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ABSTRACT

We investigate the extent to which a high-precision clock might be able to synchronise another
to its own time, when they are part of a network that requires time-stamping events to a
very high precision. Synchronisation at an ultra-fine level is strongly subject to the rules of
relativity: clocks that are at rest in a single inertial frame can (in principle) synchronise each
other to any accuracy required, whereas clocks at rest on Earth or on satellites are not inertial,
and hence cannot necessarily synchronise each other to an arbitrary level of accuracy. Aside
from the standard result that clocks over a wide area of Earth cannot agree on the timing of
events on Earth to better than some tens of nanoseconds (a result which does not contradict
the success of satellite-positioning technology), we discuss simultaneity in detail, and prove a
related and new result for the extent to which two clocks at rest on Earth at the same height
might agree on the meaning of “now”. Although the answer requires no change in current
technology, it must be understood in context. This report describes that context in detail.
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A Study of Relativistic Bounds on Clock

Synchronisation on Earth

Executive Summary

The question of the extent and meaning of clock synchronisation is becoming pertinent as
clocks become ever more accurate, and are used in networks that place increasing demands on
the accuracy of their time-stamps. At such high levels of accuracy, relativity has an important
role in timing analyses. Because both gravity and Earth’s rotation affect a clock’s tick rate
relativistically, the extent to which one clock on Earth can synchronise with another, within
the bounds imposed by relativity, must be addressed. The necessary analysis will not be
straightforward and will require some caveats, because synchronisation can be problematic in
relativity. This scenario differs from the well-understood synchronisation of clocks by, say, a
GPS satellite, where the satellite is acting as a master clock. In this report, we are assuming
that no GPS satellite is available to perform the synchronisation. We must be very careful to
specify the frame in which the synchronisation is being performed.

Simultaneity is an old subject in relativity, but that does not mean that all questions
pertaining to it have long ago been answered. It is well understood for inertial frames, but
it is less straightforward for the non-inertial frames that are relevant to a rotating Earth.
All analysis in this report uses orthodox relativity: that simultaneity is always defined in an
inertial frame, and if no such frame is available, then the next best thing is used if possible:
a series of “momentarily comoving inertial frames”.

In this report, the use of momentarily comoving inertial frames allows us to place a bound
of about 10−19 seconds on the extent to which two clocks at rest on Earth can agree (even in
principle) on the meaning of a “shared now”. This time interval is far smaller than current
accuracies preservable within communications networks—meaning, things are okay for now:
current technology has not advanced to the level where the demands of relativity become
essential to it. Nonetheless, we must not infer that simultaneity can be defined over the whole
of Earth to this level. In particular, clocks that are stationed over a wide area of Earth cannot
agree on the timing of events on Earth to better than some tens of nanoseconds. This report
discusses how these numbers are calculated, what they mean, and why they do not clash with
the success of satellite-positioning technology.

This report contains several appendices that cover well-known concepts in relativistic
timing that I think are not fully explained in the literature, and are more or less absent
from relativity textbooks, since these books tend to avoid discussions of precise timing in a
technological context.
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1. Introduction

Many agencies around the world—both Defence and civilian—have an increasing need for
precise timing. A well-known civilian example of this need is the time-tagging of monetary
transactions, especially when commodities are being bought and sold in real time, meaning
that money is constantly being exchanged and the precise order of transactions is of crucial
importance. These transactions might occur on a global scale. Defence operations tend to be
less global, such as when several entities observe a target, and must time-tag their observations
if these are to be fused.

A network of high-precision clocks will tend to work best if the clocks are synchronised.
Loosely, this means that they all display the same reading at the same time. Even if they do
not all display the same reading, the synchronisation really refers to the fact that given one
reading, we know the readings of all the others at that moment. We will assume that any of
these known differences between readings have been removed. So, we will understand that
“being synchronised” means that the clocks all display the same reading at the same time.
We will also assume that the clocks of our network are fixed relative to each other. If a clock
moves, a difference between its reading and that of other clocks (due to relativity) will be
created, and this difference is generally difficult to accommodate.

Synchronising clocks at a coarse level of, say, microseconds, is a well-understood task
of swapping handshake signals; but at a level of high precision (nanoseconds and beyond),
the notion of “the same time” must be understood carefully, and this requires concepts of
relativity. This notion of deciding or defining which events are simultaneous for entities in
arbitrary motion and in a gravity field is very subtle, and in fact is not fully agreed upon
by physicists. It has, for example, led to a century of debate over how relativity in rotating
systems should be formulated [1], even in the absence of gravity. It makes discussions of ultra-
high-precision timing difficult, and it places a limit on what synchronisation can be achieved
that physicists will generally agree with, even with otherwise perfect clocks.

Speaking purely of current technology and not relativity, clocks that are synchronised will
gradually drift apart, and so must be re-synchronised at various maintenance intervals. Clocks
that are sited close together might be synchronised with a direct link. In both civilian and
Defence applications, widely separated clocks tend to be synchronised using a set of satellites
such as the Global Positioning System (GPS); but to appreciate the details of this synchron-
isation, we must know which frame the clocks are being synchronised in, of which more will
be said later. A GPS receiver co-located with a to-be-synchronised clock can calculate an
accurate time at the location of that clock, and this time is then used to reset the clock’s
display. But to retain an ability to synchronise in the event of GPS being unavailable, users
of a network of widely separated clocks need another way to synchronise, perhaps via some
more direct link that doesn’t rely on GPS.

Regardless of their separation, then, we require an analysis of clocks that are synchronised
via a direct link between them (and not connecting them to, say, a GPS satellite), to see how
this relates to a synchronisation carried out using GPS. We must take care with the meaning of
“time”when discussing these two types of synchronisation, because they can relate to different
frames.

The undisputed fact that a disagreement does exist among physicists regarding the details
of simultaneity is discussed in [1] and [2]. In the current report, I have established some
standard notation and jargon of special relativity in Appendix A, along with a discussion of
why gravity plays a role in the flow of time. In the body of the report, I discuss reference frames
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and difficulties of synchronisation, then calculate the extent to which two clocks on Earth can
define a“shared now”. I discuss details of synchronising Earth-fixed clocks and how this relates
to the Sagnac effect, and then extend the analysis to include gravity. Including gravity for a
real Earth makes everything less well defined, and so although some discussion of gravity is
included, the special relativistic bounds established here can be treated as optimistic. Further
relevant topics are included as appendices. Although these topics are mostly well known, they
are more or less absent from relativity textbooks (since these seldom discuss timing), and are
difficult to find even in precise-timing literature.

2. Simultaneity and the Definition of a Frame

We are given two “ideal clocks”, meaning ones that keep time perfectly. Then, within the
bounds of relativity, how closely can one synchronise with the other? Aside from any relevant
physics, a preliminary answer is: we might aim to synchronise them only to the level of our
understanding or agreement on the concept of simultaneity. Simultaneity is well defined for
inertial frames, but its meaning for non-inertial motion has not found universal agreement.
I take simultaneity to be a fundamental feature in special relativity, originally described by
Einstein; its definition accords with physical intuition, and is a fixed concept that is not open
to being redefined arbitrarily.

Probably the most important argument in favour of this definition of simultaneity as
originally put forward by Einstein (and used throughout this report), is that it is validated
experimentally. Einstein’s definition of simultaneity can be inserted into the mathematics
of the uniformly accelerated frame (see Section 2.2), and then into discussions of gravity
proper, via Einstein’s Equivalence Principle. When this is done, the predictions of Einstein’s
simultaneity for the readings on a set of clocks turn out to match the predictions of weak-field
general relativity in a small region of space; and these predictions are verified by modern
measurements. Full details are given in [3].

In contrast, many precise-timing practitioners, and some physicists, believe that simultan-
eity can be redefined in whatever way one chooses [4]. Such re-definitions can probably never
dovetail with general relativity, in which case they are worthless. I think that the belief that
simultaneity is arbitrary renders it meaningless, and also that such arbitrariness contradicts
the tenets of relativity at a most basic and obvious level. If we allow an arbitrary definition
even within the simplicity of an inertial frame, then we essentially create a set of meaningless
and mutually contradictory statements that are of no use to anyone.

