

Machine learning can o�er many bene�ts to a complex area of study such as software vul-
nerability research. It can be used to model the syntax and semantics of the code and infer
code patterns to analyse large code bases, assist in code auditing and code understanding,

6
UNCLASSIFIED



UNCLASSIFIED

DST-Group�GD�0979

whilst achieving tolerable false positive rates. As SVR processes increase in complexity, so
does the need for the level of automation available to SVR practitioners. As a result, novel
methods of analysing software are being proposed for both discovery and prevention purposes.
Some of these are specialised. Others use readily available technologies from other scienti�c
disciplines, including statistics, machine learning and data mining. In the following sections,
we discuss existing work utilising primarily machine learning, organising them according to a
loose grouping based on the similarity of their content.

We �rst point to a small selection of recent papers that consider addressing the software
vulnerability problem at a more general level. For example, Avgerinos et al. [11] acknowledge
the presence of software bugs in widely used large software projects such as the Firefox browser
and the Linux kernel, some known but others potentially still undiscovered. With so many
bugs found in critical software, the authors pose the questions: �Which of these bugs should
we try to �x �rst?� �Can we determine which ones are exploitable?� Jimenez et al. [41]
may indicate a possible way ahead. They analyse past known vulnerabilities (in this case,
for Android) and establish a categorisation that lists issues leading to software vulnerabilities,
the characteristics of the locations in the code where vulnerabilities reside, the complexity of
these locations and the complexity to �x the vulnerabilities. Creating public datasets such
as VDiscovery [34] which collect the results of test cases and are made available to facilitate
further research is another promising initiative, as is the idea of crowd-sourcing �bug hunting�,
a model for which is described by Zhao et al. [93].

3.1. Source code analysis

As highlighted earlier, reducing the amount of manual tasks on human practitioners of SVR is a
primary objective of many proposed approaches. Examples of automation include Parfait [26],
a framework for �nding bugs in C/C++ code. Parfait was designed with multiple layers per bug
type in an ensemble of program analyses for speed and scalability. The philosophy behind the
solution is to employ simpler analyses for predicting some types of bugs, then moving to more
computationally expensive ones to achieve best coverage and precision. The same philosophy
is shared by another platform, Mélange [74], also analysing C and C++ code. Mélange performs
data and control �ow analysis and generates bug reports to explain the bugs found to help
with the necessary �xes. Analyses are executed in stages, both locally and globally, with the
latter used on-demand to validate the outcomes of local analyses. Another example is the SZZ
algorithm [88], which was developed to automatically identify code commits that induce �xes,
and can be used by researchers to validate software metrics or models for predicting faulty
components, an important activity in bug prevention.

However, these approaches are examples where the move towards automation does not neces-
sarily rely on machine learning technologies. The following categories detail cases where they
do.

3.1.1. Coding practices

One of the early uses of machine learning for code analysis is PR-Miner [50], the application
of data mining techniques to build a set of programming rules for source code. It generates
frequent itemsets from large code bases such as Linux, PostgreSQL and the Apache HTTP

UNCLASSIFIED
7



DST-Group�GD�0979

UNCLASSIFIED

Server, to automatically produce implicit programming rules which can then be checked for
violations using another algorithm. The results are ranked and provided to an analyst in order
of assumed severity to con�rm whether they constitute actual bugs. The process is fast and
the authors argue that it is able to identify violations that are more complex (e.g. contain
more than two rule components) than those found by comparable tools which use user-de�ned
templates. AutoISES [77] is a similar tool that detects vulnerabilities by inferring security
speci�cations from source code rather than requiring them to be manually provided. The
inference of speci�cations is still guided by concepts relating to secure coding practices but
rules are now extracted based on evidence observed in the code and violations are o�ered for
manual veri�cation. The Linux kernel and Xen were used as test cases and for 84 extracted
rules, 8 new vulnerabilities were found.

Assisting developers to correctly use Application Programming Interface (API) methods has
been a focus of some papers, often inspired by the lack of su�cient available documentation.
The UP-Miner tool [83] employs several data mining methods, such as clustering and frequent
closed sequence mining to create frequent API usage patterns. It also contains new metrics to
optimise the succinctness and coverage of the resulting patterns, which are then presented to
users as probabilistic graphs for examination and understanding. Tests on a large Microsoft
code-base in collaboration with Microsoft developers con�rmed the utility of the approach.
Another interesting contribution is detailed by Nguyen et al. [59]. They investigate API
preconditions, conditions that need to be satis�ed by the parameters of an API method prior
to its call. They developed a system that �nds the client methods invoking APIs, computes
a control dependence relation from each call site and then mines the conditions used to reach
those call sites to �nally infer the preconditions for each API. A large-scale evaluation of
the Java Development Kit using SourceForge and Apache projects identi�ed a number of
preconditions missing from written speci�cations. Furthermore, the results can be used to
identify coding errors where preconditions in source code are not met. The paper also has a
very good collection of references on earlier API mining literature.

VCCFinder [62] is a tool that combines knowledge about vulnerabilities in code with metadata
about commits made to repositories to identify potentially vulnerable software code commits.
A series of features generated for each commit from both source types are matched against
the features of known cases of �vulnerability-contributing commits� (VCCs), identi�ed from
commit data for CVEs, to determine if a new commit is a likely source of a vulnerability. A
two-class SVM is built for this purpose. Tests on 66 GitHub projects showed a greatly reduced
false positive rate (FPR) compared to existing tools while maintaining a similar true positive
rate. Whilst successfully identifying a VCC can greatly reduce the amount of code to inspect
for security �aws, signi�cant expertise and manual e�ort to audit them will still be required
by practitioners.

3.1.2. Clone detection

Duplicate code can not only make a software project more di�cult to maintain due to code
bloat, but also to resolve �aws when they are scattered across a large code base as the result
of copy-paste programming. Detecting clones has therefore attracted a lot of attention in the
literature, including from the vulnerability perspective. A recent survey by Roy et al. [70]
provides concepts and a qualitative comparison and evaluation of clone detection techniques

8
UNCLASSIFIED



UNCLASSIFIED

DST-Group�GD�0979

and tools, along with a taxonomy.

Much of the research associated with clone detection focuses on determining code fragment
similarities to locate copied code. Udagawa [81] presents a code-structure based approach that
extracts lexical data from Java source code fragments using a parser and applies a similarity
measure de�ned by the ratio of the number of fully matching sequences of tokens to the number
of sequential partially matching statements. Lazar and Banias [47] use a sub-tree similarity
measure in multiple �le sets of C programs using abstract syntax trees in another example of
a structure-based approach. These are often preferred to text or token-based approaches as
they are robust to code and variable name changes, although they are often not well suited to
large programs due to scalability issues.

Clone detection algorithms have also been used for bug-�xing purposes in conjunction with
machine learning, for example by Steild and Göde [76]. Their idea is to extract features from
clones and after training a classi�cation model, identify whether similar clones have incomplete
bug �xes. Clone detection is essentially token-based, that is, statements are tokenised rather
than represented as trees, and this is re�ected in the type of features that are extracted from
code fragments: global context features are complemented with local lexical ones that allow for
minor inconsistencies within clones. The authors investigated multiple classi�cation techniques
and found that decision trees were the most promising and o�ered an easy to understand
representation for users. Test results show that even at a high ratio of false positive to true
positives (approximately four in �ve �nds were false), their approach represents a marked
improvement when compared to manual analysis.

Taking the concept of clone detection further, the C3 system [45] investigates code changes in
source code repositories. The idea is to simplify the application of bug �xes by automatically
locating similar code changes without the need for interaction with a user and/or existing code
change patterns, to be passed on to other tools for application. Two similarity measures are
proposed, one based on a traditional di�-based representation, and another on abstract syntax
trees, which are used on extracted code changes to generate the similarity matrix. Clustering
is then used to detect groups of similar changes (rather than identical ones as in the case of
clones). Results on large code depositories show that they can be delivered in a time e�cient
manner with a success rate similar to that achieved by expert manual extraction.

