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ABSTRACT
This report is the result of a scoping study undertaken as part of anAustralian Defence Department Next
Generation Technologies Fund (NGTF) project entitledDeep Learning for Cyber-Security (DLC). The
report provides a motivation for the study of software vulnerability discovery, briefly reviewing existing
techniques for both source and binary code, with an emphasis on machine learning approaches. Noting
the spectacular successes in recent years of Deep Learning (DL) techniques in areas such as image
recognition, it is proposed to investigate the application of DL techniques to the software vulnerability
discovery problem, with a focus on binary code analysis as most relevant to Defence. As part of this
effort, consideration is given to the acquisition and generation of suitable training and testing datasets.
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Executive Summary

The rapid evolution and growth in scale and complexity of malicious cyber capabilities presents an ever
increasing challenge for cyber-security. Rather than react/respond to discovered attacks, a proactive
approach is to concentrate on preventative measures through the discovery of software vulnerabilities,
particularly in mission-critical applications and systems. Discovered vulnerabilities may be mitigated
before they can be actively exploited.

There has been somework in recent years on investigating the use of machine learning (ML) techniques
in order to assist software vulnerability discovery. Motivated by the spectacular success of deep learning
(DL) approaches in fields such as computer vision and natural language processing, we propose to study
the application of DL techniques to software vulnerability discovery. DL approaches have the ability
to learn feature representations and complex non-linear structures in datasets exhibiting hierarchies of
patterns at fine to coarse scales, and there is every reason to suspect that they may continue to enjoy
similar success in the software vulnerability discovery domain. Primary focus will be on the analysis
of binary code vulnerabilities as this is of most relevance to Defence, though source code approaches
will also be considered.

This report is a scoping study undertaken in the context of an Australian Department of Defence (DoD)
Next Generation Technologies Fund (NGTF) project entitledDeep Learning for Cyber-Security (DLC)∗.
The project will investigate concepts, techniques and technologies relating to the application of deep
learning algorithms to the discovery of software vulnerabilities. An initial focus will be on generation
of suitable datasets of known vulnerabilities for training and testing of the techniques under study.

The NGTF DLC project scoping study sought to to:

1. Ground the research programme design in the existing DL and cyber-security literature, so that
future work builds on a firm foundation of existing knowledge

2. Develop appropriate datasets of known vulnerable code for both training and testing of DL
techniques

3. Develop deep learning based vulnerability discovery techniques and technology solutions

4. Detail a plan of work packages, to ensure appropriate long-term project outcomes

In particular, the DLC project seeks to deliver:

• Ground truth datasets consisting of labelled source/binary codebases

• New DL methods for binary and source code based vulnerability discovery

∗The DLC project is supported by the Australian DoD NGTF and contribution of personnel from CEWD-DST Group
and Data61.
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• Prototypes of DL based software vulnerability discovery tools

The DLC research team consists of members from CEWD-DST Group, Data61, the University of
Melbourne, Deakin University and Swinburne University.
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1. Introduction
Computer software is a crucial part of the modern world. In a routine day, users depend on myriad
software components running on different platforms and ranging from simple applications on hand-held
devices, to complicated enterprise software, to critical embedded systems. Coupled with software’s
ubiquity, security vulnerabilities remain rife, and so vulnerability discovery is a critical concern.
Following [14], we define a software vulnerability as follows:

In the context of software security, vulnerabilities are specific flaws or oversights in a
piece of software that allow attackers to do something malicious: expose or alter sensitive
information, disrupt or destroy a system, or take control of a computer system or program.

The impact of software vulnerabilities has increased each year. Numerous examples and incidents exist
in the past two decades in which software vulnerabilities have caused significant damage to companies
and individuals [20]. Examples include vulnerabilities in popular browser plugins that have threatened
the security and privacy of millions of internet users (e.g., Adobe Flash Player (US-CERT 2015;
Adobe Security Bulletin 2015) and Oracle Java (US-CERT 2013)), as well as vulnerabilities in popular
and fundamental open-source software that have threatened the security of thousands of companies
and their customers around the globe (e.g., Heartbleed (Codenomicon 2014), ShellShock (Symantec
Security Response 2014), and Apache Commons (Breen 2015)). At the same time, the number of
software vulnerabilities has also increased (see Table 1 and Figure 1).

We seek to investigate the application of advanced methods in machine learning (ML) to accurately
and efficiently detect vulnerabilities in large code bases.

The rapid rise of deep learning is in part due to its ability to learn feature representations and complex
non-linear structure in datasets. Deep learning has achieved particular successes in data domains such
as vision, speech and natural language, which each exhibit hierarchies of patterns at fine to coarse
scales. Cyber-security would appear to be amenable to a similar approach, owing to its complex,
hierarchical, non-linear detection tasks. We propose that deep learning techniques can be used to
model the structural and semantic features related to the presence of vulnerabilities. Applying deep
learning for software vulnerability discovery may therefore address the following challenges related to
Vulnerability Analysis:

• Efficiency: To accurately detect and locate vulnerabilities in code is expensive, tedious and
time-consuming. With software having increasingly advanced functions, the number of lines of
code contained in software has grown dramatically.

• Effectiveness: To specifically identify security vulnerabilities in software is very difficult. It
requires a professional (e.g., code auditor) to have not only a deep understanding of the code,
but also be equipped with security-related skills. Consequently, there are often security vulner-
abilities reported after the software has been in operation for several years.

Despite valuable advances made in recent years, application of ML for cyber-security is still at an
early stage. Obstacles that are particularly problematic for applying ML to cyber-security are the large,
complex and mixed datasets. In this project, we will address some key challenges by means of suitable
innovations:

UNCLASSIFIED
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• To date, the vast majority of vulnerability discovery is based on manual code analysis by security
experts. In this proposal, we focus on combining code analysis and machine learning tech-
niques to facilitate intelligent vulnerability discovery. We will investigate new feature learning
techniques, which can be applied to transferring or converting known code vulnerabilities to
indicators.

• Original high-level source code may be unavailable. Source code could be lost, or inconvenient
to use. Thus, it is critical to conduct the research using binary code as the data source. Inspired
by the good performance of deep neural networks in various domains, we plan to employ deep
neural networks to assist binary code analysis. To boost the research of deep learning for
vulnerability discovery, we will establish our own ground-truth datasets using open-source code
repositories and the Common Vulnerabilities and Exposures (CVE) system.