Why is the belief so widespread that simultaneity is arbitrary, given my argument above
about its experimental validation? I think the reason is that my argument rests on a knowledge
of the uniformly accelerated frame. This frame is discussed using arcane mathematics in
dusty corners of a few books on relativity. But any real discussion of its full worth—as a flat-
spacetime approximation to the frame of an everyday laboratory—is, surprisingly, essentially
absent from relativity courses and textbooks.

Finally, despite the best efforts of textbook authors, a belief can still be found on the
fringes of physics that two events are deemed to be simultaneous by a single observer if they
are merely seen at the same time, irrespective of how far away each of them is. This belief is
in disagreement with the most basic physics, and should have no place in journal papers; and
yet, it was put forward as recently as 2017 [5, 6].

2
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2.1. Reference Frames

Simultaneity is bound to the definition of a reference frame. A reference frame, or simply
“frame”, is a collection of observers who each record the positions and times of objects and
events, each only in their close vicinity, with the following two conditions satisfied:

1. Each observer measures all other observers to be at fixed locations relative to each other.
Their fixed separation defines their common ruler.

2. All observers agree on simultaneity. That is, if two events are simultaneous for one
observer, then they are simultaneous for all observers. This defines their common clock.

A frame is usefully pictured as a lattice that is populated by a continuum of observers,
each occupying a fixed point on the lattice and holding their own clock, who each record
the positions and times of events only in their “very close” vicinity. These observers can be
envisaged as continuously sending their data to a master observer, who continuously collates
this information to form a global picture of all events in spacetime. It’s normal to consider
“observer” and “clock” to be synonymous, and so we will use “clock” when it simplifies the
language in the descriptions that follow.

Non-relativistic frames obey the above two conditions only up to some approximation.
Consider the two most widely used arenas in which discussions of precise timing are placed.
First is the “Earth-Centred Inertial” frame (ECI), which is effectively the frame of the distant
stars, in which Earth turns once per sidereal day. The ECI is, to a high degree of precision,
a globally inertial frame. Second is the “Earth-Centred Earth-Fixed” frame (ECEF), which
is the “everyday world” in which Earth does not turn. We’ll see shortly that the ECEF fails
the second condition above to a small extent, relativistically speaking, in that its inhabitants
cannot agree on simultaneity to high accuracy. But, for brevity, we still call it a frame.1

When synchronising clocks in a given frame, we must accept that they will then not
be synchronised in other frames. Whether this affects any practical precise timing will be
discussed in this report. Being different frames, the ECI and ECEF have different standards
of simultaneity.

Relativity’s definition of simultaneity accords with our intuition: it says that two events
are simultaneous if and only if two signals of equal speeds that were sent from halfway between
the sites of those events will intercept the events. This idea of equal speeds immediately calls
in a discussion of light travelling in an inertial frame. The subject of whether light’s speed is
independent of direction in an inertial frame is an old one, but we will take an inertial frame
to admit no privileged directions, and so will assume that light’s speed is independent of its
direction of travel in such a frame.

Special relativity’s postulated invariance of all inertial frames dictates that we must be
able to synchronise a distant clock with our own by sending it a signal that sets its display to
be half of the return-trip time of the signal. This synchronisation is shown in an inertial frame
in Figure 1. This figure shows the world lines of two clocks, at rest relative to each other.
These are ideal clocks that are considered to tick identically in the inertial frame, since this
frame has no privileged position at which time might run faster than at some other position.
The blue clock’s time is called tblue, and the red clock’s time is called tred. Blue sends out a
light signal at tblue = 0, and it knows from experience that a light signal bounced from Red

1It can, of course, certainly be treated as a frame in non-relativistic analyses such as flying aircraft over
Earth’s surface, or calculating the footprint and observed motion of orbiting satellites.
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Figure 1: The procedure of synchronising two clocks that have constant and equal velocities in
an inertial frame

takes 2 seconds for the return trip. In that case, the signal sent by Blue is an instruction to
set Red to display tred = 1. Events A and B are deemed to be simultaneous by Blue, because
Blue says that the outbound and inbound light signals travelled equal distances with equal
speeds. A similar analysis will show that in this case where the clocks have equal velocities, A
and B are also deemed to be simultaneous by Red. Red and Blue thus agree on simultaneity.

The geometry of the world lines and axes in Figure 1 makes it immediately clear that in
the inertial frame plotted in the figure, the two events A and B occur at different times. In
fact, if we fill the space with a continuum of clocks that all share the same velocity (as is
usually done in special relativity), then it’s easy to see that all events on a line joining A
and B (in both directions out to arbitrary distances) will be deemed by all the clocks to be
simultaneous with A and B. This line is the common “line of simultaneity” through A and
through B: the set of all events that are simultaneous with either of A and B, for the case
of one spatial dimension in Figure 1. If we augment Figure 1 with another space dimension
(a y axis normal to the page), all events simultaneous with A and B will lie on a “plane of
simultaneity”, whose normal lies in the plane of the page.

A set of clocks with equal velocities in an inertial frame will all agree on which events are
simultaneous and which are not, and this property, along with the fact that they each measure
the others to be at a fixed displacement from themselves, allows them to be considered as a
frame. Probably only one other frame in special relativity exists for which all clocks agree on
the simultaneity of events: the “uniformly accelerated frame”, discussed in Section 2.2.

The procedure of synchronising clocks with constant and equal velocities in Figure 1 is
sometimes referred to as “Einstein synchronisation”. I think the term is misleading, because
it can imply that synchronisation is an arbitrary procedure that can be redefined to suit our
tastes or to get us out of a perceived bind, which is precisely what is done in [7]. Rather,
synchronisation is a natural by-product of a deep and fundamental tenet of all of physics:
that all inertial frames share an equal footing. It is imposed on us by physics. It is not an
arbitrary choice that Einstein made, but instead is a completely natural and intuitive way

4
UNCLASSIFIED



UNCLASSIFIED
DST-Group–RR–0454

that he made use of the observer-independent speed of light to draw meaning from a set of
clocks.

Figure 1 is a basic tool in developing the main ideas of special relativity. In Appendix A,
I provide a primer on the Lorentz transform to establish the notation and jargon used in
this report. In that appendix, I establish through conventional arguments the four key in-
gredients of special relativity. These are time dilation, length contraction, different levels of
synchronisation, and describing sets of simultaneous events (such as the line of simultaneity
in Figure 1). In particular, in this report I am interested in different levels of synchronisation,
and describing sets of simultaneous events. A key result from Appendix A is that in one space
dimension, an inertial observer with velocity v draws parallel lines of simultaneity with slope
v through all events; that is, the line joining A and B in Figure 1 has slope v. In two space
dimensions, this line becomes a plane, where any (t, x, y) on this plane has its (t, x) elements
on this line, with y arbitrary.

It’s important to distinguish between a frame and a set of coordinates, since doing so is the
reason why the Lorentz transform exists at all, as opposed to the usual Galilei transform that
relates inertial frames in the non-relativistic limit. Although we can always write a Galilei
transform in a relativistic context, the coordinates that it produces will not behave in the
way that we expect and require good coordinates to behave. In particular, two events that
are simultaneous (such as A and B in Figure 1) will not necessarily have the same Galilei
time coordinate; and two events with the same Galilei time coordinate will not necessarily be
simultaneous. This makes the Galilei time coordinate generally useless to describe a set of
events; for example, ordering the events in a discussion about causality will be difficult when
this coordinate is used. This requirement that a good set of coordinates must obey is not well
know in the field of precision timing, whose practitioners tend to insist that because relativity
can be expressed in tensor language (which is independent of the choice of coordinates), then
any choice of coordinates is as good as any other choice. For example, reference [8] makes no
distinction between arbitrary coordinate choices (simple one-to-one maps of numbers, devoid
of physical content) and the real physics of relativity, which is built on establishing simultaneity
and distinguishing real frames from trivial coordinate choices. It maintains that coordinate
choices are sufficient in the subject. But this is akin to saying that a Galilei transform is
sufficient in modern physics, with the Lorentz transform being just a distraction: clearly, a
wrong statement. Tensors are certainly useful for writing equations in a form that doesn’t
single out a particular choice of coordinates, but this does not imply that any choice of
coordinates is as physically meaningful as any other. This is proved by the above discussion:
the coordinates that result from a Galilei transform are coordinates for sure, but they do not
have the physical meaning that Lorentz coordinates have.

