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ABSTRACT

In this report we explore the use of sparse signal representation methods in the radar imaging
problem of rotating targets and compare their results. The ultimate goal is to estimate the
spatial locations and corresponding reflectivities of the scatterers constituting a target, based
on a signal scattered from it. We pay particular attention to the so-called convex relaxation
methods, which presumably can give the sparsest possible solutions and are computationally
tractable while providing provable theoretical performance guarantees. We provide a compre-
hensive survey on various convex relaxation problem formulations known to date, as well as
known computational algorithms for solving the optimization problems. By using extensive
numerical simulations with simple rotating point targets, we show that, while many of these
methods perform satisfactorily for ‘on-grid’ cases, performance for ‘off-grid’ cases is mostly
unsatisfactory, warranting much further research before they can be efficiently applied to the
inverse problem of radar imaging.
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Targets

Executive Summary

In radar imaging, sparsity and compressed sensing have been widely exploited in various
problems such as sparse phase coherent imaging, wide-angle synthetic aperture radar (SAR)
imaging for anisotropic scattering, multichannel SAR imaging and moving target indication,
to name but a few. In this study, we focus our attention on the problem of sparsity-based
radar imaging of a rotating target.

Signal analysis and radar imaging of fast-rotating objects are of particular research interest.
The radar signals returned from such objects are commonly described under the general
category of micro-Doppler signals which cannot be processed by conventional range-Doppler
techniques and should be separated from other non-rotating scattering components prior to
further processing. Specific attention is paid to rotating point-scatterer targets. The point-
scatterer target model has been studied in the literature based on compressive sensing but with
the restriction to the case of small angles of rotation and signals of ‘moderate’ bandwidths,
and much less attention has been given to narrowband signals where wider angles of rotation
are required.

We focus the investigation on convex relaxation methods and explore their possible applic-
ations to the radar imaging problem of a rotating target within the point-scatterer approx-
imation, which expands on the research theme initiated in a previous report. We present a
literature survey on various convex relaxation problem formulations known to date, as well
as computational algorithms for solving the optimization problems and extensive numerical
simulations and results. For simplicity, the current study is mostly restricted to simulated
data examples where the true scatterers are ‘on-grid’, i.e. corresponding exactly to some of
the ‘atoms’ in the defined dictionary. The objective is to explore how some of the best known
convex relaxation methods perform when applied to the problem of estimating the spatial
parameters of the scatterers, and gain insight into the performance of each relevant tech-
nique. We also find that the methods, in their current forms, do not perform satisfactorily
for ‘off-grid’, which warrants further research.
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1. Introduction

This report expands on the research objective in [1] exploring techniques from the area of
sparse signal representations and compressive sensing for radar imaging, which is essentially
an inverse problem: from a signal scattered off a target, we wish to estimate the locations and
scattering amplitudes of the scatterers constituting the target. This is particularly challenging
given the fact that most current methods in sparse representation are optimized based on
metrics in the time domain of the signal, whereas target imaging relies on accurate parameter
estimation in the spatial domain of scatterers on the target.

The current problem of interest is concerned with rotating point scatterers, which can be
described as a class of micro-Doppler signals [2, 3]. In the last few years, the point scatterer
model has been studied in the context of ISAR imaging based on compressive sensing [4];
however this was mostly restricted to small angles of rotation and signals of sufficient band-
width. In applications with narrowband signals where wider angles of rotation are necessary,
the research literature is still scarce.

Sparse signal representation problems have gained significant attention due to its wide range of
applications ranging from engineering to the sciences. The objective of sparse representation
is to approximate a received signal via a linear combination of a small number of element-
ary signal components drawn from a signal ‘dictionary’. The sparse approximation problem
is fundamentally formulated as finding the sparsest feasible solution by minimizing the l0
norm (i.e., the number of nonzero components) of the solution. This l0 norm minimization
formulation is NP-hard in general and thus computationally intractable. Extensive research
studies have been conducted over the last two decades to seek more computationally tractable
methods for solving sparse approximation problems. There are five major classes available in
the literature including (i) greedy pursuit, (ii) convex relaxation, (iii) Bayesian framework,
(iv) nonconvex optimization, and (v) brute force [5]. Among these approaches, greedy pursuit
and convex relaxation have received the most attention due to their computational tractab-
ility and provable theoretical performance guarantees. We are particularly interested in the
convex relaxation methods, and explore their possible applications for radar imaging. A re-
view of greedy pursuit techniques with the emphasis on their application to radar imaging for
a rotating blade-like target can be found in [1].

2. The Radar Imaging Problem

For simplicity, the imaging problem is restricted to a two-dimensional (2D) geometry and
non-interacting ideal point scatterers (Born approximation); the general 3D geometry is con-
ceptually similar, only computationally more complex. Fig. 1 depicts a point scatterer in a
2D plane rotating with angular velocity Ω around the origin of the local coordinate system at
the radial distance r and with initial angular position ψ. For a single-frequency continuous-
wave (CW) transmitted signal from a monostatic radar located in the far-field of the positive
y-direction, the received signal returned from the scatterer back to the radar is given by [4, 6]

g(t; r, ψ) = A exp

{
i
4π

λ
r sin(Ωt+ ψ)

}
(1)
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where λ is the wavelength of the radar signal, and A represents a complex multiplicative
constant corresponding to signal attenuation (assumed constant). Here, we assume that the
angular velocity Ω is constant and known a priori.

Figure 1: Geometry of a rotating point scatterer model.

When a rotating target is modelled as a rigid ensemble of K such point scatterers, the backs-
cattered signal s(t) returned from the target can be decomposed as a sum of the backscattered
signals from all the scatterers:

s(t) =
K∑
k=1

ρk gk(t;ϑk) + n(t) (2)

where gk(t;ϑk) is the elementary signal component given in (1), ρk is the reflection coefficient,
ϑk = {rk, ψk} is the spatial parameters of a scatterer, and n(t) is the additive system noise. In
the context of sparsity and compressive sensing, each scattering element gk(t;ϑk) is referred
to as an ‘atom’. Rewriting (2) in discrete-time vector form gives

s =

K∑
k=1

ρkgk + n (3)

where

s =
[
s(t1), s(t2), . . . , s(tM )

]T
(4a)

gk =
[
g(t1,ϑk), g(t2,ϑk), . . . , g(tM ,ϑk)

]T
(4b)

n =
[
n(t1), n(t2), . . . , n(tM )

]T
(4c)

are vectors of M discrete-time samples of s(t), gk(t;ϑk) and n(t) respectively.

The choice for ϑk is a design issue. In general, the chosen vectors for its components can
be quite arbitrary. However, they are commonly defined as regularly spaced samples over
expected ranges of values, which may happen not to coincide with the parameters of the
actual scatterers of the target. When coincidence occurs, they are called ‘on-grid’; otherwise,
‘off-grid’. Furthermore, the choice of the parameter vectors, for applications in radar imaging,
can be ‘dense’ in the sense that the atoms formed are mutually non-orthogonal. In this case
the dictionary becomes over-complete.