3.1.3. Error detection

Code �aws, whether exploitable or not, can be di�cult to identify, particularly in large software
projects. In the case of source code, some of the more frequently used techniques to �nd bugs
include using templates to guide the search for known vulnerabilities; examining the contents
of source code �les and comparing with known vulnerable ones; and analysing the structure
of code to diagnose potential mistakes. Often, a combination of methods is used to reinforce
results, with the theme of these activities being either the identi�cation of code that is di�erent
from normal, or the recognition of code that is similar to known bad.

Employing a priori knowledge can be very e�ective when used to target speci�c vulnerability
patterns. Neglected conditions are the topic of Chang et al. [25]. Their approach requires
the user to specify constraints for learning conditional rules from code which are used to

UNCLASSIFIED
9



DST-Group�GD�0979

UNCLASSIFIED

discover violations indicating neglected conditions. Extracted rules are represented as graphs
and a maximal frequent subgraph mining algorithm followed by a graph matching algorithm
classi�es rule violations. A user may be consulted to evaluate the usefulness of the extracted
rules and adjust them before matching takes place. Various open source software projects
were tested with this approach and revealed previously unknown violations. Alattin [79] is
another proposal to identify neglected conditions, using a modi�ed frequent pattern mining
algorithm called ImMiner. It introduces the concept of alternative patterns as the disjunction
of two rules a�ecting the same API calls in the program. When both individual patterns are
frequent, the alternative pattern is called balanced; when only one is, the alternative pattern is
called imbalanced, and can be used for both program comprehension and defect detection. A
variation on the frequent itemset mining algorithm has been developed to search for balanced
and imbalanced alternative patterns, and applied to detect neglected conditions around API
calls. The approach tested well when compared to similar solutions and is available as an
Eclipse plugin.

Patterns that describe normal behaviour rather than violations are also used for bug detection.
Gruska et al. [35] parse a large corpus of software projects to extract frequent temporal prop-
erties representing the �ow of values between functions calls. An anomaly detection algorithm
is then used to detect violations of the learnt patterns using association rule lift measures to
rank and �lter them for user evaluation. In real-world tests, 25% of the top-ranked violations
were found to be issues, either actual defects or weaknesses in code design.

Treating source code as a document collection and building models to describe them is another
approach to develop an understanding of software projects. Lukins et al. [52] use Latent
Dirichlet Allocation to generate topic models on string literals, comments and identi�ers, then
evaluate them with manually crafted bug description queries in several case studies. They
�nd that their technique compares favourably to competing approaches and that it scales well
when used on large source code bases. Hovsepyan et al. [39] also look at individual source
code �les and convert them into feature vectors by removing comments, string and numerical
values, and tokenising the remaining code elements (keywords, variable and function names)
as feature words for supervised learning. Labels are assigned to each �le prior to running
a support vector machine algorithm to train a model which is used to predict vulnerable
feature vectors extracted from test �les. The technique is able to identify most vulnerabilities
tested against with a low false discovery rate, and is intended to be complementary to existing
vulnerability discovery solutions based on software metrics. Pang et al. [60] expand on this
work by including n-grams into the feature vectors generated. Sequences of up to �ve tokens
are considered instead of just single words, and to avoid the resulting feature explosion, a
statistical feature selection algorithm is used to provide a ranking. The top 20% of features
are then used with an SVM algorithm. Tests on four Android Java projects achieved slightly
better classi�cation results than earlier attempts. Scandariato et al. [72] use single words,
including comments and string values, in their tokenisation of source code �les into feature
vectors, but introduce discretisation to bin the various feature counts in order to improve
the models generated by their machine learning algorithms. In addition to SVM, they test
with decision trees, k-nearest neighbour, naïve Bayes and random forest, with the latter two
algorithms performing best in their experiments. The paper also contains a review of previous
comparable e�orts, including those relying on software metrics to determine if a �le contains a
software vulnerability. The preference of these metrics over text mining solutions is the topic

10
UNCLASSIFIED



UNCLASSIFIED

DST-Group�GD�0979

of Tang et al. [78]. They argue that while many machine learning based solutions may show
improved results, they are not su�ciently large enough to justify the added cost to apply these
models in preference to software metrics based models.

Numerous researchers look at solutions that take advantage of the structural properties of
programs. Machine learning has been used in Kremenek et al. [44] to investigate the combi-
nation of source code program analysis and probabilistic graph models to automatically infer
program speci�cations directly from programs. Inference is undertaken by the creation of an
annotation factor graph which can be used to rank possible errors by their probabilities before
examining any inferred speci�cations. Tests on open source code bases showed high rates of
true positives for the case of memory allocation/deallocation speci�cations. Peng et al. [61]
explore the possibility of deep learning for program analysis. They argue that natural lan-
guage token-based granularity can yield sparse data and instead encode abstract syntax tree
nodes into vector representations that codify a node in the AST as a single neural layer. They
are then used as input into a Convolutional Neural Network for deep supervised learning to
classify programs. Quantitative evaluation of the vector representation is done using k-means
clustering to show that similar nodes can be successfully grouped together, while a qualita-
tive evaluation of classi�cation tasks reveals a slightly superior outcome with deep learning
compared to baseline classi�ers such as logistic regression and support vector machines.

Utilising program structures speci�cally for vulnerability discovery has been the focus of Ya-
maguchi and his co-authors. Latent semantic analysis [90] of abstract syntax tree nodes is
an early attempt to o�er assistance to a security analyst during auditing of a source code
base. After the extraction of API and syntax nodes, they are embedded into vector space and
structural patterns are identi�ed using LSA to generate topics. These can then be compared
against the characteristics identi�ed for known vulnerabilities. Tests on several open-source
projects helped to uncover new zero-day vulnerabilities. Missing checks are the target of an-
other Yamaguchi et al. paper detailing Chucky [92], an anomaly detector that statically taints
source code and identi�es anomalous or missing conditions linked to security-critical objects in
the source code. After extracting the abstract syntax tree, the k-nearest neighbour algorithm
is used to perform neighbourhood discovery of related functions. Lightweight tainting followed
by the embedding of functions into vector space then allows comparison for missing checks
by geometrically comparing the check with the known checks for similar function embeddings
in the rest of the code base, identifying anomalies. Chucky was tested to diagnose known
vulnerabilities with a very high detection rate, and it was also able to assist analysts to iden-
tify previously unknown vulnerabilities by producing a ranked list of anomalies from various
open-source projects. The Joern project [89] introduces the concept of a code property graph
(CPG), a combination of abstract syntax tree, control �ow graph (CFG) and program depen-
dency graph (PDG), three existing representations of code, each of which is able to capture
some, but not all characteristics of software important for vulnerability research. The idea is
that CPGs combine these characteristics to o�er a single representation that can be used to
model existing vulnerabilities more generally. Checking code bases then becomes an exercise
in building and representing the code as CPGs, and issuing graph traversal queries against
the resulting graphs to �nd matches for vulnerability patterns. The platform has been tested
against the Linux kernel code base and was able to identify 18 previously unknown vulnera-
bilities. A limitation of the design is being partially addressed in a proposal to automate the
inference of search patterns for taint-style vulnerabilities [91]. Post-dominator trees (PDT) are

UNCLASSIFIED
11



DST-Group�GD�0979

UNCLASSIFIED

used to augment code property graphs to capture situations where statements are executed
before another, enabling the detection of functions calls in code that result in modi�cations
of their arguments. These can then be used to generate graph traversal patterns to search for
taint-style vulnerabilities. The approach has been implemented as a plug-in for Joern and was
shown to produce substantial reductions in code inspections.

3.1.4. Bug �xes and patching

Bug �xing, whether reactive or preventative, remains a necessary activity within software
development. Vulture [57] is a tool that automatically learns from the locations of past vul-
nerabilities to predict the future vulnerability of new components before they are fully imple-
mented. This is accomplished by extracting import statements from source code components
and applying frequent pattern mining to determine whether they relate to existing vulnera-
bilities. A new component can then be evaluated to determine whether it will be vulnerable
based on its imports using a classi�cation model built on the project's import matrix and the
vulnerability vector attained from the previous step. The system, using an SVM classi�er for
prediction, was evaluated on the Mozilla project. Kim et al. [43] proposes a technique called
�change� classi�cation that operates on lines of code rather than complete modules, �les or
functions. This is achieved by examining the code history in software con�guration manage-
ment systems. Features are extracted for both bug �xes and regular commits from change
metadata, software complexity metrics, log messages and code. An SVM classi�er is chosen
to build a model to predict if a new code change is buggy or clean, with results available
immediately at the time of a new change commit. The predictive power of di�erent groups of
features are also analysed in the paper.