2.2. Some Observer Sets and their Simultaneity Standards

Below is a short list of observer sets in the absence of gravity, whose motions follow an
ever-increasing degree of complexity. For each set, we discuss their standards of simultaneity
and hence whether they form a frame. Proofs of the various statements are in principle
straightforward, involving lines of simultaneity (slope v) or planes of simultaneity drawn
through various events; some of this can be done qualitatively by eye. Quantitative proofs for
the uniformly accelerated frame are omitted because their details can be somewhat involved,
but these can be found elsewhere [9, 3].
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space

time

“7 p.m.”

“8 p.m.”

“7 p.m.”

“8 p.m.”

Figure 2: The blue and red lines are the world lines of a blue clock and a red clock in one
space dimension. These clocks are moving in the inertial frame of the picture at
the same constant velocity, and are synchronised in that frame. At the lower-left
event marked with a small disk, Blue displays 7 p.m. At this event, Blue’s line of
simultaneity (the set of events it regards as simultaneous, according to the rules of
relativity) is drawn as a blue dashed line. Blue says “When I display 7 p.m., Red
displays 8 p.m.” Red’s line of simultaneity (red dashed) at Red’s 8 p.m. is identical
to Blue’s line of simultaneity, and so Red says “When I display 8 p.m., Blue displays
7 p.m.” Blue and Red thus share a common standard (line) of simultaneity, and
can be shown each to measure the other to be at a fixed distance. Hence they define
a frame. Because they do, they are at liberty to set Red’s display back by one hour,
so that all simultaneous events are given the same time coordinate by them.

Inertial Observers: All observers who share a common constant velocity will agree on which
events are simultaneous, and will measure each other as having a fixed relative position.
An example of simultaneity is shown in Figure 2, which shows the motion of two ob-
servers in an inertial frame. Observers “Blue” and “Red” agree on the simultaneity of all
events. They can synchronise their clocks by having Red set his clock back one hour.
Then, each can say“When my clock displays 7 p.m., the other clock also displays 7 p.m.”
In the inertial frame of Figure 2, Blue’s clock will then display more than Red’s clock,
by precisely the amount vL′/c2 of (A.6). The ability of these observers to agree on
simultaneity, combined with the fact that they each measure the other to be at a fixed
distance, means that they inhabit their own frame, which is of course also inertial in
this case.

Identically Accelerated Observers: The next level of complexity beyond the inertial ob-
servers of Figure 2 involves two identically accelerated observers. Do they agree on the
simultaneity of events? The basic idea of simultaneity in relativity are based on inertial
observers. Relativity makes headway with non-inertial observers by postulating that
local measurements made by a non-inertial observer are always identical to measure-
ments of the same events that are made in his “momentarily co-moving inertial frame”
(MCIF), which is the inertial frame that for a brief moment is at rest relative to him: the
frame of an inertial observer whose world line is tangential to the accelerated observer’s

6
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space

time

A
“7 p.m.”

B

“8 p.m.”

C
“5 p.m.”

Figure 3: At event A, Blue displays 7 p.m. Blue says “When I display 7 p.m., Red displays
8 p.m.” But Red says “When I display 8 p.m., Blue displays 5 p.m.” These observers
do not share a common standard (line) of simultaneity (they don’t have a “shared
now”)—and also, it can shown that they don’t each measure the other to be at a
fixed distance. Hence they do not form a frame.

world line at the event of interest [10]. So, from moment to moment, the accelerated
observer occupies a succession of MCIFs. We’ll see shortly that this postulate of using
MCIFs is to some extent validated experimentally.

Consider two identically accelerated observers in Figure 3, whose clocks have been
synchronised in the inertial frame of the picture. As described in the caption, Blue and
Red do not share a common standard of simultaneity, and hence do not form a frame.
(It can also be shown that they each measure the other’s distance to be increasing.
Recall that a requirement for a frame is that its observers measure each other to be at
fixed relative locations.)

Uniformly Accelerated Observers: By definition, these observers each feel a constant ac-
celeration indefinitely. (This does not mean that each observer accelerates at a constant
rate indefinitely; a uniformly accelerated observer’s world line in an inertial frame is a
hyperbola, and his speed asymptotes to the speed of light.) It turns out that a set of
uniformly accelerated observers whose individual accelerations are set in just the right
way by their distances from each other will all share a common standard of simultaneity.
But if they want their clocks all to display the same value at the same time for them,
the clocks to the right in the figure (which have lower accelerations than those to the
left) must be “geared down in the factory” to tick slower than those at the left.

These observers are shown as the solid world lines in Figure 4, with the dashed lines
being their lines of simultaneity. It can be shown that these observers each measure all
of the other uniformly accelerated observers to be at fixed locations. The fact that they
agree on simultaneity and are relatively fixed means that they form a frame, known as a
uniformly accelerated frame. It is presumably the only other type of “large-scale” frame
besides an inertial frame, although—unlike an inertial frame—the uniformly accelerated
frame is not global: coordinates cannot be allocated outside the wedge of spacetime
shown in Figure 4. In particular, the uniformly accelerated observers call the origin of
the single space dimension in Figure 4 a “horizon”, because the event at the origin of
the figure’s axes is simultaneous with all events in their frame, time as they perceive it
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space

time

Figure 4: At all events marked with a black dot, each observer agrees that all other black-dot
events occur at that moment. The observers’ clocks tick at different rates, but these
clocks can be geared in such a way that all observers can always say “When my clock
displays 7 p.m., all other observers’ clocks display 7 p.m.” These observers also turn
out each to measure the other to be at a fixed distance. Hence they form a frame: a
“uniformly accelerated frame”.

at this point has slowed to a stop and, to its left, that time runs backwards. But no
information can ever reach them from this part of spacetime.

The uniformly accelerated frame with its “pseudo gravity” is the stepping stone,
via Einstein’s Equivalence Principle, to a consideration of real gravity. For example,
mimicking the gearing-down of clocks to the right in the figure, GPS satellites are set
to tick slightly slowly in the factory before they are placed in orbit. The success of GPS
and classic experiments such as that performed by Pound, Rebka, and Snider can be
taken as experimental validation of the MCIF postulate.

Observers in Rotational Motion: Consider a set of observers fixed to a disk that rotates
in an inertial frame. This scenario has been discussed ever since the birth of special
relativity, without yet finding a consensus among relativity specialists. Traditionally,
analyses of simultaneity on the rotating disk treat a set of MCIFs of the observers fixed
to its rim. They then apply a series of one-space-dimensional Lorentz transforms to con-
clude, after going once around the disk, that some events in the future of each observer
are in some sense simultaneous with his present. This contradiction is noted, but seldom
explored in any detail; the conclusion is simply that rotation does not produce a valid
frame. This much is agreed upon by relativists and precise-timing specialists. I agree
that rotation does not produce a valid frame, but I maintain that traditional analyses
of this subject arrive at the right conclusion via an invalid use of MCIFs, since the one-
space-dimensional Lorentz transform was never designed to analyse a “wrapping” of a
single space dimension around the periphery of the two-space-dimensional rotating disk.
If it was designed for that, then we would have to accept the idea that some events in
the future of each observer are simultaneous with his present.