2
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Figure 2: A example of an inverse scattering problem: a target comprising 20 point scattering
elements (labeled by red circles) and a dictionary with 289 point scattering atoms
(labeled by blue dots) located in a regular x- and y-grid.

Given an over-complete dictionary of N scattering atoms gn (n = 1, . . . , N), the problem of
radar imaging (i.e. inverse scattering problem) for rotating targets can be cast as a sparse
approximation problem (see Fig. 2 for an example). The aim is to find a sparse solution of
the linear inverse problem:

s = Gρ+ n (5)

where G = [g1, g2, . . . , gN ] is the dictionary matrix (i.e., the sensing matrix) and ρ =
[ρ1, ρ2, . . . , ρN ]T is the unknown complex coefficient vector (representing scatterer reflectivit-
ies) to be estimated.

Since a real target can often be represented by a small number of scattering elements, the
coefficient vector ρ can be assumed sparse (i.e. containing a small number of nonzero ele-
ments). Note that the number of atoms in the dictionary is in general much larger than
the number of signal samples (i.e., N � M), the linear system of linear equations in (5) is
thus underdetermined and a unique solution cannot be determined using the conventional
inverse transform of G. However, given that the coefficient vector ρ is sparse (or can be
well-approximated as being sparse), the sparsity and compressive sensing theories guarantee
a stable solution for ρ [7–14].

For simplicity, the current study is mostly restricted to simulated data examples where the
true scatterers are ‘on-grid’. The objective of the study is to explore some of the best known
convex relaxation methods applied to the problem of estimating the spatial parameters of the
scatterers, and gain insight into the performance of each relevant technique. Some preliminary
results on the ‘off-grid’ targets are also presented at the end of Section 4.
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3. A Brief Survey of Convex Relaxation Methods

Consider the general linear inverse problem of

y = Φx+ n (6)

which is exactly the same form as in (5), except for the notational difference. Here, x ∈ CN
is an unknown vector to be estimated, y ∈ CM is a linear measurement vector of x corrupted
by an additive noise vector n ∈ CM , and Φ ∈ CM×N is the dictionary whose columns have
unit Euclidean norm. The sparse approximation problem is defined as [5, 13, 14]

Find sparse x such that Φx ≈ y. (7)

The symbol ≈ can be defined more exactly with a chosen cost function to be minimized. Then,
for each chosen cost function, several different computational algorithms may be applied for
the minimization.

3.1. Sparse Approximation Problems

By ‘problem’, is meant ‘minimization problem’ characterized by a particular ‘cost function’.
A natural formulation for a sparse approximation problem is to find the sparsest solution of
x [5, 13, 14]:

min
x
‖x‖0 subject to ‖Φx− y‖2 ≤ ε (8)

where ‖ · ‖0 is the l0 norm, which is a count of the number of nonzero components in its
argument and ε > 0 is an error tolerance. However, this l0 minimization problem is NP-
hard [5, 7–14], and hence is computationally intractable for practical applications [5, 7–14].

An attractive alternative approach is to replace the combinatorial l0 function in (8) with a l1
norm, leading to the convex optimization problem (or l1 minimization) [5, 13, 14]:

(BPε) min
x
‖x‖1 subject to ‖Φx− y‖2 ≤ ε (9)

where ‖x‖1 =
∑

i |xi| denotes the l1 norm of the vector x. Since the l1 norm is the convex
function closest to the l0 quasi-norm, this replacement is commonly referred to as convex
relaxation [5, 13, 14]. The convex relaxation approach has been demonstrated in the literature
to result in optimal or near-optimal solution to sparse approximation problems in various
settings (see e.g., [12, 15–23] and the references therein).

In addition to the quadratically constrained l1 minimization formulation in (9), there exists
an unconstrained l1 regularization formulation which has also received much attention in the
literature [5, 13, 14]:

(QPκ) min
x

{
1

2
‖Φx− y‖22 + κ‖x‖1

}
(10)

which is commonly known as the basis pursuit denoising (BPDN) criterion [24]. In fact,
the use of l1 regularization has a long history as outlined in [12]. Here, κ > 0 is a regular-
ization parameter which governs the tradeoff between the sparsity of the solution and the
approximation error. In particular, larger values of κ typically lead to sparser solutions of x.

4
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The third formulation is the least absolute shrinkage and selection operator (LASSO) [5, 13,
14, 25]:

(LSτ ) min
x
‖Φx− y‖22 subject to ‖x‖1 ≤ τ. (11)

It is asserted from the standard optimization theory [26] that the three formulations (BPε),
(QPκ) and (LSτ ) are equivalent for appropriate choices of ε, κ and τ . Unfortunately, ex-
cept for the special case where the dictionary matrix Φ is orthogonal, the conditions of ε,
κ and τ yielding the equivalence between (BPε), (QPκ) and (LSτ ) are generally difficult to
compute [27, 28]. In many applications, a reasonable estimate of ε can be obtained from
the noise level of measurements, thereby making (BPε) preferable. A common choice for ε is

ε = σ
√
M + 2

√
2M where σ is the noise power level. However, the constrained problem (BPε)

is in general more difficult to solve than the unconstrained problem (QPκ) which has close
connection with convex quadratic programming. In contrast to ε, it is more difficult to select
an appropriate value for κ since the link between κ and σ is less clear. It is argued in [24]
that the choice of κ = σ

√
2 logN provides important optimality properties. However, this

argument is restricted to the case where the dictionary matrix Φ is orthogonal. Therefore,
(QPκ) may need to be solved repeatedly for various values of κ or to systematically find the
path of the solutions as κ decreases toward zero [5].

In addition to the l1 norm formulations in (9)–(11), total-variation (TV) regularization is also
commonly used in the literature of sparsity and compressed sensing [28–31]:

min
x

{
1

2
‖Φx− y‖22 + ν‖x‖TV

}
(12)

where ‖x‖TV = ‖D{|x|}‖1 with D denoting a discrete approximation to the derivative (gradi-
ent) operator. In fact, if x is a piecewise constant object, then the TV regularization in (12)
will provide more accurate recovery [28]. Specifically, the l1 norm formulations tend to reduce
extended objects into points or miss small target features in this case. On the other hand,
the TV regularizer in (12) promotes solutions which are clustered and not fragmented, thus
leading to a more smooth image representation of the target. The l1 regularization and TV
regularization can be combined and used in parallel as [31]

min
x

{
1

2
‖Φx− y‖22 + κ

∑
i

(
|xi|2 + δ

)1/2
+ ν

∑
i

(
|Di{|x|}|2 + δ

)1/2}
(13)

where the second and third terms are the smooth approximations of the l1 norm and the TV
norms, respectively, with a small constant δ ≥ 0.

Each of the above problems may be solved by a number of different computational algorithms,
as summarized in Section 3.2.