Knowledge of the vulnerable components in a software project does not, however, provide
an answer to the question of how likely these vulnerabilities can be exploited. Automatically
ranking vulnerabilities has been proposed as a potential solution by Bozorgi et al. [15], utilising
public vulnerability databases such as CVE and OSVDB to classify and predict the vulnerabil-
ities most likely to be exploited. A high number of features are extracted from text �elds, time
stamps, cross-references and other entries in existing vulnerability disclosure reports. A linear
SVM is then trained on a random balanced sample using positive labels for vulnerabilities that
have exploits and negative labels for those that do not. This methodology is then engaged to
study o�ine and online exploit predictions, identifying features most relevant to predictions
and estimating the time it would take for an exploit to appear for a vulnerability. The latter
topic is also investigated in Wijayasekara et al. [86] which looks at the mining of bug reports
in bug databases using text mining techniques to aid the discovery of hidden impact vulnera-
bilities. A hidden impact vulnerability is a vulnerability identi�ed sometime after the related
bug has been disclosed to the public usually via the release of a patch, which an attacker can
use to discover a potentially high impact exploit. A feature vector is obtained by process-
ing (tokenising, stemming etc.) the text in the bug report, and a classi�cation is obtained
by calculating the Bayesian detection rate, or the probability that a bug is a hidden impact
vulnerability given that it detects a bug as a vulnerability. The Linux kernel and MySQL bug
databases were used as data sources. An analysis of the ratio of hidden impact vulnerabilities
to vulnerabilities has shown it to be relatively high and it was additionally observed to be on
the increase in the last two years of the study.

12
UNCLASSIFIED



UNCLASSIFIED

DST-Group�GD�0979

Once bugs are identi�ed and prioritised, they must be �xed. Prophet [51] is an example
for an automated patch generation system that obtains patches from open-source software
repositories and builds a model of correct code. This probabilistic model is learnt in an o�ine
training phase from features of successful patches extracted from previous code revisions and
is used to generate and prioritise candidate patches for new defects. The candidate patches
are then validated and o�ered for manual inspection and insertion by a developer. Tests
on a benchmark set of 69 real-world defects drawn from eight open-source projects show
that Prophet compares favourably to existing patch generation systems. GenProg [84] uses
a genetic programming approach on abstract syntax trees and weighted program paths to
correct defects in code. Once an error is identi�ed, for example, by the program failing a
test case, variants of the original program are searched until a valid version is found. The
technique uses the observation that a defect may be repaired by adopting existing code from
another location in the program. By mutating the defective code using similar templates, a
repair can be identi�ed by the program successfully passing the previously failed test case.
The DeepSoft framework [29] is an ambitious approach to model software and its development
in order to predict and mitigate risks and to automatically generate code patches for bugs
identi�ed. It employs deep learning, speci�cally long short-term memory, to model source
code and its evolution. It is proposed that this representation, in conjunction with natural
language processing enables the automatic generation of code patches for resolving issues. Le
et al. [48] investigate the validity of applying automatic repairs for identi�ed cases of software
error. They are interested in �nding repairs in a reasonable time, and argue that sometimes
manual rather than automatic intervention may be more cost e�ective according to some
de�ned time budget. To this e�ect, they build a random forest classi�er that uses multiple
runs of GenProg to generate data, with an e�ectiveness indicator added as the classi�cation
label. The consequent model is used as an oracle to predict the e�ectiveness of future repair
instances. Results indicate that around three out of four repairs are correctly identi�ed for
the more suitable repair type.

3.1.5. Mitigation and prevention

Ways to reduce the number of bugs that are introduced during the software development
process have also often been explored in the literature. One possible course to lessen the
probability of errors in code is to guide the automatic generation of correct code snippets.
Code completion is discussed by many authors, including Hindle et al. [36], who use the n-
gram concept from natural language processing to statistically model code token sequences,
based on the assumption that code is like language, repetitive and predictable. They �nd
that the entropy of source code is much lower than that of natural language. They develop a
new Eclipse plug-in from their model as a proof-of-concept which is shown to outperform the
capabilities of the built-in code completion engine. Allamanis and Sutton [7] take this research
further by compiling and analysing much larger data sets, scaling up to �giga-token� models
and introducing new data-driven metrics to measure code complexity. They demonstrate that
these models are even better at code suggestion. SLANG [66] complements n-gram models
with recurrent neural networks to address the problem of generating completions for �holes�
(gaps, missing lines) in code with API method calls. Code completion is treated as the natural-
language processing problem of predicting probabilities of sentences. The resulting tool is able
synthesise complex solutions with multiple statements and arguments that typecheck correctly
and include the desired outcome in the top 3 results in 90% of the cases. DeepSyn [65] is a

UNCLASSIFIED
13



DST-Group�GD�0979

UNCLASSIFIED

code completion system for JavaScript programs. It utilises a domain speci�c language over
abstract syntax trees, which removes code speci�cs and facilitates learning on partial parse
trees. A program in this language that best matches training data can then be generated
which is shown to perform better at the code completion task than existing solutions.

Data mining techniques for intelligent code completion are discussed by Bruch et al. [17].
Three separate solutions are devised to better the built-in Eclipse code suggestion system.
The �rst simply orders all available suggestions by frequency counts as opposed to the default
Eclipse ordering. The second uses association rules to �nd correlations between code objects
and suggests those that are closely associated with an observed object. The third solution
is a variation on the k-nearest neighbours algorithm, called the best matching neighbours
algorithm. It extracts binary feature vectors for each variable in the code base, encoding
indicators about API calls that use them and calculates distances between the current and
the example code base based on a modi�ed use of the Hamming distance. Code completions
are then recommended based on their frequencies in selected nearest neighbours. In testing,
each proposal outperformed the default Eclipse suggestion system, with the best matching
neighbours algorithm producing the leading results.

GraLan [58] is a graph-based approach to statistical language modelling which computes the
appearance probabilities of usage graphs and uses them for code completion. After the lan-
guage model is built from source code examples, usage subgraphs can be extracted from the
neighbourhood of the currently edited code, and GraLan can be used to compute the proba-
bilities of the children graphs given those usage subgraphs. These are collected and ranked as
candidate API elements for suggestion. This approach is further extended into ASTLan, an
AST-based language model to suggest syntactic templates rather than API elements at the
current editing location. Both GraLan and ASTLan compare favourably to previous e�orts in
API code and syntactic template suggestions, with the paper also o�ering a broad overview
of code completion research.

Machine learning techniques have also been used to help with proving the memory safety and
functional correctness of programs. An example is Cricket [16], a veri�cation tool extension
that utilises logistic regression and two-layered neural networks to automate the annotation of
programs with appropriate invariants. Initially, only shape properties are learnt and used to
verify the correctness of heap programs. If this fails, valid shape invariants are strengthened
in a second stage with data invariants to improve the obtained memory safety proof, again
employing ML algorithms.

3.1.6. Attribution

A potential follow-up activity after code vulnerability analysis is the attribution of code to its
author(s). Such information may identify relationships between software projects, can attest
to the quality and maturity of the code, and assist in developing and applying suitable solu-
tions for vulnerability prevention. Caliskan-Islam et al. [24] address the authorship attribution
problem for C++ source code using machine learning. Their approach considers three types
of features for a total of up to 20,000 features: code stylometry features are layout features
such as whitespaces that do not change the meaning of a program; lexical features are derived
from program tokens, or strings with identi�ed meaning such as the number of loops, if/then

14
UNCLASSIFIED



UNCLASSIFIED

DST-Group�GD�0979

statements and comments; and syntactic features are derived from ASTs like the term fre-
quency inverse document frequency (TFIDF) of AST node types. Using the information gain
criterion, the original set of features were substantially reduced and a random forest ensemble
classi�er was used for authorship attribution with highly accurate results. The authors sug-
gest that syntactic features are resilient to code obfuscation attempts and �nd that advanced
programmers have a more identi�able/unique coding style than novices.