In reference [11], I have argued that to analyse a disk rotating in two dimensions, it
is not relativistically valid to apply a one-space-dimensional analysis to create a helix

8
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plane of simultaneity
of clock 0 at black dot

t

x
y

clock 0

90

180

270

Figure 5: A set of helical world lines of four clocks on Earth’s Equator, or on a rotating disk.
The plane of simultaneity belongs to the event on the black world line marked by a
black dot, as discussed in the paragraph after (A.11).

of simultaneity around the cylinder. Instead, we must apply the two-space-dimensional
Lorentz transform to MCIFs, to construct the plane of simultaneity at any given event,
using the same (conventional) approach as that followed in Appendix A for one space
dimension to produce the line of simultaneity (A.11). This plane is determined from
moment to moment by the latest MCIF. With this analysis, I find that observers fixed
to the disk do not share a common standard of simultaneity, and hence they do not form
a frame. No events in the future of any observer turn out to be simultaneous with his
present.

This idea of creating a plane of simultaneity using the Lorentz transform is shown in
Figure 5. There we see the helical world lines of four clocks fixed to the periphery of the
disk that is rotating in the inertial frame of the figure. These could be interpreted as the
world lines of four clocks on Earth’s Equator, with no gravity to complicate the analysis.
Suppose these four clocks have been synchronised in the ECI (which is thus the frame of
Figure 5): the ECI says that at all times, the four clocks all display the same value. But
the clocks themselves give different meanings to “now”. Call the clock fixed at latitude
0 “clock 0” (whose world line is, say, black in Figure 5), and similarly for the clocks
at latitudes 90◦ (red world line), 180◦ (green), and 270◦ (blue). We construct clock 0’s
plane of simultaneity at the event where it displays zero, and find the intersection events
of this plane with the world lines of the other three clocks, noting their times at these
intersection events. Recall the one-space-dimensional case in (A.11), where a line of
simultaneity has a slope on a t-versus-x spacetime diagram of v, where v is the clock’s
velocity. In two space dimensions, the plane of simultaneity has the analogous tilt in
spacetime; thus, as it extends a distance R (Earth’s radius) to clock 90’s world line, it
rises along the time axis by vR (or vR/c2 with c restored). The helical world lines of
the comparatively slowly rotating clocks on Earth’s Equator (speed 465 m/s in the ECI)
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are almost parallel to the t axis of Figure 5 [proof: see the analysis around (3.2)]. So
this rise is

vR

c2
=

465 m/s× 6378 km

9× 1016 m2/s2
≃ 33 ns . (2.1)

That is, when clock 0 displays zero, it says “At this moment, clock 90’s displays 33
nanoseconds,2 clock 180 displays zero, and (by symmetry) clock 270 displays −33 ns.”
But this reasoning applies around the circle. In particular, clocks 0 and 180 always
agree that each displays the same time as the other,3 but they disagree about which
of clocks 90 and 270 displays the later time. This means they don’t share a common
standard of simultaneity, and hence the observers on the disk cannot constitute a fully
relativistically bona-fide “rotating frame”.

From the earliest days of special relativity, researchers have tried to analyse observers
in rotational motion by making a rotational Galilei transform from an inertial frame.
When treated as a possible change of frame, this use of a Galilei transform runs contrary
to relativity: after all, central to special relativity is the replacement of the Galilei trans-
form with the Lorentz transform, because the Lorentz transform produces coordinates
obeying the relativistic notion of simultaneity. As early as 1922, it was recognised that a
Galilei transform has no a-priori physical relevance to rotation [12], and yet even today,
the transform is still being described by precise-timing practitioners as a relativistic
change of frame: see, for example, equation (15) of [13] and also [14]. The transform is
a change of coordinates, but that does not make it a change of frame. Instead, in this
context the transform produces a set of what might be called rotating coordinates for
the inertial frame in which the rotating system is rotating. These coordinates are not
guaranteed to have any true physical relevance to the rotating system. In the context of
Earth, they are a way of plastering ECI coordinates onto observers who are fixed in the
ECEF, and this is certainly what is done to create our modern world’s timing. But they
are not true coordinates of a rotating frame. Some of this discussion is in line with that
of Corum in [15]. Corum decries the use of the Galilei transform, but perhaps doesn’t
make the point that this transform is, at best, an attempt to create a set of rotating
coordinates (not a rotating frame) in lieu of the fact that rotating frames don’t exist.
But this distinction that I am making here, of rotating coordinates versus a rotating
frame, is probably completely unknown in the field of precise timing. See my further
comments on this at the start of Section 6.

Observers on Earth: The oblate Earth with its gravity is a much more complicated example
of rotational motion than the above disk. But because analyses of the disk have never
lead to a consensus on, for example, the relativistic geometry of the disk, we should not
expect the subject of precise timing on a rotating Earth to be in any advanced state.
This is belied by the analyses found in many precise-timing papers, which wrongly
assume (as pointed out above) that any arbitrary change of coordinates produces a new
frame.

2More accurately, the helical shape of the world lines means that clock 90 turns out to be measured as located
at approximately (90 + 1.4× 10−10)◦. This measured skewing of clock positions around Earth’s Equator is
insignificant here.

3This phrase shows that although the typical times being discussed here, along with the form of (2.1), might
suggest the Sagnac effect of Section 4.1, they are not the Sagnac effect, since the Sagnac effect involves time
differences that increase linearly with longitude, and incorporates no relativity.
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The calculation of (2.1) is significant, because it says that simultaneity in the ECEF fails
at the level of tens of nanoseconds. This large time“discrepancy”does not affect the operation
of GPS. The reason is that the calculations of GPS occur in the ECI. That is, GPS is based
on the ECI time of emission of each satellite signal; it does not use the time at each satellite
that the receiver calls “now” when it receives a signal. In other words, GPS does not use the
time of the event at each satellite that is deemed by some observer to be simultaneous with
the reception of the signal from that satellite at the receiver.

The definition of a frame as a set of observers who all share a common standard of simul-
taneity and measure no relative motion is well understood in classical mechanics, where the
meaning of simultaneity is taken for granted in a non-relativistic way. But even in relativity
textbooks, the definition of a frame is not commonly stated or explored. No doubt this is
because special-relativity textbooks place almost all of their emphasis on inertial frames, so
that the question of whether more complicated motion can produce a frame is virtually never
addressed. Even the well-established subject of uniformly accelerated frames is given just
a passing mention in most relativity texts—despite the fact that the uniformly accelerated
frame is the springboard, via Einstein’s Equivalence Principle, to a discussion of gravity in
relativity. Referring to Pais’s biography of Einstein [16], it seems that when Einstein first dis-
cussed acceleration in relativity, his aim was to make an immediate link to gravity. Modern
writers have followed suit, using only very short discussions of acceleration to segue quickly
into a discussion of gravity proper. I think that such abbreviated analyses bypass the richness
and subtlety of uniformly accelerated motion as a subject in its own right that can shed light
on other areas of relativity [9, 3].

2.3. Preliminary Comment on Including Gravity

The idea of simultaneity rests on a signal of constant speed being bounced from another clock.
In non-inertial systems, light’s speed is a function of its position. That turns out to offer no
impediment to simultaneity being defined in the uniformly accelerated frame via MCIFs,
although the details require some work, and rest on the geometry of the flat spacetime in
which the uniformly accelerated frame resides. But when gravity is introduced to the picture,
spacetime becomes curved, and the concept of simultaneity becomes far more problematic.
We will take the position that the presence of gravity on a rotating Earth renders the lines
and planes of simultaneity somewhat fuzzy. The result is that the numbers we produce in
the following pages should be interpreted as optimistic estimates of quantities that are not
especially well defined.

3. Simultaneity in the ECEF

In this section we examine the details of simultaneity relating to a set of clocks on Earth, and
satellites orbiting Earth.

Equation (2.1) had the result that if clocks 0, 90, 180, and 270 all display the same time
(“have the same age”) in the ECI, then in the ECEF, clock 0 will say that in comparison to
itself:

– clock 90 is 33 ns older,

UNCLASSIFIED
11



DST-Group–RR–0454

UNCLASSIFIED

– clock 180 is the same age, and

– clock 270 is 33 ns younger.