3.2. Computational Algorithms

3.2.1. Interior-Point Algorithms

Interior-point based methods were one of very first approaches proposed in the literature for
solving sparse approximation problems via convex relaxation. The techniques described in
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this section assume variables are real and their extension to complex variables is discussed in
Section 4. In [24], the problem (QPκ) is reformulated as a perturbed linear program which,
in the case of real variables, can be solved based on the primal-dual interior point framework.
In particular, the problem (QPκ) is equivalent to

min
u,v

{
1

2
‖y −Φ(u− v)‖22 + κ1Tu+ κ1Tv

}
subject to u,v ≥ 0 (14)

by defining x ≡ u − v (i.e., indeed Φx = Φ(u − v) and 1Tu + 1Tv = ‖x‖1). Here the
notation 1 ∈ RN denotes the all-ones vector. By using the translation of z ⇔ [uT ,vT ]T ,
c⇔ κ[1T ,1T ]T , A⇔ [Φ,−Φ] and b⇔ s, (14) becomes

min
z

{
1

2
‖Az − b‖22 + cTz

}
subject to z ≥ 0 (15)

which is a least squares problem with positivity constraints. In fact, this least squares problem
is equivalent to a perturbed linear program:

min
z,p

{
cTz +

1

2
‖p‖2

}
subject to Az + δp = b, x ≥ 0, δ = 1. (16)

To solve (16), the authors in [24] exploited the use of the primal-dual log-barrier method
which aims to solve a more general perturbed linear program:

min
z,p

{
cTz +

1

2
‖γz‖2 +

1

2
‖p‖2

}
subject to Az + δp = b, x ≥ 0. (17)

where γ and δ are perturbation parameters (normally small, e.g., 10−4). By setting δ = 1,
this will solve the problem (QPκ). Further details on the primal-dual interior-point algorithm
can be found in [24, 32, 33].

In contrast to [24], the work in [34] transformed the problem (QPκ), again for real variables,
into a convex quadratic problem with linear inequality constraints of

min
x,u

{
1

2
‖Φx− y‖22 + κ

N∑
i=1

ui

}
subject to − ui ≤ xi ≤ ui (i = 1, . . . , N) (18)

which is then solved using a primal log-barrier method. Here, xi and ui (i = 1, . . . , N) are
the entries of x and u respectively. In particular, the primal log-barrier method proposed
in [34] relies on a preconditioned conjugate gradients (PCG) algorithm to compute the search
direction for interior-point computations. Note that the method in [24] makes use of the LSQR
algorithm without preconditioning to compute the search direction. In addition, the method
in [34] also incorporates a truncation rule to determine the search direction that provides a
good trade-off between computational cost and convergence rate.

Another interior-point based algorithm for convex relaxation with real variables was presented
in [35] which recast the problem (BPε) as second-order cone programs (SOCPs) and applies
the generic log-barrier algorithm described in [36] to obtain the solution. Specifically, the
problem (BPε) can rewritten as

min
x,u

N∑
i=1

ui subject to − ui ≤ xi ≤ ui (i = 1, . . . , N),

1

2

(
‖Φx− y‖22 − ε2

)
≤ 0.

(19)

6
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3.2.2. Gradient Algorithms

Gradient-descent based methods are first-order iterative algorithms for solving the problem
(QPκ) by iteratively computing the next iterate xt+1 (t = 1, 2, . . . ) based on the gradient of
the least squares term obtained at the current iterate xt (viz., ΦT (Φxt − y)):

x+
t := arg min

z

{
(z − xt)TΦT (Φxt − y) +

1

2
αt‖z − xt‖22 + κ‖z‖1

}
(20a)

xt+1 := xt + γt(x
+
t − xt) (20b)

for given choice of scalar parameters αt and γt. An equivalent form of subproblem (20a) is

x+
t := arg min

z

{
1

2

∥∥∥∥z − (xt − 1

αt
ΦT (Φxt − y)

)∥∥∥∥2
2

+
κ

αt
‖z‖1

}
. (21)

This approach is commonly known in the literature as iterative shrinkage/thresholding (IST)
methods. A number of algorithms in this family have been develped in the literature in-
cluding the forward-backward splitting algorithm [37], the fixed-point continuation (FPC) al-
gorithm [38], the thresholded Landweber algorithm [39], the iterative denoising algorithm [40],
and the sparse reconstruction via separable approximation (SpaRSA) algorithm [30]. The IST
methods in general exhibits slow convergence in practice as the standard convergence results
for these techniques require that inft αt > ‖ΦTΦ‖2/2 [37]. However, the SpaRSA approach
in [30] leads to more practical IST variants which allow smaller values of αt given that the
objective function in (10) decreases sufficiently over a span of successive iterations. In par-
ticular, in contrast to other IST methods which rely on a more conservative selection of αt
based on the Lipschitz constant of the gradient, the SpaRSA algorithm exploits the use of
Barzilai-Borwein formulas to select the value of αt within the spectrum of ΦTΦ. Therefore,
the SpaRSA algorithm can be considered as an accelerated IST version with a better practical
performance as a benefit of variation of αt.

Another accelerated variant of IST was proposed in [29], namely the two-step IST (TwIST)
method. The objective of the TwIST method is to merge the performance advantage of
the IST scheme and the capability to handle ill-posed problems of the re-weighted shrinkage
scheme. In particular, the two-step iteration of TwIST is given by

xt+1 = (1− α)xt−1 + (α− β)xt + βx+
t (22)

with the initialization of x1 = x+
0 . The main difference of the TwIST method over the original

IST methods is that it also incorporates the previous iterate xt−1 to compute xt+1. Import-
antly, it was shown in [29] that TwIST converges significantly faster than the original IST.
In addition to TwiST, [41] presents a different IST variant, viz. the fast iterative shrinkage-
thresholding algorithm (FISTA) based on optimal gradient methods for convex minimization
proposed by Nesterov in [42]. The utilization of optimal gradient methods to sparse approxim-
ation can also be found in [28], leading to the development of the NESTA algorithm. However,
it should be noted that the NESTA algorithm aims to solve the problem (BPε) instead of the
problem (QPκ) as in [41].

The fixed-point continuation and active set (FCP-AC) method [43] is a successor of the FPC
method [38]. The motivation behind FCP-AC is to combine the performance advantages of
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both greedy algorithms and convex relaxation algorithms. In particular, each iteration of
the FPC-AC method consists of two stages. The first stage performs the first-order method,
i.e., shrinkage iterations, as used in the FPC method to determine the active index set cor-
responding to the nonzero elements of the current iterate of the solution. The second stage
utilizes the second-order method to solve a smooth subspace optimization associated with the
active index set. Note that the FPC method incorporates a debiasing step to refine the final
solution, which is similar to the second stage of the FPC-AC method. However, the debiasing
procedure (see below for further discussion) is only performed once as a post-processing step
at the end of the FPC algorithm, while the subspace optimization is integrated into the main
iterations of the FPC-AC algorithm.