Table 1: The statistics of vulnerabilities by types [Source: http://www.cvedetails.com/vulnerabilities-
by-types.php] .
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1999 616 177 112 172 2 7 25 16 103 2
2000 903 257 208 206 2 4 20 48 19 139
2001 1610 403 403 297 7 34 123 83 36 220 2 2
2002 2249 498 553 435 2 41 200 103 127 74 199 2 14 1
2003 1766 381 477 371 2 49 129 60 1 62 69 144 16 5
2004 2591 580 614 410 3 148 291 110 12 145 96 134 5 38 5
2005 5647 838 1627 657 21 604 786 202 15 289 261 221 11 100 15
2006 8584 893 2719 663 91 967 1302 322 8 267 271 184 18 849 30
2007 8338 1101 2601 953 95 706 884 339 14 267 323 242 69 700 44
2008 7382 894 2310 699 128 1101 807 363 7 288 270 188 83 170 74
2009 8103 1035 2185 700 188 963 851 322 9 337 302 223 115 138 735
2010 7652 1102 1714 680 342 520 605 275 8 234 282 238 86 73 1493
2011 5996 1221 1334 770 351 294 467 108 7 197 409 206 58 17 557
2012 7068 1425 1458 843 423 242 758 122 13 343 389 250 166 14 615
2013 6254 1454 1186 859 366 156 650 110 7 352 511 274 123 1 205
2014 9535 1598 1574 850 420 305 1105 204 12 457 2104 239 264 2 401
2015 8671 1792 1825 1079 749 217 776 149 12 577 748 367 248 5 127
2016 8256 2029 1494 1326 717 94 497 99 15 446 843 601 87 7 1
2017 14602 3073 2900 2688 721 464 1444 265 10 612 1640 454 309 18 4
Total 115823 20751 27295 14658 4619 6881 11592 3303 150 5156 8663 4626 1644 2164 4321

% Of All 17.9 23.6 12.7 4.0 5.9 10.0 2.9 0.1 4.4 7.5 4.0 1.4 1.9 3.7

2. Literature Review
2.1. Binary code based methods
Given that many software projects are closed-source, binary code based vulnerability discovery is very
important. In addition, compilation and optimisation may alter the structure of the compiled program
(e.g. by reordering independent operations, eliminating dead code, or by taking advantage of undefined
behaviour in the source program) creating amismatch between the source code and the compiled binary
code [5]. Such optimisations can even introduce additional security vulnerabilities. As a canonical
example the act of zeroing a no-longer-used buffer which contained sensitive information, to prevent
it being read by attackers, may be optimised away by certain compilers [15]. In this respect, purely

2
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Figure 1: Vulnerabilities by type [Source: http://www.cvedetails.com/vulnerabilities-by-types.php].

performing analysis on the source code level may fail to detect certain vulnerabilities [18]. This section
briefly reviews some recent work on binary code based methods for software vulnerability discovery.

2.1.1. Binary related analysis with ML
Among existing methods for binary analysis, machine learning-based methods are beginning to play
an important role.

Abraham and de Vel [1] survey recent work applying machine learning for software vulnerability
discovery. This survey reviewed the related works from several perspectives including data struc-
tures [12, 58], program structures [7], dynamic analysis [23], symbolic execution [10, 3, 32] as well as
applications such as malware detection [46, 19]. Another similar survey was published concurrently
in [20]. In the following, we review the research reported since [1] was published.

Morrison et al. [36] highlighted that the Windows security development team usually raises concerns
about the usefulness of vulnerability prediction models. Morrison et al. examined whether the
vulnerability predictionmodels are accurate and actionable enough to provide helpful recommendations
when allocating engineering resources. The authors replicated the vulnerability prediction model of
Zimmermann et al. [63] for two releases of theWindows operating system. They conducted experiments
using several traditional machine learning algorithms such as Logistic Regression (LR), Naive Bayes
(NB), Recursive Partitioning (RP), Support Vector Machine (SVM), Tree Bagging (TB) and Random
Forest (RF). The experimental results demonstrate that the recall and precision performance measures
of the binary-level prediction outperform the file-level prediction performance measure. However, the
binaries are usually too large to be used for practical inspection. The file level prediction performance

UNCLASSIFIED
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measure is preferred by security experts such as code auditors because they can check source code
easily. In this respect, the authors concluded that "Vulnerability Prediction Models must be refined to
achieve actionable performance possibly through security-specific metrics".

Shar and Tan [49] argued that SQL injection (SQLI) and cross site scripting (XSS) are two common
and critical web application vulnerabilities. However, existing prediction models usually focus on
general vulnerabilities, and operate at the granularity of software components or files. Some methods
also involve process attributes that are often difficult to measure. To address these problems, the
authors propose a set of statistical code attributes as an alternative solution to existing taint analysers.
Experiments using C4.5, NB and MLP were conducted to evaluate the proposed method.

Yamaguchi et al. [61] described that many approaches of software vulnerability discovery try to
construct a large database of vulnerability patterns, which can subsequently be used to search vulnerable
code easily. However, the construction of effective search patterns for known vulnerabilities requires a
security expert to invest a considerable amount of manual work. It requires the expert to identify related
input sources, data flows and corresponding sanitization checks, which usually involves a profound
understanding of project-specific functions and interfaces. To address this issue, Yamaguchi et al.
developed a scheme that can automatically infer search patterns for taint-style vulnerabilities from
C source code. For a sensitive sink, such as a memory or network function, the proposed method
combines static program analysis and unsupervised learning techniques to automatically identify
corresponding source-sink data flows in a code base and infer sanitisation patterns from which search
patterns can be generated to detect potential taint-style vulnerabilities (in which the sanitisation is
absent). Experiments have been conducted showing that the method reduces the amount of code to
audit by 94.9% on average.