3.2. Binary code analysis

Binaries are a transformation of source code, and as such, su�er from some loss of semantics
inherent in high level programming languages. Therefore, some of the activities in vulnerabil-
ity research, in particular those aiming to prevent vulnerabilities from being introduced into
software, are either unavailable, not applicable or require a di�erent approach or technique.
When both source code and the corresponding binary can be analysed, researchers have an
opportunity to work with a rich set of data. Binaries, however, are often all that are available
and that can be investigated. Similar to source code, they can be transformed into di�erent
representations, which may make some of the earlier seen techniques appropriate for use with
this medium. However, di�erent computer architectures and di�erent compiler optimisations
on the same source code can introduce an additional layer of complexity in the analysis of a
binary.

Automation remains a primary goal in SVR activities on binary code. Some examples include
GUEB [32], a static tool detecting use-after-free (UaF) vulnerabilities on disassembled code.
It utilises an abstract memory representation on which a value set analysis is performed,
using forward traversal of the control-�ow graph to facilitate UaF detection. Sword [23] is an
automated fuzzing system that prioritises areas of a binary for fuzzing. It combines multiple
vulnerability detection approaches to increase e�ciency, namely symbolic execution which
searches for and identi�es desired execution paths of the target program, and taint analysis
to check the execution paths and generate path-dependent information in order to guide the
fuzzer performing the vulnerability analysis. Code Phage [75] is a system to automatically
transfer correct code from donor applications into a recipient application to eliminate errors
in the latter. Once an error-causing input is identi�ed for a program, a database is searched
for a donor application where the same input does not trigger the error. Various activities,
including candidate check discovery, patch excision, insertion and validation follow this step,
and are repeated if they do not produce a safe solution. The paper also includes an overview of
earlier program repair e�orts. The opposite of �xing, i.e. exploiting a program automatically
based on the examination of patches issued for it is discussed by Brumley et al. [20]. The idea
is to locate any new sanitisation checks introduced in a patch and �nd the inputs that they
safeguard against. Attackers can leverage this information, assuming that these inputs could
be potential exploits for the un-patched programs, which often do not receive updates in a
timely manner.

Code similarity can also be leveraged for vulnerability identi�cation. Tree Edit Distance
Based-Equational Matching [64] is a method used to automatically identify binary code regions
similar to another that contains a known bug. In a pre-processing phase, semantic information
in the form of expression trees that summarise the results of computations performed in the
basic block, is extracted. For a known bug, this is used as a signature to locate similar code

UNCLASSIFIED
15



DST-Group�GD�0979

UNCLASSIFIED

regions, using a block-centric metric based on tree edit distances to measure the similarity of
binary code. The metric allows for small syntactic di�erences in code and has been used to
identify unknown vulnerabilities in software such as forks of the popular SSH client PuTTY. A
generalisation of this signature-based bug �nding approach across multiple CPU architectures
using a code similarity metric is proposed in Pewny et al. [63].

3.2.1. Data structures

A fundamental task in binary program analysis is the understanding of program characteristics
that enable further investigation into potential issues hidden within the code. Laika [28]
uses Bayesian unsupervised learning to identify data structures and their instantiations in a
program image. It locates pointers to potential data objects and estimates their sizes using
a conversion of machine words into vectors of block types as features. Similar sequences are
then clustered together using a probabilistic similarity measure to determine classes of data
structures. The data structures generated were tested in a virus detection scenario and proved
highly e�ective. White and Lüttgen [85] use genetic programming to identify dynamic data
structures from program execution traces by matching them against pre-de�ned templates
for labelling. The templates capture the operations necessary to manipulate complex data
structures such as linked lists and binary trees, and tests show that this approach is able to
infer such data structures with a low false positive rate.

3.2.2. Program structures

Structures within binaries also extend to executable code. Rosenblum et al. [68] address
the `function start identi�cation' problem, or the recognition of the entry points of functions
(FEPs) in stripped binary code. They use a supervised classi�cation algorithm based on the
Conditional Random Fields (CRF) statistical modelling method. Every byte o�set is assumed
as a candidate FEP, with two models considered: one based on the classi�cation of individual
FEPs, the other on structural aspects such as functions that can call other functions. The �rst
model uses short instruction patterns as the set of features with a logistic regression model
formulated as a conditional random �eld used for classi�cation. The second model uses a CRF
to model the function call interactions using pairwise function/structural calls and overlap
features. The approach compares favourably against results achieved using existing tools such
as Dyninst [37] and the commercial disassembler IDA Pro. ByteWeight [12] improves this
approach by employing a technique based on pre�x trees to learn signatures for function start
identi�cation purposes and then recognising functions by matching binary fragments with the
signatures. This is done through training a classi�cation model on a reference corpus of source
code and their corresponding binaries where the function addresses are known. The model
takes the form of a weighted pre�x tree which encodes function start byte sequences: an actual
function start is detected if the corresponding sequence terminal node in the pre�x tree has a
weight value larger than a given threshold. Once a function start is found, further techniques
can be used to extract the full functions from the binary.

Describing the general structure of binaries to enable detailed analysis is a goal explored in
many publications. For example, BAP [19] is a multi-purpose analysis platform to perform
program veri�cation and analysis tasks on binaries. Like many similar solutions, it converts
binary instructions into an intermediate language to enable subsequent analyses to be written

16
UNCLASSIFIED



UNCLASSIFIED

DST-Group�GD�0979

in a syntax-directed form. Tasks made available this way can include creating control �ow
and program dependence graphs, eliminating dead code, performing value set analysis and
generating veri�cation conditions according to given postconditions.

3.2.3. Dynamic analysis

VDiscover [34] is a system that applies a machine learning approach that uses scalable,
lightweight static and dynamic features extracted from a binary to predict if a vulnerabil-
ity test case is likely to contain a software vulnerability. Static features are extracted from
disassembled code by detecting potential sub-sequences of library function calls obtained from
a random walk of the program call graph. Dynamic features are captured from execution
traces containing concrete function calls augmented with their arguments. To reduce the large
number of feature values, argument values are subtyped and are preprocessed by considering
each execution trace of function calls as a document, and using latent semantic analysis for
dimensionality reduction. The machine learning classi�cation algorithms tested in the system
include logistic regression, multilayer perceptrons and random forests. Random forests gave
the best results in a large experiment designed to identify programs with memory corruptions.

3.2.4. Symbolic execution

Symbolic execution explores the execution space of a program and generates test cases with
high coverage. A limitation of the approach is that the number of possible program paths
are often excessively large. Various schemes have been proposed to guide the exploration of
program paths according to some selected strategy to overcome this issue. Li et al. [49] focuses
on less travelled paths by examining the frequency distribution of length-n subpaths in order
to improve test coverage and error detection. The idea is to use statistical analysis of the
already covered subpaths by maintaining a count of the number of times the subpath has been
explored before. Then, for a given execution state, the subpath with the lowest count is chosen
to continue execution. The strategy has been implemented in the symbolic execution engine
KLEE [21] and tested on GNU Coreutils programs. Cadar and Sen [22] provide a overview
of similar proposals and discuss challenges related to symbolic execution. In particular, they
focus on higher levels of automation for tasks such as pruning redundant paths, generating
inputs that results in errors and even the creation of corresponding exploits. Avancini and
Ceccato [10] use genetic algorithms and symbolic execution to generate test cases for the
identi�cation of cross-site scripting (XSS) vulnerabilities in web applications. They combine
the two techniques by �rst executing a genetic algorithm and evolving a population of test
cases for some generations before switching to symbolic execution. Symbolic constraints are
collected, solved and reinserted as new input values and the execution returns to the genetic
algorithm. This process is repeated until some pre-de�ned termination conditions are met.
Test show a higher coverage achieved with this combined technique when contrasted against
random test case generation and both methods used separately.

BitScope [18] is an example platform for the automatic path-based analysis of malicious bi-
naries. Its architecture contains components to monitor the �ow of information in and out
of the malicious binary, to prioritise available paths for exploration and to perform combined
concrete and symbolic (concolic) execution of the binary to build formulas to express the
satis�ability of execution paths. Extractor modules then generate the control-�ow graph of

UNCLASSIFIED
17



DST-Group�GD�0979

UNCLASSIFIED

discovered code, the inputs required by the binary to travel along di�erent execution paths
and dependency information between the inputs and outputs of the binary. This data can
then be used by practitioners to further analyse the program.