Another gradient-based method for l1-regularization, viz. the gradient projection for sparse
reconstruction (GPSR) method, was proposed in [44]. The main idea behinds GPSR is to
re-express the problem (QPκ) as a convex quadratic program by splitting the variable x into
positive and negative parts. Explicitly, we have

x = u− v, u ≥ 0, v ≥ 0. (23)

where ui = (xi)+ and vi = (−xi)+ for all i = 1, 2 . . . , N . Here, (x)+ = max{0, x} is the
positive-part operator. As a result, the problem (QPκ) in (10) can be reformulated into the
bound-constrained quadratic program (BCQP) as in (14). To solve this BCQP, the authors
in [44] rewrite (14) in a more standard BCQP form:

min
z

{
cTz +

1

2
zTBz

}
subject to z ≥ 0 (24)

where

z =

[
u
v

]
, b = ΦTy, c = κ12N×1 +

[
−b
b

]
, (25)

and

B =

[
ATA −ATA
−ATA ATA

]
, (26)

and we apply the following gradient projection iteration to obtain the solution:

wt =
(
zt − αt∇F (zt)

)
+

(27a)

zt+1 = zt + γt(wt − zt) (27b)

for some chosen scalar parameters αt and γt. Here, F (z) ≡ cTz + 1
2z

TBz. Two versions of
GPSR, namely GPSR-Basic and GPSR-BB, were proposed in [44] with different choices of αt
and γt. In particular, the GPSR-BB algorithm relies on the Barzilai-Borwein approach for
parameter selection.

In addition to the aforementioned gradient-descent methods, the spectral projected-gradient
(SPG) method [45] was also exploited in [27] to solve the problem (LSτ ). Basically, the SPG
method computes the solution iteratively using the rule

xt+1 = Pτ{xt − αtg(xt)} (28)

8
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and utilizes Barzilai-Borwein formulas for selecting the step size αt. Here, Pτ{·} is the ortho-
gonal projection operator of an N × 1 vector onto the convex set ‖x‖1 ≤ τ , i.e.,

Pτ{c} = arg min
x

‖c− x‖2 subject to ‖x‖1 ≤ τ, (29)

and g(xt) is the gradient of ‖Φx− y‖22 computed at the current iterate xt.

Similarly to the regularization parameter κ in the problem (QPκ), it is difficult to choose an
appropriate value for the constraint parameter τ in the problem (LSτ ) unless prior knowledge
of the unknown x is available. Inspired by the fact that the formulation (BPε) is preferred in
many applications where the parameter ε can be estimated from prior information on noise
levels, the authors in [27] have developed a root finding procedure that identifies the value
of τ for which the solution of (LSτ ) coincides with the solution of (BPε) for a given value
of ε. Given xτ is the optimal solution of (LSτ ), the main idea of the root-finding algorithm
proposed in [27] is to apply Newton’s method to find a root of the nonlinear equation

φ(τ) = ε with φ(τ) = ‖Φxτ − y‖2, (30)

which defines a sequence of τk that approaches τε, where xτε is the solution of (BPε). Specific-
ally, this root-finding algorithm exploits the use of the Pareto curve that defines the optimal
trade-off between ‖Φx − y‖2 and ‖x‖1. Here, the function φ is used to parameterize the
Pareto curve in terms of τ . Since the function φ and thus the Pareto curve are continuously
differentiable, Newton’s method can be applied to find roots of the nonlinear equation (30)
which correspond to points on the Pareto curve.

Note that some of the algorithms mentioned above (e.g., TwiST, FISTA and SpaRSA) in fact
can be used to solve a more general form of the l1 regularization problem:

min
x

{
1

2
‖Φx− y‖22 + κf(x)

}
(31)

where f(x) is the general regularization function. Therefore, these algorithms can be applied
to solve the TV regularization formulation as well as the mixed l1 and TV regularization
formulation.

3.2.3. Warm Starting and Adaptive Continuation

Warm starting is motivated by the fact that the gradient-based methods in general benefit
significantly from a good initial point x0 [30, 44]. The main idea is to use the solution of (10)
for a given value of κ to initialize the gradient-based methods in solving (10) for a nearby value
of κ. In general, fewer iterations are required for the next “warm-started” run. As a result,
one can effectively solve (10) for a sequence of values of κ using this warm-start strategy.

As mentioned above, from a practical point of view, it is difficult to select an appropriate
value for the regularization parameter for the problem (QPκ) in (10). Therefore, one may
wish to solve (10) repeatedly for a range of values of κ and apply some tests by means of
the solution sparsity and/or the least-squares fit to determine the “best” solution among the
obtained solutions. This is the second motivation for the use of warm starting.
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Another important application of the warm-start technique is continuation [28, 30, 38, 43, 44]
in which the problem (QPκ) in (10) is solved for decreasing sequence of values of κ. The chief
motivation for using a decreasing sequence of κ values is that it has been observed in [28, 30,
38, 43, 44] that solving the problem (QPκ) becomes slow for small values of κ. As a result,
the problem (QPκ) can be solved more effectively by starting with a larger value of κ and
decreasing κ in steps to its desired value. Since, the unique solution to the problem (QPκ)
is the zero vector for κ ≥ ‖ΦTy‖∞ (‖w‖∞ = maxi ‖wi‖ with wi being the entries of w) [34],
κ . ‖ΦTy‖∞ can be considered as “large” while κ� ‖ΦTy‖∞ can be considered as “small”.
Inspired by this fact, an adaptive continuation scheme was proposed in [30] as summarized in
Algorithm 1.

Algorithm 1 Adaptive Continuation

1: Initialisation: t← 0, xt ← x0

2: yt ← y
3: repeat
4: κt ← max{ζ‖ΦTyt‖∞, κ}, where ζ < 1
5: xt+1 ← solution of (QPκ) for inputs y and Φ with parameter κ = κt and initialized at xt
6: yt+1 ← y −Φxt+1

7: t← t+ 1
8: until κt = κ

It is noted that the continuation is originally inspired by the homotopy technique [46, 47]
which solves the LASSO problem (LSτ ). Fundamentally, the homotopy methods exploit the
piecewise linear property of the solution as a function of the constraint parameter τ to generate
a full path of solutions for a range of values of τ . Specifically, these methods start with τ = 0
(i.e., the corresponding solution is x = 0) and progressively find the next turning point (i.e.,
the next largest value of τ) at which one component of x switches from nonzero to zero or
vice versa. Each iteration of the homotopy methods require a least-squares estimation over
the column submatrix of Φ corresponding to the nonzero component of the current iterate
of x.

3.2.4. Debiasing/Reweighting

Debiasing was introduced for several convex relaxation methods (see e.g., [30, 44]) aiming to
eliminate the signal attenuation due to the presence of the regularization term. Debiasing is
basically a post-processing step to minimize the least-squares objective ‖Φx − y‖22 over the
nonzero elements of the solution obtained from a given convex relaxation algorithm:

min
xI
‖ΦIxI − y‖

2
2 (32)

where I is the set of indices corresponding to nonzero elements in the obtained solution, ΦI

is the column submatrix of Φ corresponding to I, and xI is the subvector of x corresponding
to I. In other words, debiasing is a reweighting procedure over the set of nonzero elements
of the obtained solution x̂ according to the least-squares criterion.

In the following (Section 4.1.5) the debiasing/reweighting idea is extended into a more general
context of ”significant” elements. In particular, the debiasing/reweighting procedure is per-
formed over a set of significant elements in the obtained solution. An element is considered

10
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significant either if it belongs to a group of largest elements or if it is larger than a certain
threshold. Other insignificant elements are set to zero after the debiasing/reweighting scheme.