Alves et al. [2] have evaluated several state of the art vulnerability prediction techniques using a
large and representative data set. The data set is composed of 2186 vulnerabilities from five widely-
used open source projects. Experiments have been conducted using both decision trees and logistic
regression. The experimental results vary quite significantly. The precision values ranged from 0.32%
to 30.05%, while recall values ranged from 0.36% to 100%. The random forest algorithm achieved
very good results in terms of any performance metric.

Eschweiler et al. [18] emphasised the importance of security-critical vulnerability detection in binary
code. They presented a new approach to efficiently search for similar functions in binary code. The
main idea of their work is to compute the similarity between functions based on the structure of
the corresponding control flow graphs. They proposed a set of code features including structural
features and numeric features, which do not vary a lot across different compilers, optimization options,
operating systems, and CPU architectures. Experimental results showed that structural information
is sufficiently robust for identifying function similarity. However, the method is computationally
expensive and impractical. To overcome this issue, numeric features have been used to represent
the meta information about the function. These numeric features are then embedded in a vector
space, where machine learning techniques can be applied to quickly identify a set of features for
checking structural similarity. The proposed strategy has been implemented in a tool called discoRE.
Experiments have been conducted on real-world firmware images with up to 3 million basic blocks
for performance evaluation. The results showed that discoRE was able to outperform state-of the-art
semantic approaches w.r.t. speed while still maintaining the same predictive quality (93.93%). It could
also could correctly identify buggy functions from ARM, MIPS and x86 architectures (i.e., for three

4
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firmware images) in about 80 ms.

2.1.2. Deep learning for binary code analysis
We report on the existing work where deep learning has been used to recognize software vulnerabilities
in binary code. In this subsection, we also include some of the published works on the application of
deep learning to malware detection. These are relevant to this project from a technical point of view.

Grieco et al. [23] developed a machine learning-based approach that uses lightweight static and
dynamic features for memory corruption vulnerability analysis over binary code. Both static and
dynamic features are extracted from binary programs. The static features extracted are the sequences
of calls to the standard C library functions in the program. The dynamic features are obtained by
analysing program execution traces that contain concrete function calls and arguments. The authors’
approach treats each call trace as a text document. Two text-mining techniques using N-grams and
word2vec, are employed for data vectorisation. Random oversampling is used to address the class
imbalance problem and the dropout training technique is applied to avoid overfitting. The results of
this work show that machine learning techniques have potential to significantly increase the number of
vulnerabilities found at the operating system scale.

Saxe and Berlin [47] argued that machine learning holds the promise of automating the work required
for malware detection. It could potentially learn generalisations about malware and benign software
(non-malware). However, existing machine learning-based malware detection methods cannot achieve
the low false positive rates and high scalability required to deliver deployable detectors. Saxe and
Berlin developed a deployable deep neural network-based malware detector using static features. The
method proposes four kinds of features including contextual byte features, portable executable (PE)
import features, string 2-D histogram features as well as PE metadata features. It uses a classification
model based on deep neural networks and a score calibration model. The deep learning-based malware
detection method achieved a detection rate of 95% and a false positive rate of 0.1% in the experiments
that were conducted on a dataset of more than 400,000 software binaries.

Raff et al. [43] proposed a static analysis approach for malware detection based on raw byte sequences.
They investigated the raw bytes of the file itself and built a neural network to determine maliciousness.
A convolutional network architecture was employed to capture more sophisticated spatial correlation in
the code file. There were three special considerations: 1) the ability to scale with the sequence length,
2) the ability to consider both the local and global contexts while examining an entire file, as well as
3) an explanatory ability to aid analysis of flagged malware. The network architecture was able to
successfully process a raw byte sequence of over two million steps. One of the primary limitations was
the GPU memory consumption in the first convolutional layer. It required aggressive pooling of data
between layers when attempting to build deep architectures with such long sequences. This resulted
in lopsided memory use, and made model parallelism in computational frameworks like TensorFlow
difficult to achieve.

2.2. Source code based methods
Traditional source code analysis techniques can be categorised into three classes: static analysis
techniques that do not execute the program being analysed; in contrast to dynamic techniques that do,
while hybrid techniques that combine both static and dynamic analysis. In this section, we review
ML-based vulnerability detection at the source code level. Some basic knowledge of source code
analysis is also provided for completeness. For further details we refer the reader to [20, 1].
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2.2.1. ML-based source code analysis
Software vulnerability detection in source code is difficult since vulnerabilities are rare compared to
other types of software defects. For instance, the famous Heartbleed vulnerability was caused by two
missing lines of code. In order to find software vulnerabilities, many static analysis and dynamic
analysis tools have been developed.

Recently, machine learning techniques have been introduced to build up software vulnerability dis-
covery models. Statistical features of software code [51] such as software metrics (e.g., size of
code, number of dependencies, cyclomatic complexity), code churn metrics (the number of code lines
changed) as well as developer activity statistics are used as the input for ML-based software vulnerabil-
ity detection. However, these features do not have good discriminative capability in terms of semantics.
For example, two pieces of code may have the same complexity metrics, but they behave differently.
Another disadvantage is that the statistical features are created by knowledgeable domain experts,
which may carry outdated experience and underlying biases. In addition, some handcrafted features
may not generalise well, which means features that perform well in one project may not perform well
in other projects [62].

To overcome these problems, some researchers treat software code as a form of text and leverage
natural language processing (NLP) techniques to extract features automatically. Scandariato et al [48]
used the bag-of-words (BoW) representation, in which the software source component is seen as a
series of terms with associated frequencies. Their research showed that it is possible to build a good
quality classifier that can predict whether a file is vulnerable using term frequencies.

Hoa et al. [13] argued that there are two weaknesses to the bag-of-words (BoW) method. One
weakeness is that the BoW method ignores the semantics of code tokens. For example, it fails to
recognise the semantic relation between ‘for’ and ‘while’. The other weakeness is that the BoWmethod
cannot capture ordering information between source code tokens, and so misses much meaningful
information. Hoa et al. developed a novel deep learning-based approach that can automatically learn
features for predicting vulnerabilities in source code. In their approach, an LSTM was employed to
capture the long context relationships in source code where dependent code elements are scattered far
apart. The results of within-project and cross-project prediction demonstrated that the automatically-
learned features can significantly improve the classification performance compared to the traditional
methods using software metrics.