Similarity function based automatic vulnerability discovery (SFAVD) [53] is a process that
combines machine learning from source code and testing with symbolic execution in order to
detect vulnerabilities. First, a set of functions similar to a known vulnerable one is generated
using a multi-step process that includes creating an abstract syntax tree representation for
each function, enumerating them into feature vectors and performing a similarity assessment
against the vulnerable function. Then, function calls graphs are generated for the functions
with the largest similarity and KLEE is used with a constraint solver to determine if they are
vulnerable. Tests show that a signi�cant reduction in execution time can be achieved when
compared to analysing the program using just KLEE.

3.2.5. Malware

Although not strictly part of the various activities of software vulnerability research, malware
analysis is one of the related areas where machine learning has received considerable atten-
tion and shown to be helpful. Malware analysis can also assist in developing vulnerability
mitigation strategies and often employs techniques directly relevant to other SVR tasks, ex-
posing opportunities to use the same or similar ML approaches in those areas. The analysis
of malware often starts with the identi�cation of pertinent features. Ahmed et al. [6] extracts
statistical features from spatial and temporal information available from Windows API call
arguments and sequences. They include means, variances and entropies of address pointers
and size parameters and features obtained from discrete time Markov chain modelling of API
sequences. A variety of machine learning algorithms are compared using these features, includ-
ing an instance based learner, a decision tree classi�er, Naïve Bayes, an inductive rule learner
and a support vector machine, and they indicate that improved results can be achieved when
using a combination of spatial and temporal features for classi�cation. OPEM [71] also checks
for malware with a range of algorithms, such as decision trees, Bayesian classi�ers, support
vector machines and k-nearest neighbour, but uses a di�erent set of features. Static features
are based on the frequencies of �xed-length sequences of operational codes found in malware.
Dynamic features are extracted from execution traces as a binary vector representing the pres-
ence of speci�c system calls, operations, and raised exceptions within the executable. Feature
reduction is applied to static features using information gain in order to produce a manageable
feature set. Results show that the combined static and dynamic features produce better results
than when features of only a single type are used. Anderson et al. [9] describe an example
when only features of one type, in this case those from dynamically collected instruction traces
are used. Instruction sequences are transformed into a Markov chain representation, forming
a directed instruction trace graph (ITG), represented by a weighted adjacency matrix. A
two-class support vector machine is used for classi�cation and produces highly accurate re-
sults. Unfortunately, the graph kernels used to determine the similarity between ITGs can be
expensive to compute for large graphs. Gascon et al. [33] also uses an SVM but it derives its
features based on the structural embeddings of function call graphs by employing an explicit
mapping inspired by a linear-time graph kernel, thus producing a static feature set. In tests,
the malware detection rate achieved with this technique is reasonably high, with a low false
positive rate.

18
UNCLASSIFIED



UNCLASSIFIED

DST-Group�GD�0979

Saxe [42] suggests an ensemble of similarity measures to defeat obfuscation in malware to
better identify the class to which they belong. This is an important task as determining the
correct group for a malware sample can assist with attribution and follow-up activities. The
idea is that full obfuscation of the entire malware is di�cult, and therefore using multiple
techniques for analysis should yield reliable results even in cases when an individual similarity
measure is ine�ective. The four measures proposed are based on PE (portable executable)
metadata similarity, dynamic similarity, instruction-gram similarity and �le similarity. This
approach is a simpler and a more scalable solution to the identi�cation of malware groups
than other available techniques such as clustering.

3.2.6. Attribution of binaries

Authorship analysis may also be performed on binaries. Rosenblum et al. [69] collect a corpus
of programs with known authorship and use control �ow graphs and instruction sequences
to extract and determine relevant stylistic features from each program based on the mutual
information between features and labels. These features are tested using a support vector
machine classi�er, and used to learn a metric that minimises the distance in the feature space
between programs by the same author. The metric is then used with k-means clustering to
group programs of unknown authors. The technique achieves reasonable performance (94% of
the time the correct author is ranked within the top �ve), which leads the authors of the paper
to conclude that programmer style can be preserved through the compilation process. Several
improvements on this technique are proposed subsequently. Alrabaee et al. [8] argue that a
more layered approach is necessary. First, a pre-processing layer �lters out library code to
eliminate functions unrelated to style. A code analysis layer then extracts binary code blocks
that correspond to source code vocabularies to build author pro�les for classi�cation. Finally,
a register �ow analysis layer which uses register �ow graphs that characterise how registers
are manipulated, is utilised to de�ne author style signatures and to identify program authors.
Attribution accuracy is shown to have improved over the results achieved in [69]. However,
neither of these approaches are speci�cally designed to handle programs with more than one
author. Meng [54] introduces new block level features to attribute code written by teams.
After analysing the machine instructions generated from attributed source code [55], the basic
block is determined as a suitable candidate to attribute individual authors. Consequently,
several new features are proposed at this level to complement existing ones from previous
e�orts. A linear SVM classi�er on basic blocks achieved comparable results to earlier reports,
suggesting that authorship identi�cation is practical both at the basic block level and for
multiple authors.

4. Summary

In this paper we report on some of the recent activities of the software vulnerability research
community that involve the use of machine learning. Although not furnishing an exhaustive
list, we aim at presenting a representative collection of publications that illustrate the use of ML
in support of SVR. We �nd that apart from new ways of �nding solutions tackling large code
bases, the most proli�c theme in SVR is that of helping practitioners such as code auditors,
by simplifying or automating their processes wherever possible. Machine learning is one of the
tools that is used increasingly to improve on traditional approaches where appropriate. It has

UNCLASSIFIED
19



DST-Group�GD�0979

UNCLASSIFIED

been applied with success to solve individual SVR tasks or through multiple steps to provide
guidance with complex processes. In this role, ML should continue to o�er bene�ts in the
future. There still remain areas within SVR that have seen limited use of ML (for example,
fuzzing [38]), and even those that currently utilise machine learning could be improved as new,
more e�ective and e�cient techniques are proposed. Identifying these trends and recognising
their suitability to speci�c SVR problems is not an easy task, and requires close ties among SVR
practitioners, and program analysis and machine learning experts. In particular, we believe
that using machine learning with semantic input information rather than its application on
syntactic features could produce more meaningful results for many SVR activities. Finally,
we would like to recognise a couple of recent e�orts which aim at creating greater awareness
of and encourage collaboration for the purposes of software vulnerability research. The 2016
Cyber Grand Challenge [2] was a competition between researchers to evaluate software, test for
vulnerabilities and automatically generate and apply security patches on networked computers.
The MUSE project [56] is an ongoing program seeking experts from multiple disciplines to use
big data analytics to improve software reliability by developing approaches for automatically
constructing and repairing software programs.

Acknowledgements

The authors would like to thank Paul Montague and Junae Kim for their comments and
reviews of earlier versions of this manuscript.

5. References

[1] Category:OWASP Top Ten Project. [Online] https://www.owasp.org/, 2016.

[2] Cyber Grand Challenge. http://archive.darpa.mil/cybergrandchallenge/, 2016.

[3] Category:Attack - OWASP. [Online] https://www.owasp.org/, 2017.

[4] CVE - Common Vulnerabilities and Exposures (CVE). [Online] https://cve.mitre.org/,
2017.

[5] R. Agrawal, T. Imieli«ski, and A. Swami. Mining Association Rules Between Sets of Items
in Large Databases. SIGMOD'93, pages 207�216, New York, NY, USA, 1993. ACM.

[6] F. Ahmed, H. Hameed, M. Z. Sha�q, and M. Farooq. Using spatio-temporal information
in api calls with machine learning algorithms for malware detection. In Proceedings of the
2nd ACM Workshop on Security and Arti�cial Intelligence, AISec'09, pages 55�62, New
York, NY, USA, 2009. ACM.

[7] M. Allamanis and C. Sutton. Mining Source Code Repositories at Massive Scale Using
Language Modeling. In Proceedings of the 10th Working Conference on Mining Software
Repositories, MSR'13, pages 207�216, Piscataway, NJ, USA, 2013. IEEE Press.