4. Simulations and Discussion

We now present and discuss numerical simulations to demonstrate the performance of the
convex relaxation methods described in the previous Section. The signals are from rigidly
rotating point scatterers described in Section 2.

4.1. Methods Involving Only the l1 Norm

4.1.1. Simulation Setup

Consider a synthetic two-dimensional radar imaging scenario where a single-frequency CW
monostatic radar illuminates a rotating target. The target rotates around the origin of the
target local coordinate at 40 rad/sec. The target is modelled as a set of point scatterers
specified by their reflectivity (i.e., characterized by the coefficients ρk in (2)) and their locations
(i.e., characterized by the radial distance rk and the angular position ψk). The radar is located
in the far-field of the positive y-direction of the target coordinate operating at the frequency
of 9.5 GHz and the sampling rate of 66 kHz. For this simulation, the target model consists
of 10 groups of points, each group is made of 4 on-grid points placed around a square shape
of various spacings and radial distance from the centre of rotation, as depicted in Fig. 3.
The signal to noise ratio (SNR) is set to 10 dB. The received signal model in (2) is used to
generate the simulated data in one rotation cycle of the target. Fig. 4 plots the magnitudes
of the simulated original signal and the magnitude of one realization of the simulated noise-
corrupted signals in the time domain.

A point-scatterer dictionary is constructed using (1) from a regular grid of atom locations in
the Cartesian coordinate, viz., x ∈ {−50∆x : ∆x : 50∆x} and y ∈ {0 : ∆y : 50∆y}. Here,
∆x = ∆y = λ/2 are the grid step sizes, where λ denotes the radar signal wavelength.

It is also noted that some of the methods cannot handle complex-valued signal directly. There-
fore, the real and imaginary parts of the radar signal are decoupled and concatenated together
to form a new real-valued signal, and the dictionary is decoupled into real and imaginary sub-
matrices to create a new real-valued dictionary matrix as in [48–51]. This conversion has been
used widely in the literature for many radar imaging applications (see, e.g., [48–51]), and is
performed here as a pre-processing step in our simulation.

4.1.2. Results for l1 Minimization

We apply the SPG method [27] to obtain the solutions of the l1 minimization formulation
with various values of ε, i.e., the constraint parameter on the l2 norm of the residual. For the
sake of convenience, the l1 minimization formulation in (9) is given again here:

(BPε) min
x
‖x‖1 subject to ‖Φx− y‖2 ≤ ε.
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Figure 3: Simulated target with 8 square components with each consisting of 4 point scatterers
at the corners.
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Figure 4: Simulated backscattered signal from the target depicted in Fig. 3 versus time.

Fig. 5 shows the normalized l2 norm of the residual, the normalized l1 norm of the solution and
the running time against fε = ε/σ ∈ {0.701, 0.801, 0.901, 1.001, 1.101, 1.201, 1.301} (where σ
is the noise level). Note that the l2 norm of the residual is normalized by the noise level σ and
the l1 norm of the solution is normalized by the l1 norm of the ground-truth solution. Note
also that the results in Fig. 5 are obtained by averaging via 10 Monte Carlo (MC) simulation
runs. It is observed that, for ε > σ, the l2 norm of the residual of the solution agrees with
the corresponding constraint parameter value ε. On the other hand, the SGP method fails to
converge for ε < σ and thus cannot achieve the desired values for the l2 norm of the residual.
In addition, we can observe the trade-off between the signal reconstruction error (i.e., the
l2 norm of the residual) and the sparsity of the solution (i.e., the l1 norm of the solution).
Specifically, the l1 norm of the solution increases as ε decreases. The l1 norm of the solution
approaches the l1 norm of the ground-truth solution as ε approaches the noise level σ. It is
also observed that the SPG method takes longer to compute the solution for smaller value
of ε as expected. In particular, the running time for ε < σ is significantly larger than for
ε > σ since the SPG algorithm in this case only stops when the maximum number of allowed
iteration (viz., 150 iterations) is reached.

Fig. 6 shows the reconstructed signal obtained in the first MC run in the time domain from
0.02 sec to 0.06 sec for each value of ε. It is observed that the reconstructed signal gets closer to
the original signal as ε decreases. In particular, an almost perfect reconstruction is obtained
for fε = 1.001, 0.901, 0.801 and 0.0701. However, good time-domain signal reconstruction

12
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Figure 5: Results for the l1 minimization formulation: the normalized l2 norm of the residual,
the l1 norm of the solution and the running time against fε = ε/σ.

does not always lead to good reconstruction in terms of scatterer imaging as shown in Fig. 7
which shows the corresponding reconstructed scatterer image of the target in comparison
with the ground-truth scatterer image. For too large values of ε, i.e., fε = 1.301, 1.201
and 1.101, correct scatterers are identified but with much lower coefficients than the ground
truth. In contrast, for too small values of ε, i.e., fε = 0.901, 0.801 and 0.701, other false-alarm
scatterers appear and consequently affect the coefficients of the correct scatterers even though
the time-domain signal is almost perfectly reconstructed with these values of ε. For fε = 1.001,
i.e., the constraint parameter ε is set to a value slightly larger than the noise level σ, we
obtain good reconstruction both in time-domain representation as well as in scatterer imaging
representation. The considered imaging problem can be viewed intuitively as a target and
noise separation problem. With an appropriate value of the constraint ε for the signal residual
(i.e., around the noise level), the noise is well separated from the target, leading to a very
nice and clean reconstructed scatterer image as shown in Fig. 7(e). For too small value of ε,
a part of target signal is perceived as noise, and thus leading to weaker scatterers as shown
in Figs. 7(b)–(d). In constrast, for too large value of of ε, a part of noise is now perceived as
target, thus leading to the presence of false-alarm scatterers as shown in Figs. 7(f)–(h).

4.1.3. Results for l1 Regularization

We now investigate the performance of the l1 regularization formulation (QPκ) for various
values of the regularization parameter κ. For the sake of convenience, we recall the formula
for l1 regularization given in Section 3:

(QPκ) min
x

{
1

2
‖Φx− y‖22 + κ‖x‖1

}
.