2.2.2. Traditional source code analysis
Traditional static analysis techniques usually operate over the program’s source code to uncover faults
and vulnerabilities, and include methods such as the following.

1. Rule-based Analysis: This technique detects faults and vulnerabilities as violations of program-
ming rules and patterns (e.g. attempts to free the same dynamically allocated block of memory
more than once, which can lead to double-free type vulnerabilities).

2. Symbolic Execution: Although rule-based analysis can discover general faults, it fails to detect
sophisticated bugs and is subject to reporting false positives. The symbolic execution technique
can unveil deep bugs by exploring all possible execution paths of a program using symbolic
inputs, while being able to generate candidate inputs to trigger found faults. Therefore, symbolic
execution can generate test suites with high coverage [9, 45]. Modern symbolic execution tools
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like KLEE operate over an intermediate program representation, a code format that resides in
between source code and its compiled binary, and thus provides a trade-off between the benefits
and drawbacks of both source and binary analysis techniques.

Dynamic analysis techniques identify faults and vulnerabilities that manifest themselves at run time.

1. Taint Analysis: Taint analysis (a.k.a. taint tracking) monitors the information flow during
the execution of a program, to detect, for example, when attacker-supplied data can influence
sensitive operations or when confidential data is revealed to an attacker. It can also be used
for analysing commodity and legacy programs [37, 38]. Taint analysis has been applied to
vulnerability discovery, and is capable of spotting errors in the code such as buffer overruns and
format string vulnerabilities [38]. It has been particularly effective at finding vulnerabilities due
to improper validation of untrusted data [26] in which, when the necessary validation is absent,
a possible vulnerability is detected [60].

2. Fuzz Testing: Fuzz testing, or simply ’fuzzing’, is a simple yet effective testing method for
vulnerability discovery [54]. Fuzzing is also frequently leveraged by attackers for the same
purpose [39]. Fuzzing focuses on intentionally sending malformed data to the examined pro-
gram. Once an exception or error condition is triggered (usually causing the program to crash),
the corresponding input will be recorded and the resulting error can be manually analysed to
determine whether it represents a vulnerability or not.

Combining static and dynamic analysis techniques for fault and vulnerability discovery is an active
research area. The combination approach can achieve better detection performance at the expense of
longer computation times and larger resource requirements[17].

2.3. Lessons learned
Binary code based analysis is as important as source code based analysis for software vulnerability
discovery.

Recent research shows that simply combining static and dynamic features for software vulnerability
discovery could result in poor results [23]. One possible reason is that the training process is affected
by the static features. The static features are not as diverse compared with dynamic ones even though
they are shared by all the traces of the same program.

The application of deep-learning (DL) techniques to create powerful cross-project software vulnerab-
ility discovery models is a promising idea [20]. As far as we know, relatively little work has been
done applying deep learning techniques to discover security-critical vulnerabilities at the binary code
level. Peng et al. presented a pioneering work using DL for program classification [42], which could
potentially be useful for this project. They proposed a deep learning approach to generate a graph-based
embedding space for recognising similar binary code functions. We expect that their embedding tech-
nique can be extended to vulnerability discovery for software binaries. Recognising function similarity
might also be extended to perform vulnerability discovery within specific vulnerability classes. Other
recent work embodies similar ideas [59].

There are some other interesting works related to this project. For example, the idea of DL-based
function recognition in binary code [23] [50] could be incorporated into our future research of vul-
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nerable function discovery. The idea of deep learning over raw byte sequences for malware detection
[43] can be borrowed and extended to recognise vulnerable byte sequences. Later, we will describe a
new idea for software vulnerability discovery, which combines embedding and 2D CNNs to process
raw byte sequences. How to combine feature engineering and deep representation learning is another
interesting direction for software vulnerability discovery. Some new features reported in the literature
[47], such as byte/entropy histogram features, PE import features, and PE metadata features, can be
embedded into neural networks to support better learning.

Lastly, an important fact is that the number of vulnerable functions is likely to be much smaller than the
number of non-vulnerable functions in real-world software. We can develop new methods to address
this vulnerability imbalance problem based on the existing research on data redistribution [43]. For
example, we can employ fuzzy-based information decomposition to re-balance the training data by
generating synthetic minority samples [31].

3. Expected Deliverables
TheDeep Learning for Cyber Projectwill produce the following key deliverables. The detailed project
plan is presented in Section 6.

• Deliverable 1 (Ground-Truth datasets): The generation of labelled binary code and source
code datasets. These datasets will be used as inputs for developing methods for vulnerability
discovery, function identification, and neural alignment (e.g., learning to align binary instructions
with the source code from which they were generated).

• Deliverable 2 (Theory and DL methods): The creation of new theory and deep learning
methods for binary and source code-based vulnerability discovery; new methods of multiple
source analysis; new methods of neural alignment and program embedding.

• Deliverable 3 (Tools andprototypes): The development of newdeep learning tools and software
vulnerability discovery prototypes.

• Deliverable 4 (Publications and reports): Production of high-quality international confer-
ences/journals publications coauthored with team members from DST Group and Data61; Tech-
nical reports and presentations to communicate project progress.

4. Research and Development of Ground-Truth
One crucial goal of this project is to create labeled source code and binary code datasets for software
vulnerability research. We plan to label source code and binary code at the function level. The idea is
to collect open source code samples and use the CVE framework for labelling software vulnerability
information. In addition, we can benefit from the existing datasets and code generation techniques to
augment the quantity and quality of the labelled code data. We note that interprocedural cases where
vulnerabilities span across function boundaries are regarded as out of scope for our approaches.

4.1. Collecting existing datasets
We summarise the existing datasets that could be used for our project in Table 2. It is worth noting
that all of the listed datasets are in source code form, from which corresponding binary datasets can
be generated.

8
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4.2. Labelling real-world binary code
It is of utmost importance to construct labeled binary code datasets. In these datasets, we need to
annotate sequences of bytes or machine instructions in functions (namely, specify the function to which
a byte or machine instruction belongs) and simultaneously label software vulnerabilities associated
with these sequences. We note that the first type of label (i.e., scope accompanied with sequences of
bytes or machine instructions of a function) is used in the function identification task (See Sections
5.1.1 and 5.1.2). Our key idea is to compile source codes in debug mode and then utilize the resulting
debugging information for identifying function scopes.