In particular, clock 180 will maintain that the ages of clocks 90 and 270 are the reverse of
what clock 0 says they are. There is thus a 66 ns disagreement between clocks 0 and 180
about the ages of clocks 90 and 270. (And similarly, of course, there is a 66 ns disagreement
between clocks 90 and 270 about the ages of clocks 0 and 180.) Suppose that these four clocks
were replaced by satellites orbiting all in the same plane and spaced 90◦ apart. We require the
analogous calculation to (2.1). The satellites are each at a distance of R = 26,000 km from
Earth’s centre. A satellite’s speed in the ECI is v =

√
GM/R, where G is the gravitational

constant and M is Earth’s mass (GM ≃ 4×1014 SI units). Then, analogous to (2.1), we write

vR

c2
=

√
GM

R
× R

c2
=

√
GMR

c2
=

√
4×1014 × 26×106

(3×108)2
≃ 1.1 µs . (3.1)

This calculation is only approximately applicable to GPS satellites, since these don’t all orbit
in the same plane. It’s clear that from the viewpoint of one such satellite, the other satellites’
clocks are mismatched by up to a microsecond. As discussed near the end of Section 2.2, this
doesn’t affect the operation of GPS because GPS satellites are synchronised in the ECI and
the calculations that a GPS receiver runs to establish its position are ECI calculations. The
fact that GPS satellites are not synchronised in the MCIF of any one of them is simply not
relevant to the calculation performed by a receiver. The GPS receiver uses the ECI time of
emission of each satellite’s signal, and what the time is “now” at each satellite, whether in the
frame of the receiver or of another satellite, is immaterial.

These values of 33 nanoseconds and 1.1 microseconds relate to the time displayed “now”
on a distant clock. But more pertinent to two clocks attempting to synchronise is the extent
to which they agree on the meaning of “now”, since this might affect their ability to perform
a data hand-shake as part of the synchronisation. To analyse this, we now extend the clock
comparison in Figure 3 to two space dimensions to examine how well two clocks on Earth (say,
at the same latitude) might be synchronised in the absence of gravity; that is, we calculate
the analogous quantity to what might be called Figure 3’s “synchronisation disagreement” of
7 p.m. − 5 p.m. = 2 hours. The two clocks at a single latitude on Earth can be treated as
being on the rim of a disk in two spatial dimensions that rotates in the ECI. The lines of
simultaneity in Figure 3 become the planes of simultaneity in Figure 5.

To begin, a big simplification can be made. Consider the helical world line of a single
clock, say, on the Equator, as drawn in the frame of the distant stars over the course of one
sidereal day in Figure 6. One sidereal day is a few minutes less than one solar day of 24 hours,
but we can approximate one sidereal day as one solar day here. The height of the cylinder on
which this world line is drawn is

cylinder height ≃ c× 24 hours ≃ 2.6×1010 km. (3.2)

The width of the cylinder is

cylinder diameter = Earth’s diameter ≃ 13,000 km. (3.3)

The cylinder thus has a height-to-diameter ratio of about 2 million. This allows us to ap-
proximate the helix as a straight line when analysing time increments of much less than one
day—which is valid here, because (2.1) gives typical time increments of tens of nanoseconds

12
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width = Earth’s diameter ≃ 13,000 km

t

x

y

t = 0

height ≃
2.6×1010 km

Figure 6: The (blue) world line of a clock on the Equator traces out a full revolution in one
sidereal day. The cylinder surface is drawn merely to aid in the visualisation.

x

y

t

Equator

ϕ

Figure 7: The world lines of two clocks on the Equator, which is modelled as a disk in the
inertial frame of the distant stars

at most. (A related analysis that uses fully helical world lines appears in [11]; but it is far
more complicated than the discussion here, and relies on an equation resembling the Kepler
equation of orbital theory, which cannot be solved in terms of standard functions.)

Now consider two clocks, “Blue” and “Red”, fixed to the Equator. The blue clock is at
longitude 0, and the red clock is at longitude ϕ. Parts of their world lines spanning a small time
interval are drawn in Figure 7 around the time t = 0, in the inertial frame of the distant stars.
At t = 0, Blue is on the x axis, and its position and this time define an event A (analogous
to event A in Figure 3). At this event A we will do the following, as shown in Figure 8:

1. Construct the blue plane of simultaneity of Blue (analogous to the blue dashed line in
Figure 3).

2. Find the event B where this blue plane intersects the red world line of Red (analogous
to event B in Figure 3).

3. Construct the red plane of simultaneity of Red at event B (analogous to the red dashed
line in Figure 3).

4. Find the event C where this red plane intersects the blue world line of Blue (analogous
to event C in Figure 3).
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x
y

tEquator

ϕ

Tsync

A

B

C

Figure 8: The two-space-dimensions version of Figure 3. The blue and red dashed lines in
Figure 3 have here become blue and red planes, respectively.

space

time
world line, slope 1/v

normal, slope −1/v

line of simultaneity, slope v

Figure 9: In one space dimension, the slopes of the world line, the line of simultaneity, and
the normal to that line of simultaneity are written in terms of the velocity v of the
clock on the world line

The difference between the times of events A and C in the inertial frame defines the extent to
which the two clocks can agree on simultaneity. We will calculate this difference in times for
several values of clock separation ϕ, and also for some satellites, which can be treated in the
same formalism as tracing out helical world lines of a larger radius than that of Earth, and
whose world lines can also be approximated as straight for the relevant time increments here.

In what follows, we will use a geometrical view of spacetime that uses the standard
3-component formalism of vectors in three spatial dimensions. That is, we will order the
components of our coordinate vectors as (x, y, t), because the t axis here takes the place of
the z axis in the familiar analyses of 3-space. The basic tool that we use and build on is the
one-space-dimension picture in Figure 9. The line of simultaneity in that figure is where the
plane of simultaneity in two spatial dimensions cuts the ty plane at t = 0. Using that idea,
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start with event A, which has coordinates⎡⎣x
y
t

⎤⎦
A

=

⎡⎣R
0
0

⎤⎦ . (3.4)

Making no distinction between row and column arrays for our coordinate vectors, we have

normal to blue plane of simultaneity at A = (0, 1,−1/v) . (3.5)

The blue plane is the set of the following events:

blue plane: t = vy , x = anything. (3.6)

We must find B, where this blue plane intersects the red world line. If the Equator has radius
R, the red world line is the set of events⎡⎣x

y
t

⎤⎦
red

=

⎡⎣R cosϕ
R sinϕ

0

⎤⎦+ λnred , (3.7)

where the parameter λ takes on all real values, and nred is any direction vector of the red
world line. In particular, nred is found by rotating any direction vector of the blue world line
(nblue) through angle ϕ right-handed around the t axis. Start with

nblue = (0, 1, 1/v) . (3.8)

Now write

s ≡ sinϕ , c ≡ cosϕ . (3.9)

The corresponding direction vector of the red world line is then

nred =

⎡⎣ c −s 0
s c 0
0 0 1

⎤⎦nblue =

⎡⎣ c −s 0
s c 0
0 0 1

⎤⎦⎡⎣ 0
1

1/v

⎤⎦ =

⎡⎣ −s
c

1/v

⎤⎦ . (3.10)

Hence, from (3.7), the red world line has equation⎡⎣x
y
t

⎤⎦
red

=

⎡⎣Rc
Rs
0

⎤⎦+ λ

⎡⎣ −s
c

1/v

⎤⎦ . (3.11)

Where is this cut by the blue plane (3.6)? The relation t = vy gives, from (3.11),

λ/v = v(Rs+ λc) , in which case λ =
Rs

1/v2 − c
at event B. (3.12)

Event B thus has coordinates, from (3.11),⎡⎣x
y
t

⎤⎦
B

=

⎡⎣Rc
Rs
0

⎤⎦+
Rs

1/v2 − c

⎡⎣ −s
c

1/v

⎤⎦ =
R

1− cv2

⎡⎣ c− v2

s
sv

⎤⎦ . (3.13)
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Now we require the red plane of simultaneity at B. The normal to this plane is the rotated
version of (3.5):

normal to red plane of simultaneity at B =

⎡⎣ c −s 0
s c 0
0 0 1

⎤⎦⎡⎣ 0
1

−1/v

⎤⎦ =

⎡⎣ −s
c

−1/v

⎤⎦ . (3.14)