The GPSR-BB algorithm [44] is used to obtain the solution for the problem (QPκ). Fig. 8 plots
the normalized l2 norm of the residual, the normalized l1 norm of the solution and the running
time averaged via 10 MC runs against fκ = κ/‖ΦTy‖∞ ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 0.9}.
Similar to the results presented in Section 4.1.2, we also observe the trade-off between the the
signal reconstruction error and the sparsity of the solution. In particular, the l2 norm of the
residual increases while the l1 norm of the solution decreases as κ increases. Moreover, it is
also seen from Fig. 8 that solving (QPκ) becomes slower for smaller values of κ.
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(a) Noise-corrupted signal

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
Time (s)

0

0.5

1

1.5

2

2.5

M
ag

ni
tu

de

Original signal
Reconstructed signal

(b) Reconstructed signal (fε = 1.301)
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(c) Reconstructed signal (fε = 1.201)
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(d) Reconstructed signal (fε = 1.101)
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(e) Reconstructed signal (fε = 1.001)
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(f) Reconstructed signal (fε = 0.901)
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(g) Reconstructed signal (fε = 0.801)
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(h) Reconstructed signal (fε = 0.701)

Figure 6: Results for the l1 minimization formulation: time-domain plots of the reconstructed
signals versus the original signal.
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(a) True scatterer plot
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(b) Reconstructed scatterer plot (fε = 1.301)
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(c) Reconstructed scatterer plot (fε = 1.201)
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(d) Reconstructed scatterer plot (fε = 1.101)
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(e) Reconstructed scatterer plot (fε = 1.001)
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(f) Reconstructed scatterer plot (fε = 0.901)
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(g) Reconstructed scatterer plot (fε = 0.801)
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(h) Reconstructed scatterer plot (fε = 0.701)

Figure 7: Results for the l1 minimization formulation: scatterer plots of the extracted atoms
(color bar indicates the magnitudes of the atom coefficients).
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Figure 8: Results for the l1 regularization formulation: the normalized l2 norm of the residual,
the l1 norm of the solution and the running time against fε = ε/σ.

Figs. 9 and 10 plot the reconstructed time-domain signal and the corresponding reconstructed
scatterer image obtained from the first MC run for each value of κ. It is observed from Fig. 9
that better time-domain signal reconstruction is obtained for smaller values of κ. Specifically,
except for the cases of fκ = 0.9 and 0.5 which yield unsatisfactory signal reconstruction, we
obtain similar reconstructed signals, for κ ≤ 0.1, which closely match with the original signal.
However, too small values of λ will reduce the sparsity level in the solution and thus produce
unexpected false-alarm scatterers as shown in Figs. 10(g)-(h). The appearance of false-alarm
scatters in fact significantly affects the estimated coefficient of the correct scatterers. In
particular, the correct scatterers fade away amongst other false-alarm scatterers for fκ = 0.001
as shown in Fig. 10(h). In contrast, not all scatterers can be identified if setting κ too small as
demonstrated in Fig. 10(b) for the case of fκ = 0.9. The values fκ = 0.01 ∼ 0.1 produce fairly
good target reconstruction both in time-domain signal and scatterer imaging representation
as shown in Figs. 10(d)-(f). Moreover, we also observe in Fig. 8 that the l2 norm of the
residual closely achieves the desirable value of the noise level while the l1 norm of the solution
is close to the l1 norm of the ground-truth solution at these values of fκ.

4.1.4. Results for LASSO

We exploit the use of the LASSO formulation (LSτ ) for our considered problem of radar
imaging for rotating target. The LASSO formulation is recalled here for the convenience of
readers:

(LSτ ) min
x
‖Φx− y‖22 subject to ‖x‖1 ≤ τ.

The SPG method [27] is used to solve the problem (LSτ ) for different values of τ , i.e., the
constraint on the l1 norm of the solution.

Simulation results are reported in Figs. 11-13 for τ ∈ {0.625, 0.75, 0.875, 1, 1.125, 1.25, 1.375}.
As in Sections 4.1.2 and 4.1.3, the trade-off between the l2 norm of the residual and the l1
norm of the the solution is also observed for the solution obtained via the LASSO formulation
(see Fig. 11). Fig. 11 also indicates that, as expected, a longer running time is required
to solve the LASSO formulation with larger value of τ . In addition, we can obtain very
good target reconstruction both in time-domain and scatterer imaging representations for
fτ ≥ 1; while, for fτ < 1, correct scatterers are identified but with incorrect coefficients in
the reconstructed scatterer image, leading to poorer performance in the time-domain signal
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(a) Noise-corrupted signal
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(b) Reconstructed signal (fκ = 0.9)
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(c) Reconstructed signal (fκ = 0.5)
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(d) Reconstructed signal (fκ = 0.1)

0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06
Time (s)

0

0.5

1

1.5

2

2.5

M
ag

ni
tu

de

Original signal
Reconstructed signal

(e) Reconstructed signal (fκ = 0.05)
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(f) Reconstructed signal (fκ = 0.01)
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(g) Reconstructed signal (fκ = 0.005)
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(h) Reconstructed signal (fκ = 0.001)

Figure 9: Results for the l1 regularization formulation: time-domain plots of the reconstructed
signals versus the original signal.
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(a) True scatterer plot
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(b) Reconstructed scatterer plot (fκ = 0.9)
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(c) Reconstructed scatterer plot (fκ = 0.5)
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(d) Reconstructed scatterer plot (fκ = 0.1)
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(e) Reconstructed scatterer plot (fκ = 0.05)
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(f) Reconstructed scatterer plot (fκ = 0.01)
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(g) Reconstructed scatterer plot (fκ = 0.005)
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(h) Reconstructed scatterer plot (fκ = 0.001)

Figure 10: Results for the l1 regularization formulation: scatterer plots of the extracted atoms
(color bar indicates the magnitudes of the atom coefficients).
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Figure 11: Results for the LASSO formulation: the normalized l2 norm of the residual, the l1
norm of the solution and the running time against fε = ε/σ.

reconstruction. Moreover, for large values of τ (e.g., fτ = 1.375, false-alarm scatterers start
to arise). We also observed during our simulation tests that SPG method may fail to converge
for too large a value of τ . As observed from Figs. 11-13, it is most appropriate to set τ close to
the l1 norm of the ground-truth solution. In practice, the l1 norm of the ground-truth solution
is generally unknown. However, it is noticed from Fig. 11 that the l2 norm of the residual
tends to converge for fτ > 1 (i.e., the constraint parameter τ is larger than the l1 norm of
the ground-truth solution). Thus we can roughly identify the l1 norm of the ground-truth
solution based on the curvature of the l2 norm of the residual (i.e. around the point at which
the residual’s l2 norm starts to converge).

4.1.5. Debiasing/Reweighting

This section aims to demonstrate the effectiveness of the debiasing/reweighting procedure
to the considered radar imaging problem. In particular, our objective is to use a limited
number of scatterer atoms with significant coefficients to represent the target. The number
of atoms to be retained can be determined by examining the curvature of the magnitude
of the descending sorted solution vector. For illustration, Fig. 14 plots the magnitude of the
solution of the l1 minimization formulation obtained using the SPG algorithm with ε = 0.801σ
after sorting in descending order. A notable drop in the magnitude can be observed at
the index of 40, indicating the number of significant atoms in the solution. Fig. 15 shows
the reconstructed scatterer plot after performing debiasing/reweighting over the 40 identified
most significant atoms in comparison with the original reconstructed scatterer plot without
debiasing/reweighting. The false-alarm scatterers no longer exists as the coefficients of the
insignificant atoms are set to zero. In addition, much better estimates (almost identical to
the ground truth) are obtained for the coefficients of the remaining atoms thanks to the
(least-squares) reweighting process.