When compiling source code to binary in debug mode, the compiler generates additional debug
information (e.g. a .pdb file in Microsoft Windows) that contains information relating the generated
binary back to the original source files that were compiled. This information can be used to identify
function scopes in the binary code. For example, using Microsoft’s Debug Interface Access SDK1,
we can read out the debug information as shown in Figure 2. The advantage of this approach is that
the debugging information is almost guaranteed to be accurate because it is produced directly by the
compiler.

Figure 2: The information extracted from the debug file using Microsoft’s Debug Interface Access
SDK.

Inline functions may cause some difficulties; however those difficulties are likely to arise with any
technique.

1https://msdn.microsoft.com/en-us/library/t6tay6cz.aspx.
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Figure 3: An example of code augmentation. The original code is vulnerable to the CWE-839:
Numeric Range Comparison Without Minimum Check. The sample code only checks if the
given array index is less than the maximum length of the array, but it does not verify the
minimum value (CWE-839). This will allow a negative value to be accepted as the input
array index. This will result in an out-of-bounds read (CWE-125) and offer attackers a way
of accessing sensitive memory.

Debug information from formats like DWARF (used in ELF executables) is also rich enough to allow
labelling at finer granularity than entire functions, since it allows identifying the binary instructions to
which each source line corresponds. By taking advantage of existing APIs for interpreting the debug
information, we may also be able to reduce the amount of human effort in the labelling process by
automatically translating labelled source datasets to labelled binary datasets.

4.3. Dataset augmentation
It is well known that deep learning methods require a large amount of data instances to work efficiently.
To increase the quantity and quality of training sample code, in this specific context, we borrow the
idea of data augmentation from the area of pattern classification. For example, in the topic of image
classification, the images are transformed (e.g., rotated, shifted, or their contrast modified) to create
additional training data before feeding them to a deep neural network. In the context of software
vulnerability discovery, we can undertake data augmentation by compiling source code with a variety
of combinations of target platform, hardware architecture, and code optimization. Another option
would be to apply semantic-preserving transformations to the source code before compilation. Such
transformations have been well studied in the context of metamorphic compiler testing [55], from
which we can draw.

Another possible way of code augmentation is to combine the source code of many programs randomly
or genetically. Suppose the involved source code programs use the same compilation process – we
can then compile the combined source code to binary code. This could make DL classifiers perform
better when tackling divergent vulnerable code patterns. Figure 3 shows a typical example of code
augmentation.

Note that combining code samples has to be done carefully to ensure that the labelling information is
preserved since, for instance, themerging of two code samples could introduce a new code vulnerability,
or might mask existing vulnerabilities.

4.4. Ground-truth related work package

10
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Figure 4: The tasks and sub-tasks in the ground-truth related work package, WP1.

To generate our own ground-truth datasets for software vulnerability discovery we plan to operate
as follows. Firstly, we will automatically crawl the GitHub and open source repositories to obtain
the source code samples. These source code samples will be labelled with the assistance of CVE
security reports. Secondly, we will use code augmentation techniques to enrich the set of labelled
source code samples via, for exampe, semantic-preserving source code transformations. Thirdly, the
labelled source code will be compiled to binary code and further augmented by applying different
sets of compiler flags and compiler versions and so on. Finally, we will apply the ideas of using
debug mode for transferring the source code labels to the resulting binary code samples. The Software
Defect Description Language (SDDL) developed by DST Group will be used to store the ground-truth
datasets.

One goal of this project is to create several ground-truth datasets, which will be made available as
open source to advance the research on software vulnerability discovery. Work package 1 (i.e., WP1
– the data preparation work package) aims to achieve this goal. Figure 4 shows the main tasks and
associated sub-tasks in the work package WP1. Since the ground-truth datasets are fundamental to
the research on deep learning, this work package is of high priority and will be undertaken first. The
figure also shows the order and priority of the specified tasks.

5. Software Vulnerability Discovery
5.1. Binary code based vulnerability discovery
5.1.1. Vulnerability discovery from byte sequences
A binary file can be viewed as a sequence of bytes or a sequence of machine instructions (See Figure
5). Thus it is natural to employ deep learning models capable of dealing with sequences of objects. In
this section, we differentiate between two granularities of analysis : i) at the file level; and ii) at the
function level.

5.1.1.1 File-level vulnerability discovery
Although file-level detection is coarse-grained, it is often easy to handle and facilitates the search
for vulnerable code. Apart from viewing a binary file as a sequence, we also propose to reorganize
the sequence into a two-dimensional matrix so that we are able to explore the correlation between
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neighbouring sub-sequences.

5.1.1.1.1 Sequential view of binary files
Binary files are of variable lengths. It is a common practice to apply an RNN to project a sequence
into a dense fixed-length vector, which is further fed into a classifier for vulnerability detection. This
architecture often requires a substantial amount of labeled training data. Since our labeled training
data is sparse, to leverage unlabeled data, we propose two ways of training RNNs in a semi-supervised
manner.

Sequential training The first approach starts with applying unsupervised pre-training with a 1D
RNN [13], followed by supervised fine-tuning. Inspired by language modelling, the task of unsuper-
vised pre-training is formulated as predicting the next element given a sub-sequence. An element could
be a byte or a machine instruction. This task formulation allows the learning of good representations
of sequence elements as well as good initialization of the parameters of the RNN. After pre-training,
for each binary file, we gain a sequence of hidden states h1, ...,hl where l is the length of the sequence.
In order to obtain a sequence representation, we can either take hl or apply a statistical pooling (e.g.,
taking the average or computing the covariance matrix) over all hidden states if information gets ’lost’
by the RNN.

In order to associate sequence representations with vulnerability discovery, at the fine-tuning stage, we
apply a classifier (e.g., Support Vector Machine, Deep Neural Network, etc.) on top of the sequence
representations (See Figure 6). We will explore various designs of the classifers. One idea is to employ
a specific variant of Support Vector Machine that employs the random feature technique [44] to plug
the RNN into the classifier so that we can apply standard techniques such as BackProp for training.