20
UNCLASSIFIED



UNCLASSIFIED

DST-Group�GD�0979

[8] S. Alrabaee, N. Saleem, S. Preda, L. Wang, and M. Debbabi. OBA2: An Onion approach
to Binary code Authorship Attribution. Digital Investigation, 11, Supplement 1:S94�S103,
May 2014.

[9] B. Anderson, D. Quist, J. Neil, C. Storlie, and T. Lane. Graph-based Malware Detection
Using Dynamic Analysis. Journal in Computer Virology, 7(4):247�258, Nov. 2011.

[10] A. Avancini and M. Ceccato. Comparison and Integration of Genetic Algorithms and
Dynamic Symbolic Execution for Security Testing of Cross-site Scripting Vulnerabilities.
Information and Software Technology, 55(12):2209�2222, Dec. 2013.

[11] T. Avgerinos, S. K. Cha, A. Rebert, E. J. Schwartz, M. Woo, and D. Brumley. Automatic
Exploit Generation. Communications of the ACM, 57(2):74�84, Feb. 2014.

[12] T. Bao, J. Burket, M. Woo, R. Turner, and D. Brumley. BYTEWEIGHT: Learning to
Recognize Functions in Binary Code. In Proceedings of the 23rd USENIX Conference
on Security Symposium, SEC'14, pages 845�860, Berkeley, CA, USA, 2014. USENIX
Association.

[13] D. Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press,
2012.

[14] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York, Oct.
2007.

[15] M. Bozorgi, L. Saul, S. Savage, and G. M. Voelker. Beyond Heuristics: Learning to Classify
Vulnerabilities and Predict Exploits. In Proceedings of the Sixteenth ACM Conference on
Knowledge Discovery and Data Mining, pages 105�113, Washington DC, USA, 2010.
ACM.

[16] M. Brockschmidt, Y. Chen, B. Cook, P. Kohli, S. Krishna, D. Tarlow, and H. Zhu.
Learning to Verify the Heap. Technical Report MSR-TR-2016-17, Microsoft, Seattle,
WA, USA, Apr. 2016.

[17] M. Bruch, M. Monperrus, and M. Mezini. Learning from Examples to Improve Code
Completion Systems. In Proceedings of the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Soft-
ware Engineering, ESEC/FSE'09, pages 213�222, Amsterdam, The Netherlands, 2009.
ACM.

[18] D. Brumley, C. Hartwig, M. G. Kang, Z. Liang, J. Newsome, P. Poosankam, D. Song,
and H. Yin. BitScope: Automatically dissecting malicious binaries. Technical report, In
CMU-CS-07-133, 2007.

[19] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. BAP: A Binary Analysis Platform.
In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided Veri�cation, number 6806
in Lecture Notes in Computer Science, pages 463�469. Springer Berlin Heidelberg, July

UNCLASSIFIED
21



DST-Group�GD�0979

UNCLASSIFIED

2011.

[20] D. Brumley, P. Poosankam, D. Song, and J. Zheng. Automatic Patch-Based Exploit
Generation is Possible: Techniques and Implications. In Proceedings of the 2008 IEEE
Symposium on Security and Privacy, SP'08, pages 143�157, Washington, DC, USA, 2008.
IEEE Computer Society.

[21] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted and Automatic Generation of
High-coverage Tests for Complex Systems Programs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, OSDI'08, pages 209�224,
San Diego, California, USA, 2008. USENIX Association.

[22] C. Cadar and K. Sen. Symbolic Execution for Software Testing: Three Decades Later.
Communications of the ACM, 56(2):82�90, Feb. 2013.

[23] J. Cai, S. Yang, J. Men, and J. He. Automatic software vulnerability detection based on
guided deep fuzzing. In 2014 IEEE 5th International Conference on Software Engineering
and Service Science, pages 231�234, Beijing, China, June 2014. IEEE.

[24] A. Caliskan-Islam, R. Harang, A. Liu, A. Narayanan, C. Voss, F. Yamaguchi, and
R. Greenstadt. De-anonymizing Programmers via Code Stylometry. In Proceedings of
the 24th USENIX Conference on Security Symposium, SEC'15, pages 255�270, Berkeley,
CA, USA, 2015. USENIX Association.

[25] R.-Y. Chang, A. Podgurski, and J. Yang. Discovering Neglected Conditions in Software by
Mining Dependence Graphs. IEEE Transactions on Software Engineering, 34(5):579�596,
Sept. 2008.

[26] C. Cifuentes and B. Scholz. Parfait: Designing a Scalable Bug Checker. In Proceedings
of the 2008 Workshop on Static Analysis, SAW'08, pages 4�11, Tucson, Arizona, USA,
2008. ACM.

[27] J. Cohen. Contemporary Automatic Program Analysis. Black Hat USA 2014, Las Vegas,
Nevada, 2014.

[28] A. Cozzie, F. Stratton, H. Xue, and S. T. King. Digging for Data Structures. In Proceed-
ings of the 8th USENIX Symposium on Operating Systems Design and Implementation,
pages 255�266, San Diego, California, USA, Dec. 2008. USENIX.

[29] H. K. Dam, T. Tran, J. Grundy, and A. Ghose. DeepSoft: A Vision for a Deep Model
of Software. In Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, pages 944�947, New York, NY, USA,
2016. ACM.

[30] M. Dowd, J. McDonald, and J. Schuh. The Art of Software Security Assessment: Identi-
fying and Preventing Software Vulnerabilities. Addison-Wesley Professional, Indianapolis,
Ind., 1 edition, Nov. 2006.

22
UNCLASSIFIED



UNCLASSIFIED

DST-Group�GD�0979

[31] T. Fawcett. An Introduction to ROC Analysis. Pattern Recognition Letters, 27(8):861�
874, June 2006.

[32] J. Feist, L. Mounier, and M.-L. Potet. Statically detecting use after free on binary code.
Journal of Computer Virology and Hacking Techniques, 10(3):211�217, 2014.

[33] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck. Structural Detection of Android Malware
Using Embedded Call Graphs. In Proceedings of the 2013 ACM Workshop on Arti�cial
Intelligence and Security, AISec'13, pages 45�54, New York, NY, USA, 2013. ACM.

[34] G. Grieco, G. L. Grinblat, L. Uzal, S. Rawat, J. Feist, and L. Mounier. Toward Large-
Scale Vulnerability Discovery Using Machine Learning. In Proceedings of the Sixth ACM
Conference on Data and Application Security and Privacy, CODASPY'16, pages 85�96,
New York, NY, USA, 2016. ACM.

[35] N. Gruska, A. Wasylkowski, and A. Zeller. Learning from 6,000 Projects: Lightweight
Cross-project Anomaly Detection. In Proceedings of the 19th International Symposium
on Software Testing and Analysis, ISSTA'10, pages 119�130, New York, NY, USA, 2010.
ACM.

[36] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness of software.
In Proceedings of the 34th International Conference on Software Engineering, pages 837�
847, Zurich, Switzerland, June 2012. IEEE.

[37] J. K. Hollingsworth, B. P. Miller, and J. Cargille. Dynamic program instrumentation
for scalable performance tools. In Proceedings of the 1994 Scalable High Performance
Computing Conference, pages 841�850, Knoxville, Tennessee, USA, May 1994. IEEE.

[38] M. Höschele and A. Zeller. Mining input grammars from dynamic taints. In Proceedings
of the 31st IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, pages 720�725, New York, NY, USA, 2016. ACM.

[39] A. Hovsepyan, R. Scandariato, W. Joosen, and J. Walden. Software Vulnerability Pre-
diction using Text Analysis Techniques. In International Workshop on Security Measure-
ments and Metrics, pages 7�10, Lund, Sweden, Sept. 2012. ACM.

[40] F. Inc. CVSS v3.0 Speci�cation Document. [Online]
https://www.�rst.org/cvss/speci�cation-document, 2017.

[41] M. Jimenez, M. Papadakis, T. F. Bissyandé, and J. Klein. Pro�ling Android Vulnera-
bilities. In Proceedings of the 2016 IEEE International Conference on Software Quality,
Reliability and Security (QRS), pages 222�229, Vienna, Austria, Aug. 2016. IEEE.

[42] Joshua Saxe. A scalable, ensemble approach for building and visualizing deep code-sharing
networks over millions of malicious binaries. Black Hat USA 2014, Las Vegas, Nevada,
2014.