This red plane thus has equation

−sx+ cy − t/v = α (a constant). (3.15)

The constant α is found by noting that event B lies on this red plane. Specifically, (3.15)
combines with (3.13) to give

α =
R

1− cv2
[
− s(c− v2) + cs− sv/v

]
=

Rs(v2 − 1)

1− cv2
. (3.16)

Combining (3.15) and (3.16), the red plane of simultaneity through B has equation

red plane: − sx+ cy − t/v =
Rs(v2 − 1)

1− cv2
. (3.17)

We now intersect this red plane with the blue world line to find event C. Using (3.8), the
blue world line has equation ⎡⎣x

y
t

⎤⎦
blue

=

⎡⎣R
0
0

⎤⎦+ λ1

⎡⎣ 0
1

1/v

⎤⎦ (3.18)

for a parameter λ1 that takes on all real values. Intersect this with the red plane (3.17) to
give event C:

−sR+ cλ1 − λ1/v
2 =

Rs(v2 − 1)

1− cv2
at event C. (3.19)

It follows that

λ1 =
Rs(c− 1)

(1/v2 − c)2
at event C. (3.20)

Hence, (3.18) gives event C’s coordinates as⎡⎣x
y
t

⎤⎦
C

=

⎡⎣R
0
0

⎤⎦+
Rs(c− 1)

(1/v2 − c)2

⎡⎣ 0
1

1/v

⎤⎦ . (3.21)

In particular, the time of event C in the inertial frame is

tC =
Rs(c− 1)

(1/v2 − c)2v
. (3.22)

Clearly, for v > 0 (which corresponds to Earth’s natural spin) and ϕ ⩽ 180◦, tC ⩽ 0. Note too
that tA = 0. The difference between the times of events A and C for ϕ < 180◦ is called Tsync

in Figure 8:

Tsync ≡ tA − tC =
R sinϕ (1− cosϕ)

(1/v2 − cosϕ)2 v
. (3.23)
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Figure 10: Tsync versus disk angle ϕ (or longitude on Earth), from (3.25)

Tsync quantifies the fundamental disagreement in simultaneity or synchronisation for clocks
that are a longitude ϕ apart, fixed to the edge of a rotating disk of radius R, and whose speed
(in the inertial frame in which the disk’s centre is at rest) is much less than the speed of light,
because we approximated the blue and red world lines as straight.

For Earth’s Equator, v ≃ 465 m s−1/(3×108 ms−1) ≃ 1.6×10−6 ≪ 1. So write

1/v2 − cosϕ ≃ 1/v2 . (3.24)

Then (3.23) becomes
Tsync ≃ Rv3 sinϕ (1− cosϕ) . (3.25)

We wish to convert (3.25) to use conventional dimensions in its input and output. From now,
drop the use of the “s, c” shorthand of (3.9), and denote the speed of light by c. To convert
(3.25) to conventional dimensions, divide it by c4:

Tsync ≃
Rv3

c4
sinϕ (1− cosϕ) , where all variables have conventional dimensions. (3.26)

A plot of Tsync versus longitude ϕ is shown in Figure 10, using a value of R = 6400 km (Earth’s
radius). The maximum value of around 10−19 seconds occurs at ϕ = 120◦, and it drops to
zero very quickly as ϕ tends to zero. Indeed, using the small-ϕ approximations

sinϕ ≃ ϕ , cosϕ ≃ 1− ϕ2/2 , (3.27)

it’s clear that Tsync ∝ ϕ3 for small ϕ. Such small values of Tsync lie far beyond the accuracy of
current communications technology, so we conclude that a mismatch in the meaning of “now”
will have no effect on any handshakes currently made between clocks on Earth.

What is the value of Tsync for clocks that are on satellites, each at a distance R from
Earth’s centre? Circular motion is sufficient to analyse here, in which case a satellite’s speed
in the ECI is v =

√
GM/R [which is far less than the speed of light, so (3.24) still holds]; so

substitute that value of v into (3.26) to give

Tsync ≃
(GM)3/2 sinϕ (1− cosϕ)√

R c4
. (3.28)

GPS satellites have R ≃ 26,000 km. Use GM ≃ 4×1014 SI units and choose the worst-case
value of ϕ = 120◦. Then,

Tsync ≃ 2.5×10−16 s. (3.29)
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For low Earth-orbit satellites (R ≃ 7000 km), a similar calculation gives Tsync ≃ 5×10−16 s.

The above instances of Tsync say that clocks fixed to Earth’s surface or on satellites have a
very small mismatch in what they say “is happening now”, and this presumably sets a limit to
the efficacy of a handshake between their clocks to attempt a synchronisation procedure. But
this analysis should not be construed as saying that these observers can agree on the times
of all events—even those occurring on Earth—to this accuracy. For example, for “clock 0”
and “clock 180” that lie on opposite sides of the Equator (ϕ = 180◦), equation (3.26) says
that Tsync = 0. [This value is easily seen without any mathematics, because the plane of
simultaneity of clock 0 at an ECI time of t = 0 in Figure 5 will intersect the world line of
clock 180 at the same ECI time of t = 0, and vice versa.] This means that events A and C in
Figure 8 coincide for clocks 0 and 180. Hence those clocks certainly agree on the meaning of
“now”; but they do not agree on the time displayed on a clock that is fixed at, say, ϕ = 90◦.
Indeed, as mentioned just after (2.1) and again just before (3.1), clocks 0 and 180 will disagree
on the age of clock 90 by 66 nanoseconds. As stated earlier, there is nothing that can be done
to “fix” this; it is a result of relativity. So even though Tsync is exactly zero for clocks 0 and
180, that only means that they agree on the meaning of “now”; but they disagree at the level
of tens of nanoseconds on the simultaneity of events that are some distance from both of them.
As pointed out near the end of Section 2.2 and also just after equation (3.1), this has no effect
on the operation of GPS.

4. Details of Synchronising Clocks

It’s important to appreciate that because a set of clocks that is rotating in an inertial frame
cannot be synchronised such that they all allocate the same time coordinate to an event that
they all agree to be happening“now”, a rotating system is not a true frame in relativity, and so
constructing coordinates for it is problematic [11]. So, although the ECEF is not a true frame,
in practice such a set of rotating observers is labelled with the coordinates of a well-defined
frame such as the ECI. This is in fact what is done in practice. Here are two ways in which
two clocks at rest in the ECEF might be synchronised to ECI time, excluding any discussion
of gravity for now.

An external master clock is used. The clocks both receive a single signal from a master
clock based on a satellite. Each notes their own time of reception of the signal. Knowing
their own positions and the satellite’s position gives all the necessary timing information
that allows them to synchronise with the master clock’s ECI time. In the world of GPS,
this is called “common-view time transfer”.

One clock synchronises the other. This is a more subtle procedure, because the clock
doing the synchronising must use a time (ECI) that is not its own “proper time”. This
method of synchronisation might be the only option in the event that common-view
GPS signals are not available. If the clock doing the synchronising does attempt to
synchronise as best it can with another clock to an “ECEF time”, it must be aware that
if it communicates with the other clock using, say, light, then that light is not necessarily
travelling at speed c, because the synchronisation is being performed in a non-inertial
frame.
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space

time

blue (master) clock red clock

“t1” “t1+δ”

T

“t2”= t1+δ+T

“t3”“t3−δ”

T
“t4”= t3−δ+T

Figure 11: Synchronising relatively stationary clocks in a frame in which light’s speed is inde-
pendent of direction. The blue clock exchanges a light pulse with the red clock to
determine the value of δ, the unknown amount by which Red’s display is initially
ahead of Blue’s display. The light pulse takes an unknown time T to travel in each
direction. The quantities in quotes are the readings on the clocks—not the frame’s
time of those events.