Joint training The aforementioned two-stage approach may cause the model to overfit for specific
subtasks. In order to encourage more interaction between the 1D RNNs and the classifier, we propose
a mechanism that would train a 1D RNN and a classifier simultaneously. In particular, for each binary
file, we take the last hidden state generated by the 1D RNN as the input of the classifier (See bottom
part of Figure 6). The training objective would take the following form:

J (θc,θRNN ,D) = Jc (θc,D) + λJRNN (θRNN ,D)

where D is the training set, θc is the model of the classifier, θRNN is the model of the 1D RNN, and
λ > 0 is the balance parameter.

Two possible classifiers are under consideration: i) deep feed-forward NNs, and ii) Support Vector
Machines using a Fourier random feature with the reparameterization trick [40].

It is worth noting that when setting λ = 0, we ignore the unsupervised pre-training component, while
a large value for λ will make the model focus on the unsupervised task.

5.1.1.1.2 2-dimensional grid of bytes or machine instructions
Abinary file could be too long and current RNN techniquesmay fail to capture long-range dependencies
between crucial bytes or machine instructions. An alternative way is to break a long sequence into
sub-sequences of fixed length, and arrange them row-wise into a matrix. We can then exploit the
correlation of neighbouring sub-sequences easily by using neural network models that have been
applied to images, such as CNNs or 2D RNNs. The length of the row then becomes a hyperparameter,
which will need to be tuned for target code bases.

12
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Figure 5: Binary file represented as a sequence of bytes (orange) or as a sequence of machine instruc-
tions (green).

2-dimensional grid with CNN Since we view a binary file as a 2-dimensional grid of bytes or
machine instructions, we may leverage the efforts of the computer vision community by treating such a
input as an image for identifying “vulnerable programming patterns“. The CNN is therefore a natural
choice for these image-like inputs. Herein, we assume that the binary files of an application contains
0s and 1s or values in hexadecimal format that are not humanly readable.

Given a program’s binary file (e.g., an .exe file or .dll file), it can be converted to a grey scale image
or a RGB colour image. In the former case, a binary file can be regarded as a vector of 8-bit unsigned
integers and then organized into a 2D array. The array can be visualized as a grey-scale image with
each ’pixel’ having a value in the range [0,255] (0: black, 255: white). In the latter case, a binary
file can be alternatively viewed in hexadecimal format. A mapping can be created to directly map
hexadecimal values to a RGB colour, which is in the same format as images with three colour channels.
Figure 7 shows two functions that each suffers from a buffer overflow vulnerability.

2-dimensional grid with 2DRNN Since CNNs often fail to capture dependencies between sequence
elements that are far from each other, we employ a 2D RNN [22] to capture long-range dependencies.
However, doing so requires scanning over all cells of the input, and so the time complexity is high.
To speed up the computation and encourage parallelisation, we will consider variants of the 2D RNN
including Pyramid 2D RNNs [52] and Pixel RNNs [41].

UNCLASSIFIED
13



DST-Group–GD–1039
UNCLASSIFIED

5.1.1.2 Function-level vulnerability discovery
In many cases, file-level detection is too coarse-grained. Therefore we also consider vulnerability
discovery at the function level. This finer-grained detection requires first to detect the scope of each
function within the binary (i.e. the machine instructions that implement the function). Since the binary
code within each function can be viewed as sequences as well, we can apply the techniques presented
in Section 5.1.1 on the sub-sequence of instructions defined by each function’s scope. Thus the key
challenge is the identification of function scope from a binary (cf. Section 4.2).

Function scope identification. As shown in Figure 8, function scopes can be organized into
a hierarchy. Thus it is natural to segment bytes or machine instructions and apply hierarchical
clustering [6, 56] on the segments.

The segmentation as well as clustering imposes a special challenge on the representation of sequence
elements in a binary file. One possible way is to apply seq2seq models [53, 11, 4] or pointer networks
[57]. The goal of these models is to learn good representations by minimizing reconstruction losses,
as illustrated by Figure 9. The seq2seq models consist of an encoder and a decoder. The encoder aims
to project a sequence into a fixed-length embedding, and the decoder reconstructs the input sequence
by taking the embedding as input. For a long program, the models may lose track of important
information as the encoder reads long sequences. One possible solution is to incorporate the attention
mechanism [4] to focus on key elements in the input sequences.

5.1.2. Vulnerability discovery from assembly code
Viewing binary code as a sequence loses some of their structural information. When we disassemble
the binary code into assembly code (See for example Figure 10), it is possible to recover some of this
structural information by viewing the resulting code as one or more graphs constructed from the AST,
CFG etc. In this section, we propose techniques capable of exploiting both syntactic structures (like
ASTs) and semantic structures (like CFGs) of code.

Figure 11 gives an overview of our proposed approaches. It is straightforward to disassemble binary
code into assembly code by using open source tools. The assembly code derived from binary code can
then be viewed either as a graph or a collection of functions. The graph view will lead to the learning
of graph representations, while the function view could directly lead to deep learning-based models
for vulnerability detection. Figure 12 shows an example of the full control flow graph based on an
assembly file.

In this project we are mainly interested in fine-grained analysis, thus we aim to detect vulnerabilities at
the function level in both views. For the detection of function scope, we largely reuse the techniques
proposed in Section 5.1.1. The main difference is that we map tokens in the assembly code to token
embeddings (See Figure 14) before feeding them into models such as pointer networks (See Figure
13). The use of token embeddings will allow us to generalize over similar tokens.

5.1.2.1 Function View
A function in assembly code is a sequence of tokens. Following the same idea as function scope
detection, we first map tokens in a function into token embeddings. The embeddings of a function
can be viewed as sequences or 2-dimensional matrices so that we can directly apply the techniques
proposed in Section 5.1.1 for vulnerability detection. Figure 14 shows an example of assembly code
with three functions.
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5.1.2.2 Graph View
The graph view attaches functions into a single graph constructed from the assembly code AST or the
program’s CFG so that it is possible to explore relationships between functions.

There are a number of techniques to learn graph representations. One family of techniques is neural
embedding techniques [33, 24, 42, 25], which can be applied to transform the AST/CFG of a func-
tion to vectorial graph representations. The DL methods are trained on the top of vectorial graph
representations to detect vulnerabilities at the function level.