4.2. Simulations with the Total Variation Norm

4.2.1. Simulation Setup

We consider a scenario with a piecewise constant target consisting of one L-shape solid object
and two square solid objects rotating around the origin of the target local coordinate at
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(a) Noise-corrupted signal
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(b) Reconstructed signal (fτ = 0.625)
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(c) Reconstructed signal (fτ = 0.75)
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(d) Reconstructed signal (fτ = 0.875)
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(e) Reconstructed signal (fτ = 1)
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(f) Reconstructed signal (fτ = 1.125)
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(g) Reconstructed signal (fτ = 1.25)
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(h) Reconstructed signal (fτ = 1.325)

Figure 12: Results for the LASSO formulation: time-domain plots of the reconstructed signals
versus the original signal.
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(a) True scatterer plot
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(b) Reconstructed scatterer plot (fτ = 0.625)
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(c) Reconstructed scatterer plot (fτ = 0.75)
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(d) Reconstructed scatterer plot (fτ = 0.875)
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(e) Reconstructed scatterer plot (fτ = 1)
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(f) Reconstructed scatterer plot (fτ = 1.125)
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(g) Reconstructed scatterer plot (fτ = 1.25)
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(h) Reconstructed scatterer plot (fτ = 1.325)

Figure 13: Results for the LASSO formulation: scatterer plots of the extracted atoms (color
bar indicates the magnitudes of the atom coefficients).
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Figure 14: The magnitude of the descending sorted solution obtained using the SGP algorithm
with ε = 0.801σ (only the first 200 atoms are plotted).
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(a) Before debiasing/reweighting
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(b) After debiasing/reweighting

Figure 15: Reconstructed scatterer plots before and after applying debiasing/reweighting for
the solution obtained by the SGP algorithm with ε = 0.801σ.

40 rad/sec as depicted in Fig. 16. The same radar parameters as in Section 4.1 are used to
simulate the backscattered signal in one rotation cycle of the target. The SNR is set to 2 dB
in this scenario. Fig. 17 plots the simulated original signal and the simulated noise-corrupted
signal in the time domain.

4.2.2. Results

Figs. 18 and 19 plot the time-domain reconstructed signal and the reconstructed scatterer
images of the solutions, respectively, obtained by the SpaRSA algorithm [30] for the sole l1
regularization in (10), the sole TV regularization in (12) and the mixed l1 and TV regulariz-
ation in (13). For a fair comparison, the regularization parameters in (10), (12) and (13) are
chosen such that the objective functions in (10), (12) and (13) are equal at the true solution,
and the same stopping criterion (i.e., stop when the objective function becomes equal or less
than the same threshold) is used to obtain the solutions. We can see from Fig. 18 that the
reconstructed signals in the time domain obtained via the l1 only regularization, the TV only
regularization and the mixed l1 and TV regularization are similar and closely matched with
the original ground-truth signal. In contrast, those three regularizations perform differently
in the special scatterer representation domain. Since our ultimate objective is to build a
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Figure 16: Simulated target with one L-shape solid object and two square solid objects.
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Figure 17: Simulated backscattered signal from the target depicted in Fig. 16 versus time.
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(a) Noise-corrupted signal
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(b) Reconstructed signal via l1 regularization
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(c) Reconstructed signal via TV regularization
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(d) Reconstructed signal via mixed l1 and TV regular-
ization

Figure 18: Time-domain plots of the reconstructed signals versus the original signal.
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(a) True scatterer plot
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(b) Reconstructed scatterer plot via l1 regularization
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(c) Reconstructed scatterer plot via TV regularization

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Cross-range (m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
ow

n-
ra

ng
e 

(m
)

0

1

2

3

4

5

6

(d) Reconstructed scatterer plot via mixed l1 and TV
regularization

Figure 19: Scatterer plots of the extracted atoms (color bar indicates the magnitudes of the
atom coefficients).

scatterer image of the target, we will focus our discussion on the performance comparison in
the scatterer representation domain.

It is observed in Fig. 19 that the l1 regularization correctly capture the three ground-truth
target objects, however, with the presence of false-alarm objects nearby as well as many other
false-alarm scatterers located randomly all around the place. Although the individual isolated
scatterers can be readily recognized as false-alarms, it is more difficult to determine whether
the nearby false-alarm objects (formed by groups of scatterers clustering together) belong to
the target or not. On the other hand, the target objects are badly smeared out in the scatterer
image produced by the TV regularization. This observation can be explained by noting that
the simulated target is not really a piecewise-constant target. In fact, it is actually more
sparse oriented than piecewise-constant oriented. Note that this type of target, which has both
sparse and piecewise characteristics, commonly occurs in practice (e.g., helicopter blades). It
is shown in Fig. 19 that, the mixed l1 and TV regularization produced the best scatterer
representation image of the target by taking the advantages of both the l1 regularization
and the TV regularization. Specifically, the l1 regularization term promotes the sparsity in
the solution and thus reducing the smearing effect due to the TV regularization. On the
other hand, the TV regularization term promotes the preservation of the edge details and the
removal of unwanted noisy details. As a result, the incorrect false-alarm objects nearby the
true objects as well as other individual isolated false-alarms scatterers in the background are
significantly depressed and almost completely removed. However, it is still an open question
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as to what values of the regularization parameters κ and ν should be selected to produce an
optimal scatterer representation image of the target. This will be considered further in our
future research work.
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(a) Reconstructed time-domain signal
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(b) Reconstructed scatterer plot

Figure 20: Simulation results obtained by OMP for piecewise-constant target.

In addition, we also observe that the orthogonal matching pursuit (OMP) algorithm [52], viz.,
the most popular greedy pursuit method in the literature, does not handle the piecewise-
constant target very well. In particular, it is shown in Fig. 20 that the OMP algorithm results
in an equitably good reconstructed signal in the time domain. However, the OMP algorithm
fails to produce a meaningful scatterer image about the target. On the other hand, we observed
in our simulation (although not shown here) that the OMP algorithm works effectively both
in terms of time-domain signal reconstruction and scatterer imaging representation for the
case of point-scatterer targets appearing in Section 4.1.

4.3. Preliminary Results for Off-Grid Targets

We present preliminary results for the scenario where at least some of the true scatterers do
not lie on the dictionary grid. We now consider a target model similar to Fig.3 of Section 4.1,
except that four groups of points on the right-hand side are shifted by an offset both in the
x- and y-axes, to make them ‘off-grid’.

Figs. 21 shows the simulation results when the offset is 1/10 of the step size of the dictionary
grid. We observe that the reconstructed image starts to degrade, especially in the right-hand
side half region where off-grid scatterers exist. When the offset value is fairly small, as in
this example, we still obtain a reasonable image. However, for larger offset values, such as
at half of the grid size as shown in Fig. 22, the right-hand side part of the reconstructed
scatterer image is severely degraded; spurious scatterers start to appear, even though the
signal reconstruction is still highly satisfactory in the time domain.