UNCLASSIFIED
23



DST-Group�GD�0979

UNCLASSIFIED

[43] S. Kim, E. J. Whitehead Jr, and Y. Zhang. Classifying Software Changes: Clean or
Buggy? IEEE Transactions on Software Engineering, 34(2):181�196, Mar. 2008.

[44] T. Kremenek, A. Y. Ng, and D. Engler. A Factor Graph Model for Software Bug Find-
ing. In Proceedings of the 20th International Joint Conference on Arti�cal Intelligence,
IJCAI'07, pages 2510�2516, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers
Inc.

[45] P. Kreutzer, G. Dotzler, M. Ring, B. M. Esko�er, and M. Philippsen. Automatic Clus-
tering of Code Changes. In Proceedings of the 13th International Conference on Mining
Software Repositories, MSR'16, pages 61�72, New York, NY, USA, 2016. ACM.

[46] Kymberlee Price and Jake Kouns. Epidemiology of Software Vulnerabilities: A Study of
Attack Surface Spread. Black Hat USA 2014, Las Vegas, Nevada, 2014.

[47] F.-M. Lazar and O. Banias. Clone detection algorithm based on the Abstract Syntax Tree
approach. In 2014 IEEE 9th IEEE International Symposium on Applied Computational
Intelligence and Informatics (SACI), pages 73�78, Timisoara, Romania, May 2014. IEEE.

[48] X.-B. D. Le, T.-D. B. Le, and D. Lo. Should �xing these failures be delegated to automated
program repair? In Proceedings of the 26th IEEE International Symposium on Software
Reliability Engineering, pages 427�437, Washington DC, USA, Nov. 2015. IEEE.

[49] Y. Li, Z. Su, L. Wang, and X. Li. Steering Symbolic Execution to Less Traveled Paths.
In Proceedings of the 2013 ACM SIGPLAN International Conference on Object Oriented
Programming Systems Languages & Applications, OOPSLA'13, pages 19�32, New York,
NY, USA, 2013. ACM.

[50] Z. Li and Y. Zhou. PR-Miner: Automatically Extracting Implicit Programming Rules
and Detecting Violations in Large Software Code. In Proceedings of the 10th European
Software Engineering Conference, ESEC/FSE-13, pages 306�315, Lisbon, Portugal, 2005.
ACM.

[51] F. Long and M. Rinard. Automatic Patch Generation by Learning Correct Code. In
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL'16, pages 298�312, New York, NY, USA, 2016. ACM.

[52] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn. Bug localization using latent Dirichlet
allocation. Information and Software Technology, 52(9):972�990, Sept. 2010.

[53] Q. Meng, S. Wen, B. Zhang, and C. Tang. Automatically discover vulnerability through
similar functions. In Proceedings of the 2016 Progress in Electromagnetic Research Sym-
posium, pages 3657�3661, Shanghai, China, Aug. 2016. IEEE.

[54] X. Meng. Fine-grained Binary Code Authorship Identi�cation. In Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2016, pages 1097�1099, Seattle, WA, USA, 2016. ACM.

24
UNCLASSIFIED



UNCLASSIFIED

DST-Group�GD�0979

[55] X. Meng, B. P. Miller, W. R. Williams, and A. R. Bernat. Mining Software Repositories
for Accurate Authorship. In Proceedings of the 2013 IEEE International Conference on
Software Maintenance, pages 250�259, Eindhoven, The Netherlands, Sept. 2013. IEEE.

[56] S. Neema. Mining and Understanding Software Enclaves (MUSE). [Online]
http://www.darpa.mil/program/mining-and-understanding-software-enclaves, 2017.

[57] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller. Predicting Vulnerable Software
Components. In Proceedings of the 14th ACM Conference on Computer and Communi-
cations Security, CCS'07, pages 529�540, New York, NY, USA, 2007. ACM.

[58] A. T. Nguyen and T. N. Nguyen. Graph-based Statistical Language Model for Code. In
Proceedings of the 37th International Conference on Software Engineering, volume Volume
1 of ICSE'15, pages 858�868, Piscataway, NJ, USA, 2015. IEEE Press.

[59] H. A. Nguyen, R. Dyer, T. N. Nguyen, and H. Rajan. Mining Preconditions of APIs
in Large-scale Code Corpus. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, pages 166�177, New York,
NY, USA, 2014. ACM.

[60] Y. Pang, X. Xue, and A. S. Namin. Predicting Vulnerable Software Components through
N-Gram Analysis and Statistical Feature Selection. In Proceedinggs of the 14th IEEE
International Conference on Machine Learning and Applications, pages 543�548, Miami,
FL, USA, Dec. 2015. IEEE.

[61] H. Peng, L. Mou, G. Li, Y. Liu, L. Zhang, and Z. Jin. Building Program Vector Repre-
sentations for Deep Learning. In S. Zhang, M. Wirsing, and Z. Zhang, editors, Knowledge
Science, Engineering and Management, number 9403 in Lecture Notes in Computer Sci-
ence, pages 547�553. Springer International Publishing, Oct. 2015.

[62] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl, and Y. Acar.
VCCFinder: Finding Potential Vulnerabilities in Open-Source Projects to Assist Code
Audits. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, CCS'15, pages 426�437, New York, NY, USA, 2015. ACM.

[63] J. Pewny, B. Garmany, R. Gawlik, C. Rossow, and T. Holz. Cross-Architecture Bug
Search in Binary Executables. In Proceedings of the 2015 IEEE Symposium on Security
and Privacy, SP'15, pages 709�724, Washington, DC, USA, 2015. IEEE Computer Society.

[64] J. Pewny, F. Schuster, L. Bernhard, T. Holz, and C. Rossow. Leveraging Semantic Sig-
natures for Bug Search in Binary Programs. In Proceedings of the 30th Annual Computer
Security Applications Conference, ACSAC'14, pages 406�415, New York, NY, USA, 2014.
ACM.

[65] V. Raychev, P. Bielik, M. Vechev, and A. Krause. Learning Programs from Noisy Data.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL'16, pages 761�774, New York, NY, USA, 2016. ACM.

UNCLASSIFIED
25



DST-Group�GD�0979

UNCLASSIFIED

[66] V. Raychev, M. Vechev, and E. Yahav. Code Completion with Statistical Language
Models. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI'14, pages 419�428, New York, NY, USA, 2014. ACM.

[67] H. G. Rice. Classes of recursively enumerable sets and their decision problems. Transac-
tions of the American Mathematical Society, 74(2):358�366, 1953.

[68] N. Rosenblum, X. Zhu, B. Miller, and K. Hunt. Learning to Analyze Binary Computer
Code. In Proceedings of the 23rd National Conference on Arti�cial Intelligence - Volume
2, AAAI'08, pages 798�804, Chicago, Illinois, 2008. AAAI Press.

[69] N. Rosenblum, X. Zhu, and B. P. Miller. Who Wrote This Code? Identifying the Authors
of Program Binaries. In Computer Security - ESORICS 2011, pages 172�189. Springer,
Berlin, Heidelberg, Sept. 2011.

[70] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code clone detec-
tion techniques and tools: A qualitative approach. Science of Computer Programming,
74(7):470�495, May 2009.

[71] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. Bringas. OPEM: A Static-Dynamic
Approach for Machine-Learning-Based Malware Detection. In Á. Herrero, V. Sná�sel,
A. Abraham, I. Zelinka, B. Baruque, H. Quintián, J. L. Calvo, J. Sedano, and E. Corchado,
editors, International Joint Conference CISIS'12�ICEUTE'12�SOCO'12 Special Sessions,
number 189 in Advances in Intelligent Systems and Computing, pages 271�280. Springer
Berlin Heidelberg, 2013.

[72] R. Scandariato, J. Walden, A. Hovsepyan, and W. Joosen. Predicting Vulnerable Software
Components via Text Mining. IEEE Transactions on Software Engineering, 40(10):993�
1006, Oct. 2014.

[73] H. Shahriar and M. Zulkernine. Mitigating program security vulnerabilities: Approaches
and challenges. ACM Computing Surveys, 44(3):11:1�11:46, June 2012.