5.1.2.3 Deep learning based detectors
Given graph representations, we can employGraph-based ConvolutionNeural Networks [8, 30, 16, 27],
which are able to explore the structural information of graphs.

Another possibility is to useMulti-dimensional RNNs [22, 52, 41], which efficiently exploit the context
in grid structures (i.e., in 2D or 3D grids). However, since the input is graphs, we need to extend the
multi-dimensional RNNs to exploit vectorial graph representations induced from the previous steps.

5.1.2.4 Challenges of the approaches based on assembly code

1. There could be complex structural relationships between machine instructions after constructing
from ASTs or CFGs. Existing DL methods may have difficulty capturing such complicated
relationships.

2. At this stage it is unclear what is the best way to learn representations of graph nodes and edges
so that the models can explore their structural relationships easily.

3. Since graphs are attached with function scopes, it is not clear how to detect a vulnerability within
each function and explore the relationships between functions at the same time.

5.2. Source code based vulnerability discovery
We can obtain yet another representation of binary code by decompiling it to source code. Though
decompilation to source code is not always feasible and can be error-prone in the presence of self-
modifying code, it should still be highly applicable in our context. Similar to our approach for analysing
assembly code, we employ graphs to represent source code. Herein graph nodes are source language
tokens and edges indicate their structural relationships. Since labeled training data is limited, our
research in this line also focuses on learning graph representations and incorporating them to build
deep learning classifiers for vulnerability detection, as shown in Figure 15. Since the training data is
limited, and as has been mentioned previously, we tackle this problem with automatic code generation
and semi-supervised learning.

5.2.1. Learning graph representations
We consider two ways of building graph representations in an unsupervised way.

Inspired by Word2Vec [33] and Node2Vec [24], we propose a novel method called Program2Vec to
formulate the representation learning problem as a task of predicting paths.

By assuming the paths originating from the same node share similar representations, Program2Vec
formulates the learning of graph representations as a predictive task. In particular, for each node, the
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Program2Vec model aims to predict the paths connecting to the node. Formally, given a node v, we
maximize the probability of seeing its paths in a spanning tree Span(v) rooted at v. The corresponding
optimization problem is formulated as follows:

max
W

©­«
∏
v

∏
u∈Span(v)

p (π (u) |v)ª®¬
where π(u) denotes the path from the current root v to the vertex u excluding u and Span(v) specifies
the spanning tree rooted at v. A deep model with parameters W is applied for constructing path and
node representations.

An alternative approach, coined AST2Vec, aims to learn good graph representations by reconstructing
ASTs. Given a graph representing an AST, we apply first an encoder to project the AST into a fixed-
length embedding, as illustrated in Figure 16. This model reads an AST in a bottom-up manner, and
optionally employs Structure-based Traversal (SBT) [25] to capture the structure information. Then
a decoder takes the embedding as input and tries to reconstruct the input AST. The reconstruction
process will enable the model to capture the most essential structural information in ASTs.

5.2.2. Building graph-based vulnerability detectors
Given training datasets labeled with software vulnerability information, we could train a vulnerability
detector based on graph representations.

A graph representation learned by Program2Vec or AST2Vec is a collection of vectors linked by
their structural relationships. It is straightforward to apply Graph-based Convolution Neural Net-
works (GCNNs) [8, 30, 16, 27] to learn the association between vulnerability information and graph
representations. We can extend GCNNs to locate vulnerabilities at the function level.

An alternative way is to apply Recursive Neural Networks to read graph representations and attach a
vulnerability detector to each function scope. The model could begin with the main function, follow
each function call within the main function to reach other functions. The whole process is repeated in
a recursive manner until the whole program is read. Each statement within a function is treated as a
sequence of tokens. Each token is further mapped to token embeddings, as illustrated in Figure 17.

5.2.3. Tackling problems of limited training data
There is a limited number of labeled training datasets available for vulnerability discovery. In this
project we propose two ways to tackle this problem: i) automatic generation of code samples ii) use
semi-supervised learning techniques by incorporating code generation with the training of vulnerability
detectors.

5.2.3.1 Automatic Code Generation
High-level programming languages allow us to implement the same functionality in multiple ways.
In order to make our vulnerability detector invariant to such syntactic variations, we propose to
automatically rewrite existing vulnerable functions in different ways. Doing so can increase the
diversity of source code while preserving its vulnerability types.

Rewriting can be done either by using classical semantic preserving transformations (as mentioned
earlier in Section 4.3), or by using semi-supervised learning techniques, such as combining the ideas
of Generative Adversarial Networks (GAN) [21], Conditional Generative Adversarial Networks [34],
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and deep reinforcement learning [35] to model correct rewriting operations. The former technique
generates code with syntactic variations while preserving the semantics, while the latter technique aims
to preserve the vulnerabilities of code after rewriting with possible discrepancies of semantics. For
example, if a C program statement strcpy(buffer, 100) triggers a buffer overflow, a statement
strcpy(buffer, n) with n > 100 will also lead to buffer overflow. We aim to modify a small
section of the vulnerable code. Each rewrite operation is designed to preserve the syntactic correctness
of the source code. We expect that the generated source code will remain compilable. In the worst
case, it may require very little human effort to debug.

5.2.3.2 Semi-Supervised Learning
GANs and Conditional GANs can also be extended for semi-supervised learning [29, 28]. The GAN
architecture is formulated as a two-player game, which consists of a generator and a discriminator. A
generator generates fake samples while the discriminator aims to distinguish between true samples and
the fake samples from the generator. During training, the generator learns to fool the discriminator
by generating samples as similar as possible to the true samples, while the discriminator learns to
distinguish them. In semi-supervised learning, we incorporate vulnerability detectors into the GAN
architecture so that themodel also learns to associate correct labelswith both true samples and generated
samples. Previous work [28, 29] have shown that a well-trained generator can generate high quality
negative samples, possibly also high quality positive samples that greatly improve the performance
of the classifier especially when the training data is small. Since the previous work focused on the
generation of images and text, the core challenge will be to explore ways of generating high-quality
code useful for the corresponding classification task.