The situation becomes even worse for the case of a piecewise-constant target. Fig. 23 shows
the simulation results for the same target model used in Section 4.2, but the target is shifted
by 1/10 grid size both in the x- and y-axes. Such a small offset can still degrade the scatterer
image reconstruction significantly. It is observed from Fig. 23 that numerous other spurious
scatterers appear in the reconstructed scatterer image as well, while some parts of the target
are missing.
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(a) True scatterer plot
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(b) Noise-corrupted signal
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(c) Reconstructed scatterer plot via l1 minimization
(fε = 1.001)
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(d) Reconstructed time-domain signal via l1 minimiz-
ation (fε = 1.001)
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(e) Reconstructed scatterer plot via l1 regularization
(fκ = 0.05)
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(f) Reconstructed time-domain signal via l1 regulariz-
ation (fκ = 0.05)
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(g) Reconstructed scatterer plot via LASSO (fτ = 1)
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(h) Reconstructed time-domain signal via LASSO
(fτ = 1)

Figure 21: Simulation results for the off-grid scenario 1 (offset = 1/10 grid size).
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(a) True scatterer plot
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(b) Noise-corrupted signal
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(c) Reconstructed scatterer plot via l1 minimization
(fε = 1.001)
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(d) Reconstructed time-domain signal via l1 minimiz-
ation (fε = 1.001)
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(e) Reconstructed scatterer plot via l1 regularization
(fκ = 0.05)
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(f) Reconstructed time-domain signal via l1 regulariz-
ation (fκ = 0.05)
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(g) Reconstructed scatterer plot via LASSO (fτ = 1)
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(h) Reconstructed time-domain signal via LASSO
(fτ = 1)

Figure 22: Simulation results for the off-grid scenario 2 (offset=1/2 grid size).
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(a) True scatterer plot
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(b) Noise-corrupted signal
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(c) Reconstructed scatterer plot via l1 regularization
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(d) Reconstructed time-domain signal via l1 regulariz-
ation)
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(e) Reconstructed scatterer plot via mixed l1-TV reg-
ularization
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(f) Reconstructed time-domain signal via mixed l1-TV
regularization

Figure 23: Simulation results for the off-grid scenario 3 (piecewise-constant target).
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A possible measure to alleviate the problem associated with off-grid targets is to reduce the
grid step size of the dictionary parameters. However, we observed in our simulation that
reducing the grid step size leads to a higher correlation with the atoms in the dictionary and
may create multiple solutions even for the case of on-grid targets, where we obtain a perfect
reconstruction in the time-domain signal but a wrong scatterer image of the target in the
spatial domain.

5. Conclusion

Three convex relaxation formulations based on l1 norm were considered including l1 min-
imization, l1 regularization, and LASSO. The simulation results found that these l1 norm
optimization approaches can lead to satisfactory image reconstruction in the time-domain
signal as well as in the scatterer image reconstruction in the spatial domain when appropriate
values of tuning parameters ε, κ and τ are used.

We also observed that the l1 norm optimization approaches becomes less effective for piecewise-
constant (or ‘block’) targets. In such a scenario, the mixed l1 and total variation norm
optimization approach exhibits a better performance in constructing the scatterer image of
the target. In such cases, the l1 regularization term promotes the sparsity in the solution, thus
reducing blurring effects due to the total variation regularization, while the total variation
regularization term promotes the preservation of the edge details and the removal of unwanted
noisy components.

Preliminary results for the case of off-grid targets are also provided. In particular, the imaging
performance may degrade significantly as the offset distances from the true locations of the
scatterers constituting the target to the dictionary grid increase. Reducing the step size of the
dictionary grid is a possible measure to alleviate the problems associated with off-grid targets.
However, decreasing the grid step size may increase the correlation level between atoms in the
dictionary which in turn degrades the performance of convex relaxation algorithms. Further
work is warranted to tackle the off-grid problems, which are almost always the case in real
applications of radar imaging.
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Author: Kutluyil Doğançay (University of South Australia)
Author: Paul E. Berry
Author: Hai-Tan Tran
Rocco Melino
Robert Young
Sandun Kodituwakku
Emma Heading
Si Tran Nguyen

UNCLASSIFIED



UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY GROUP
DOCUMENT CONTROL DATA

1. DLM/CAVEAT (OF DOCUMENT)

2. TITLE

Convex Relaxation Methods: A Review and Application to Sparse
Radar Imaging of Rotating Targets

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED LIMITED

RELEASE USE (L) NEXT TO DOCUMENT CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

4. AUTHORS

Ngoc Hung Nguyen, Kutluyıl Dogancay, Paul E. Berry, and Hai-
Tan Tran

5. CORPORATE AUTHOR

Defence Science and Technology Group
PO Box 1500
Edinburgh, South Australia 5111, Australia

6a. DST GROUP NUMBER

DST-Group–RR–0444

6b. AR NUMBER

AR-016-971

6c. TYPE OF REPORT

Research Report

7. DOCUMENT DATE

September, 2017

8. OBJECTIVE ID 9. TASK NUMBER

N/A

10. TASK SPONSOR

N/A

11. MSTC

Surveillance and Reconnaissance Systems

12. STC

Signatures and Phenomenology

13. DOWNGRADING/DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY

Chief, National Security and ISR Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEASENQUIRIESOUTSIDESTATEDLIMITATIONSSHOULDBEREFERREDTHROUGHDOCUMENTEXCHANGE,POBOX1500,EDINBURGH,SA5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. RESEARCH LIBRARY THESAURUS

Compressive Sensing, Radar Imaging, Non-Cooperative Target Recognition (NCTR)

19. ABSTRACT

In this report we explore the use of sparse signal representation methods in the radar imaging problem of rotating targets and compare
their results. The ultimate goal is to estimate the spatial locations and corresponding reflectivities of the scatterers constituting a
target, based on a signal scattered from it. We pay particular attention to the so-called convex relaxation methods, which presumably
can give the sparsest possible solutions and are computationally tractable while providing provable theoretical performance guarantees.
We provide a comprehensive survey on various convex relaxation problem formulations known to date, as well as known computational
algorithms for solving the optimization problems. By using extensive numerical simulations with simple rotating point targets, we show
that, while many of these methods perform satisfactorily for ‘on-grid’ cases, performance for ‘off-grid’ cases is mostly unsatisfactory,
warranting much further research before they can be efficiently applied to the inverse problem of radar imaging.

UNCLASSIFIED


	Abstract
	Imprint
	Executive Summary
	Authors
	Contents
	Figures
	1 Introduction
	2 The Radar Imaging Problem
	3 A Brief Survey of Convex Relaxation Methods
	3.1 Sparse Approximation Problems
	3.2 Computational Algorithms
	3.2.1 Interior-Point Algorithms
	3.2.2 Gradient Algorithms
	3.2.3 Warm Starting and Adaptive Continuation
	3.2.4 Debiasing/Reweighting


	4 Simulations and Discussion
	4.1 Methods Involving Only the l1 Norm
	4.1.1 Simulation Setup
	4.1.2 Results for l1 Minimization
	4.1.3 Results for l1 Regularization
	4.1.4 Results for LASSO
	4.1.5 Debiasing/Reweighting

	4.2 Simulations with the Total Variation Norm
	4.2.1 Simulation Setup
	4.2.2 Results

	4.3 Preliminary Results for Off-Grid Targets

	5 Conclusion
	6 References
	Distribution List
	Document Control Data