In the next few pages, we describe standard procedures for synchronising two clocks to the
time of an inertial frame (in which they may or may not be at rest). Known in the timing world
as the IEEE 1588 standard, it is really just a practical way of implementing the procedure
described back in Figure 1. Consider first two clocks in an inertial frame, that wish to
synchronise with each other so that their time displays give a fully valid time from a relativistic
point of view. Figure 11 shows a plot of time versus separation of these clocks in their inertial
frame, in which light’s speed is independent of its direction of motion. The clocks are separated
by an unknown but fixed distance. The blue clock is the master, and we require to set the
red clock to display the same time as the blue. Initially the clocks might display different
numbers: we suppose that Red is always ahead of Blue by an unknown amount δ, which we
require to measure: subtracting δ from Red’s display will accomplish the synchronisation.
When Blue displays a time t1, it sends a light pulse to Red. This transmission takes some
unknown time T . The light pulse reaches Red when that clock displays a time t2. At some
later time when Red displays t3, Red sends a light pulse back to Blue, which arrives when
Blue displays t4. All readings t1, t2, t3, and t4 are recorded. For convenience, define two
numbers α and β from the measured readings:

α ≡ t2 − t1 = δ + T ,

β ≡ t4 − t3 = −δ + T . (4.1)

These equations invert to give

T =
α+ β

2
, δ =

α− β

2
. (4.2)

The offset δ is now subtracted from Red’s display to accomplish the synchronisation. We have
the added bonus of measuring the clocks’ separation cT .

The IEEE 1588 procedure assumes the speed of light is independent of direction. The
rotating Earth is not inertial; as discussed next, the speed of light in the ECEF does depend
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ω

θ R

T1

T2

12

Figure 12: The Sagnac effect. The spinning disk above is shown in an inertial frame. Each
black disk is a clock.

on direction. But as discussed earlier in Section 4, we can choose to synchronise clocks on a
rotating Earth in the inertial ECI frame. In that case, we can use IEEE 1588, provided we
take Earth’s rotation into account. We discuss this in the next sections.

4.1. The Sagnac Effect

The Sagnac effect results from sending two light pulses in opposite directions around a loop
that is rotating in, say, an inertial frame, and measuring the flight time of each pulse. In
the inertial frame, the two pulses travel at the same speed through different distances to the
emitter/receiver, and so one of them will complete its trip before the other. In the non-inertial
“frame” in which the loop is at rest, both pulses travel the same path and hence the same
distance; but because one pulse completes its trip before the other, we conclude that they
have different speeds. No relativity is required to derive the Sagnac effect.

Suppose clocks 1 and 2 in Figure 12 (shown as small black disks) are fixed to a spinning
disk, viewed from an inertial frame. The disk has radius R and rotates with angular speed ω
in the inertial frame, in which case each clock has velocity v = Rω in the inertial frame. The
clocks are a distance apart along the rim of D = Rθ. The inertial frame measures a time T1

for the signal emitted by 1 to be received by 2, and likewise a time T2 for the signal emitted
by 2 to be received by 1. Suppose the pulses travel in a vacuum, and hence both have speed c
in the inertial frame of the figure.

Consider the pulse sent from clock 1 to clock 2. The distance it travels equals the fixed
distance around the disk between the clocks plus the extra distance that clock 2 has moved
away from the pulse during the transit time:

cT 1

total distance
light travels
in inertial
frame

= D

disk
separation
of clocks

+ vT1

distance clock 2
recedes during
transit time

. (4.3)

It follows that

T1 =
D

c− v
. (4.4)
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When v ≪ c, (4.4) becomes

T1 =
D

c
× 1

1− v/c
≃ D(1 + v/c)

c
=

D

c
+

Dv

c2
. (4.5)

For the opposing pulse sent from clock 2 to clock 1, the distance that the pulse travels is
shorter than the fixed distance around the disk between the clocks by the amount that clock 1
moves toward the pulse during the transit time:

cT 2

total distance
light travels
in inertial
frame

= D

disk
separation
of clocks

− vT2

distance clock 1
approaches during

transit time

. (4.6)

This leads to

T2 =
D

c+ v
. (4.7)

When v ≪ c, this becomes

T2 ≃
D

c
− Dv

c2
. (4.8)

The difference between these two transit times is

T1 − T2 ≃ 2Dv/c2. (4.9)

The fact that T1 ̸= T2 is called the Sagnac effect. It is not a relativistic effect, since the above
derivation would be valid even if relativity had never been discovered—we are simply using
the fact that light has some speed denoted c in the ECI.4

Suppose the observers are co-located on Earth’s Equator and exchanging light pulses “the
long way around”. Then,

R = 6378 km, v = 465 m/s, θ = 2π . (4.10)

Hence (4.5) and (4.8) give{
T1

T2

}
(Earth’s Equator) ≃ 2πR

c
± 2πRv

c2
≃ 2πR

c
± 207 ns. (4.11)

In the ECI, a pulse of light sent east around the world on the Equator (see T1) will take 207 ns
longer to reach its point of origin than we would have expected had we thought that Earth
was not spinning. (Clocks on Earth are in a gravity field and are moving in the ECI, but the
relativistic slowing that results is negligible compared to the value of 207 ns.) The Sagnac
effect can thus be used to measure an object’s spin rate, making it useful in modern inertial
navigation systems.

An observer who is also at rest on the disk will conclude that, because clocks 1 and 2 have
a fixed separation and one pulse completes a full circuit before the other, the speed of light
must depend on its direction of travel around the disk.5 There is no problem with this, of

4This disproves the comment in [17] that says the presence of c2 means a calculation incorporates relativity.
5From the viewpoint of this observer’s accelerated frame, light slows when it moves counter to the direction

of perceived motion of the distant stars, and light speeds up when it moves with the distant stars. This is
entirely normal: the same effect arises when we imagine spinning around on the spot, and asking what is
happening to light rays that are travelling across the Moon’s surface. From our rotating point of view, they
(along with the Moon itself) are travelling much faster than c. But when measured locally (that is, by an
observer who is standing on the Moon), they move with the usual speed c.
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Earth perimeter

tECI

D

“t1” “t1+δ”

T1
“t2” = t1+δ+T1

“t3”“t3−δ”

T2
“t4” = t3−δ+T2

v v

Figure 13: The modification of Figure 11 to synchronise Earth-fixed clocks to ECI time

course, since an observer fixed to the disk is not inertial, and so relativity does not prescribe
light’s speed to be c when measured by that observer. But we must not assume that an ECEF
observer says that light’s speed is c− v east [recalling (4.4)] and c+ v west [(4.7)], because
ECEF observers have a non-trivially evolving plane of simultaneity (recall Figure 5). Indeed,
the rotating-disk analysis of [11] suggests that these speeds c∓ v are only averages in each
direction for trips around the entire planet. That reference focusses on the position of the
plane of simultaneity drawn in Figure 5, and calculates where this plane intersects the helical
world lines of the relevant clocks and light pulses to answer the question “Where are the light
pulses now?” from moment to moment. What emerges from that non-trivial analysis is that
the standard Sagnac calculations presented above in the ECI give a form of average of a set
of speeds pertinent to the ECEF. For example, from the viewpoint of an ECEF observer,
the speed of an east-bound pulse in the small-v limit turns out to be c at the location of
the observer, and c− 2v on the other side of the disk: compare these two speeds with the
ECI Sagnac value of c− v in (4.4). The fact that the analysis in [11] says that light will be
measured to have speed c in any direction in a laboratory experiment on Earth is just as well,
since confusing ECEF and ECI in the Sagnac analysis would lead us to expect that such a
measured speed will be anywhere in the range c− v to c+ v depending on its direction of
travel, where v ≃ 465 m/s. In 1972, the speed of light was measured in the laboratory to be
299,792,456.2 ± 1.1 m/s [18], which is within 1 m/s of the standard value c = 299,792,458 m/s.
This measurement supports the analysis in [11].