[74] B. Shastry, F. Yamaguchi, K. Rieck, and J.-P. Seifert. Towards Vulnerability Discovery
Using Staged Program Analysis. In J. Caballero, U. Zurutuza, and R. J. Rodríguez,
editors, Detection of Intrusions and Malware, and Vulnerability Assessment, number 9721
in Lecture Notes in Computer Science, pages 78�97. Springer International Publishing,
July 2016.

[75] S. Sidiroglou-Douskos, E. Lahtinen, F. Long, and M. Rinard. Automatic Error Elimi-
nation by Horizontal Code Transfer Across Multiple Applications. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI'15, pages 43�54, New York, NY, USA, 2015. ACM.

[76] D. Steidl and N. Göde. Feature-based Detection of Bugs in Clones. In Proceedings of the
7th International Workshop on Software Clones, IWSC'13, pages 76�82, Piscataway, NJ,
USA, 2013. IEEE Press.

26
UNCLASSIFIED



UNCLASSIFIED

DST-Group�GD�0979

[77] L. Tan, X. Zhang, X. Ma, W. Xiong, and Y. Zhou. AutoISES: Automatically Inferring
Security Speci�cations and Detecting Violations. In Proceedings of the 17th Conference
on Security Symposium, SS'08, pages 379�394, Berkeley, CA, USA, 2008. USENIX Asso-
ciation.

[78] Y. Tang, F. Zhao, Y. Yang, H. Lu, Y. Zhou, and B. Xu. Predicting Vulnerable Com-
ponents via Text Mining or Software Metrics? An E�ort-Aware Perspective. In 2015
IEEE International Conference on Software Quality, Reliability and Security, pages 27�
36, Washington, DC, USA, Aug. 2015. IEEE.

[79] S. Thummalapenta and T. Xie. Alattin: Mining Alternative Patterns for Detecting Ne-
glected Conditions. In Proceedings of the 2009 IEEE/ACM International Conference on
Automated Software Engineering, pages 283�294, Auckland, New Zealand, Nov. 2009.
IEEE.

[80] Tyler Bletsch. Code-Reuse Attacks: New Frontiers and Defenses. Ph.D., North Carolina
State University, Raleigh, North Carolina, 2011.

[81] Y. Udagawa. Source Code Retrieval Using Sequence Based Similarity. International
Journal of Data Mining & Knowledge Management Process, 3(4):57�74, July 2013.

[82] J. Vanegue, S. Heelan, and R. Rolles. SMT Solvers for Software Security. In Proceedings of
the 6th USENIX Conference on O�ensive Technologies, WOOT'12, pages 9�9, Berkeley,
CA, USA, 2012. USENIX Association.

[83] J. Wang, Y. Dang, H. Zhang, K. Chen, T. Xie, and D. Zhang. Mining Succinct and
High-coverage API Usage Patterns from Source Code. In Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR'13, pages 319�328, Piscataway, NJ,
USA, 2013. IEEE Press.

[84] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest. Automatically Finding Patches
Using Genetic Programming. In Proceedings of the 31st International Conference on
Software Engineering, ICSE'09, pages 364�374, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[85] D. H. White and G. Lüttgen. Identifying Dynamic Data Structures by Learning Evolving
Patterns in Memory. In Proceedings of the 19th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS'13, pages 354�369,
Rome, Italy, 2013. Springer-Verlag.

[86] D. Wijayasekara, M. Manic, J. L. Wright, and M. McQueen. Mining Bug Databases
for Unidenti�ed Software Vulnerabilities. In Proceedings of the 2012 5th International
Conference on Human System Interactions, HSI'12, pages 89�96, Washington, DC, USA,
2012. IEEE Computer Society.

[87] J. Wilander and M. Kamkar. A Comparison of Publicly Available Tools for Static Intrusion
Prevention. In Proceedings of the 7th Nordic Workshop on Secure IT Systems, pages 68�

UNCLASSIFIED
27



DST-Group�GD�0979

UNCLASSIFIED

84, Karlstad, Sweden, Nov. 2002.

[88] C. Williams and J. Spacco. SZZ Revisited: Verifying when Changes Induce Fixes. In
Proceedings of the 2008 Workshop on Defects in Large Software Systems, DEFECTS'08,
pages 32�36, New York, NY, USA, 2008. ACM.

[89] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck. Modeling and discovering vulnerabilities
with code property graphs. In 2014 IEEE Symposium on Security and Privacy, pages
590�604. IEEE, 2014.

[90] F. Yamaguchi, M. Lottmann, and K. Rieck. Generalized Vulnerability Extrapolation
Using Abstract Syntax Trees. In Proceedings of the 28th Annual Computer Security
Applications Conference, ACSAC'12, pages 359�368, New York, NY, USA, 2012. ACM.

[91] F. Yamaguchi, A. Maier, H. Gascon, and K. Rieck. Automatic Inference of Search Patterns
for Taint-Style Vulnerabilities. In 2015 IEEE Symposium on Security and Privacy, pages
797�812, San Jose, CA, USA, May 2015. IEEE.

[92] F. Yamaguchi, C. Wressnegger, H. Gascon, and K. Rieck. Chucky: exposing missing
checks in source code for vulnerability discovery. In Proceedings of the ACM Conference
on Computer and Communications Security, pages 499�510, Berlin, 2013. ACM Press.

[93] M. Zhao, A. Laszka, T. Maillard, and J. Grossklags. Crowdsourced Security Vulnerability
Discovery: Modeling and Organizing Bug-Bounty Programs. Austin, TX, USA, Nov.
2016. AAAI Press.

28
UNCLASSIFIED



UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY GROUP

DOCUMENT CONTROL DATA

1. DLM/CAVEAT (OF DOCUMENT)

2. TITLE

A Review of Machine Learning in Software Vulnerability Research

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED LIMITED

RELEASE USE (L) NEXT TO DOCUMENT CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

4. AUTHORS

Tamas Abraham and Olivier de Vel

5. CORPORATE AUTHOR

Defence Science and Technology Group
PO Box 1500
Edinburgh, South Australia 5111, Australia

6a. DST GROUP NUMBER

DST-Group�GD�0979

6b. AR NUMBER

AR-017-005

6c. TYPE OF REPORT

General Document

7. DOCUMENT DATE

October, 2017

8. OBJECTIVE ID 9. TASK NUMBER 10. TASK SPONSOR

11. MSTC

Cyber Assurance and Operations

12. STC

Cyber Defence Analytics

13. DOWNGRADING/DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY

Chief, Cyber and Electronic Warfare Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEASENQUIRIESOUTSIDESTATEDLIMITATIONSSHOULDBEREFERREDTHROUGHDOCUMENTEXCHANGE,POBOX1500,EDINBURGH,SA5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. RESEARCH LIBRARY THESAURUS

software vulnerability research, machine learning, source code analysis, binary code analysis, computer security, software security,
program analysis

19. ABSTRACT

Searching for and identifying vulnerabilities in computer software has a long and rich history, be that for preventative or malicious
purposes. In this paper, we investigate the use of Machine Learning (ML) techniques in Software Vulnerability Research (SVR),
discussing previous and current e�orts to illustrate how ML is utilised by academia and industry in this area. We �nd that the primary
focus is not only on discovering new approaches, but on helping SVR practitioners by simplifying and automating their processes.
Considering the variety of applications already in evidence, we believe ML will continue to provide assistance to SVR in the future as
new areas of use are explored and improved algorithms to enhance existing functionality become available.

UNCLASSIFIED


	Front Matter
	Title
	Imprint
	Executive Summary
	Contents
	Figure

	Body
	1 Introduction
	2 Background
	2.1 Software Vulnerability Research
	2.2 Machine learning

	3 Learning in Software Vulnerability Research
	3.1 Source code analysis
	3.1.1 Coding practices
	3.1.2 Clone detection
	3.1.3 Error detection
	3.1.4 Bug fixes and patching
	3.1.5 Mitigation and prevention
	3.1.6 Attribution

	3.2 Binary code analysis
	3.2.1 Data structures
	3.2.2 Program structures
	3.2.3 Dynamic analysis
	3.2.4 Symbolic execution
	3.2.5 Malware
	3.2.6 Attribution of binaries


	4 Summary
	5 References

	Back Matter
	Document Control Data