5.2.4. Challenges of the approaches based on source code

1. The decompiled source code could feature a complex structure that is beyond the capability of
current graph-based models. Novel models may be required to recognise long-range dependen-
cies between programming constructs.

2. The decompiled source code could contain errors and noise. The detection models should be
robust against such noise.

5.3. Multiple source based vulnerability discovery
Prior work on vulnerability detection focuses on source code analysis, exploiting the syntax, names of
programming constructs, and structures of the code. Given binary code however, one can leverage this
previous work by performing decompilation to get automatically generated source code. Unfortunately,
such code is often error-prone, noisy and not easy to read. In contrast, some vulnerability patterns are
possible to detect even in binary code though such complex patterns are very challenging to detect. In
order to combine the best of multiple sources, the key idea is to design targetedmodels to detect patterns
from multiple sources such as binary code and the source code generated by binary decompilation.
Such multi-source models are expected to provide higher robustness towards noise, by exploring the
ideas of multi-view learning and multi-expert learning.

The same functionality implemented in different programming languages (e.g. C source code vs.
compiled assembly code for the same program) can be regarded as different views of the same
program. Since different views share the same semantics, we can assume that all views are generated
from the same semantic space. For vulnerability detection, we project the features extracted from
different sources to the same semantic space, and feed the abstract features in that space to the final
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classifier. During the projection, we will exploit the alignment information obtained by decompilation
to build shared representations for aligned code fragments. The feature projection process will focus
on the features which have strong correction between different views so that noise generated by reverse
engineering will be ignored. Since the single source models we proposed are deep neural networks,
the feature projectors are essentially some additional neural networks layers on top of the high-level
features of the single source model. The challenge herein is to learn the correlations between code
fragments in different views.

Multi-source analysis can also be viewed as a way of exploiting the knowledge of multiple experts
since each single source model is regarded as an expert for a particular programming language or
program representation. The multi-expert strategy aims to combine the predictions, and optionally the
respective evidence, of single source models to make the final decisions. Let x denote the semantics
of a program and y indicate if it is vulnerable or not, one possible way is to employ mixture models.

p(y |x) =
∑
s∈S

p(y |xs)p(xs |x)

where xs denotes the program from a particular source s in a space of all sources S. The term p(y |xs)
is essentially a single source model based on a single source input xs and p(xs |x) assigns credibility of
the single model based on its correlation to the semantics of the program.

5.4. The main tasks in the vulnerability detection work package
The main goal of the DLC project is to develop deep learning techniques for vulnerability discovery
in binary code, which forms the core part of the work package 2 (WP2). Figure 18 gives an overview
of the main tasks and their priorities in WP2.

6. Project Plans
Figure 19 shows the plan for the tasks in the Deep Learning for Cyber project.

18
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Table 2: Existing datasets of software vulnerabilities.

Dataset Description Remark
Deakin Univ. datasets These datasets contain software vulner-

abilities at the function level obtained
from open source code and CVE.

The datasets have been la-
belled by a PhD student
from Deakin Univ.

DST Group dataset This contains functions or sets of re-
lated functions that have software vul-
nerabilities.

The dataset is shared by
DST Group

NIST SAMATE This contains real software applications
with known bugs and vulnerabilities.
(SAMATE: Software Assurance Met-
rics And Tool Evaluation)

Open Source

Open Judge system This comes from an online Open Judge
(OJ) system, which contains a large
number of programming problems for
students. More than 10 features in-
cluding problem description have been
provided to describe the dataset.

Open Source

DARPA Cyber Grand Challenge The datasets generated during the
DARPA Cyber Grand Challenge.

Open Source

F-Droid and Android OS This dataset originally contains 20 pop-
ular applications, which were collec-
ted from F-Droid and Android OS in
2011. The F-Droid repository contains
a growing number of more than 2,300
apps.

Open Source

Juliet test suite The test suite was developed specific-
ally for assessing the capabilities of
static analysis tools. It is intended for
anyone who wishes to use the test cases
for their own testing purposes, or who
would like to have a greater understand-
ing of how the test cases were created.

Open Source

Google Project Zero This contains a small number soft-
ware vulnerabilities that have been thor-
oughly analysed in-depth and docu-
mented. Project Zero focuses on find-
ing and documenting zero-day vulner-
abilities in open source code.

Open Source
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Figure 6: Top: Training the 1D RNNs and classifier sequentially. Bottom: Training the 1D RNNs and
classifier simultaneously, where the classifier parameter θc is shared among the 1D RNNs.
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Figure 7: Two functions that each suffers from a buffer overflow vulnerability. There is a common
localised pattern in their respective source code hence, when compiled to binary code and
then visualized as images, the resulting images share a local ’pixel’ pattern that can be
efficiently detected using CNN(s). We note that each 4-byte instruction is visualized as one
pixel using the CMYK colour system.

Figure 8: A binary file with three functions: Function 1.x (multiple sections), Function 2, and Function
3.
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Figure 9: Encoder-decoder architecture with attention mechanism for function scope identification.
The orange rectangles denote the hidden states of the encoder, while the green ones are the
hidden states of the decoder.

Figure 10: Example binary code and the resulting assembly code after decompilation.
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Figure 11: Overview of the assembly code based approaches. The assembly code derived from the
binary code can be viewed either as a graph (graph view [1]) or a collection of functions
(function view [2]).

Figure 12: Example control flow graph (CFG) based on the assembly code approach. Left: The full
control flow graph which is constructed based on the entire assembly file. Right: The
example section of the control flow graph. We note that this control flow graph shows the
hierarchical, nested, and semantic structure of the binary file. Each block in this control
flow graph can be further used as input to deep learning methods to detect vulnerabilities
at the block level.
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Figure 13: The encoder-decoder architecture for function scope identification in assembly code.
Tokens are embedded into a vector space and e (token)i denotes a token embedding.

Figure 14: Example of assembly code with three functions inside.
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Figure 15: The execution diagram after decompiling the binary code to source code.

Figure 16: The overall workflow of AST2Vec (adapted from [25]).
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Figure 17: The proposed function-level RNN for software vulnerability discovery.

Figure 18: The tasks in the vulnerability detection work package WP2.
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Figure 19: The plan for the tasks in the Deep Learning for Cyber project.
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