4.2. Synchronising Earth-Fixed Clocks in the ECI

Because clocks cannot be synchronised in the ECEF, we settle for something less: that they
be synchronised in the ECI. This is done by modifying Figure 11 to incorporate the Sagnac
effect. Refer to Figure 13, which is an ECI representation of two clocks, at (say) the same
latitude on Earth, exchanging timing signals in the manner of Figure 11. Because the clocks
are drawn in the ECI, they have speed v due to Earth’s rotation. Appendix C.3 shows that
light moves over Earth’s surface with an ECI speed of approximately c+ v2/(2c), which we
approximate by c since v ≪ c. The clocks are a distance D apart, as shown in Figure 12. This
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space

time

clock 1 (master clock)

clock 2

“t1” “t1+δ”

TA
“t2 = t1+δ+TA”

“t3”“t3−δ”

TB
“t4 = t3−δ+TB”

Figure 14: A rotating disk isn’t inertial, and so for an observer on the disk, light’s speed de-
pends on its direction. Thus, compared to the inertial setup of Figure 11, we allow
for different transmission times TA, TB, of the light pulses. The pulses themselves
might have a position-dependent speed, so their world lines are drawn curved.

setup allows us to use the results of Section 4.1. Equation (4.1) is then modified to

α ≡ t2 − t1 = δ + T1
(4.4)

δ +D/(c− v) ,

β ≡ t4 − t3 = −δ + T2
(4.7) −δ +D/(c+ v) . (4.12)

These equations invert to give

D =
(α+ β)(c2 − v2)

2c
, δ =

α− β

2
− v(α+ β)

2c
. (4.13)

Compare this with (4.2), which applies to synchronising clocks at rest in a shared inertial
frame: those clocks agree that they display the same time. The clocks in Figure 13 will not
agree that they display the same time, because they are being synchronised to the time of
a frame in which they are moving. Nonetheless, when v = 0, their frame becomes the ECI,
and so it makes sense that the zero-v limit of δ in (4.13) is (4.2). The Sagnac effect is not a
standard part of the IEEE 1588 procedure, and it must be implemented in the way of (4.13)
if such accuracy is required.

Attempting to Synchronise within the ECEF

It must be stressed that the above procedure in Figure 13 synchronises clocks in the ECI, not
the ECEF. Although clocks cannot be synchronised in the ECEF, for the purpose of a lab
experiment it might well be that two clocks are required to agree with each other’s time in an
approximation to a “local piece” of the ECEF. The clocks are now defined to be at rest, and it
might then be thought that the Sagnac effect could be incorporated into the calculation of δ
in Figure 11 in the following way. First, Figure 11 might be redrawn as Figure 14, where the
outbound and inbound signals are now not assumed to have the same speed (in accordance
with Sagnac in the ECEF). The analogue of (4.1) is then

α ≡ t2 − t1 = δ + TA ,

β ≡ t4 − t3 = −δ + TB . (4.14)
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Solving these equations for δ gives

δ =
α− β + TB − TA

2
. (4.15)

What is TB − TA? We would be applying relativity wrongly if we thought that it differed from
T2 − T1 in (4.9) merely by a time-dilation factor of γ = 1/

√
1− v2/c2 (which is approximately

1 + 10−12 on the Equator, so is negligible for all current purposes). This is because we
have not made allowance for an “out-of-synchrony” amount similar to (2.1), which is tens of
nanoseconds. But we can barely do even that: even drawing Figure 14 becomes problematic,
because its standard time–space setup is tied closely to a global standard of simultaneity,
which simply does not exist for rotating observers.

We might try to make do as best we can with an analysis that makes no reference to the
ECI, and assumes that the ECEF is somewhat well defined. To that end, we might borrow
from (4.4) and (4.7) to write

TA =
D

average speed of eastbound light in ECEF
,

TB =
D

average speed of westbound light in ECEF
. (4.16)

But we should not assume that the eastbound and westbound speeds of light in the ECEF
are c− v and c+ v respectively. Recall the discussion following (4.11), which refers to the
work in [11]. We will calculate TA − TB, which then compares directly with T1 − T2 in (4.9).
Implementing the full expressions in [11] for the speed of light as measured by an observer
fixed to a rotating disk is difficult, since they use an angular coordinate that is not trivially
related to longitude on a disk or on Earth. But when |v| ≪ c, equation (44) of [11] says that
the light speeds on the disk are approximately

speed of light in ECEF on Equator ≃ c∓ v (1− cos θ)

{
east

west.
(4.17)

The angular coordinate θ has a difficult interpretation, but it is approximately θ ≃ D/R. In
that case, when the clocks are separated by a distance D that is somewhat less than the disk
radius R, we can use cos θ ≃ 1− θ2/2 to write (4.17) as

speed of light ≃ c∓ vD2

2R2
≡ c∓ α

{
east

west,
(4.18)

where α ≡ vD2/(2R2) ≪ c. We might then use (4.16) to write

TA − TB ≃ D

c− α
− D

c+ α
≃ 2Dα

c2
=

vD3

c2R2
. (4.19)

Compare this to T1 − T2 in (4.9):

TA − TB

T1 − T2
=

D2

2R2
≪ 1 inside a lab. (4.20)

Table 1 shows comparison values of TA − TB and T1 − T2 for some clock separations D of
interest, on Earth’s Equator. The point here is that if we do attempt to synchronise two
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Table 1: Comparison of values of TA − TB and T1 − T2 for some clock separations D of in-
terest on Earth’s Equator, using R = 6378 km and v = 465 m/s. Strictly speaking,
the analysis attempts to be applicable to a “small” region only; so, in practice, D
should perhaps not be chosen as large as the tens or hundreds of kilometres in the
table

D: D 1 km 10 km 100 km 1000 km

TA − TB (ns): vD3/(c2R2) 1.3×10−10 1.3×10−7 1.3×10−4 0.13

T1 − T2 (ns): 2vD/c2 0.0103 0.103 1.03 10.3

clocks to some form of local ECEF time using the IEEE 1588 procedure, the “Sagnac off-
set” (TB − TA)/2 in (4.15) is far smaller than what would result if the incorrect expression
(T2 − T1)/2 was used instead. For example, the table says that over a kilometre, the standard
Sagnac offset is about 10 picoseconds, and the above analysis says that this offset should not
be applied to any synchronisation procedure.

Transmitting Light through a Fibre

Equations (4.5) and (4.8) give the correction ±Dv/c2 needed due to Earth’s rotation when
transmitting timing information with a light pulse. In fact, this correction is unchanged to
first order in v/c if the light is transmitted through a fibre.

This can be seen as follows. Suppose that light travels through a fibre in the ECEF at a
speed of cF , where “F” mean fibre. Refer to Figure 12, and say that the light travelling from
clock 1 to clock 2 (taking time T1) travels at speed cI1 in the inertial frame of that figure (“I”
stands for inertial frame). Light travelling from clock 2 to clock 1 (taking time T2) travels
at speed cI2. These speeds need not equal c because the light is travelling through a fibre.
Equations (4.4) and (4.7) are modified to

T1 =
D

cI1 − v
, T2 =

D

cI2 + v
. (4.21)

How are cI1 and cI2 related to cF ? It’s not clear to what extent adding velocities in the
usual relativistic fashion is valid when rotation is involved, given that the circumference of
the rotating disk is not contracted in the inertial frame. But we suppose that this question
introduces an uncertainty at the level of a factor of γ = 1/

√
1− v2/c2 . In that case, denoting

relativistic velocity addition by ⊕ leads to

cI1 = cF⊕ v =
cF + v

1 + cF v/c2
, −cI2 = −cF⊕ v =

−cF + v

1− cF v/c2
. (4.22)

To first order in v/c, these become

cI1 ≃ cF + v − cF
2
v/c2 , cI2 ≃ cF − v + cF

2
v/c2 . (4.23)

Placing these into (4.21) and keeping to first order in v/c finally produces

T1 − T2 ≃ 2Dv/c2. (4.24)
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This is identical to (4.9). This result is well known in devices that use the Sagnac effect to
detect rotation, by running light through optical fibre. But at an ultra fine level of accuracy it
should be questioned, because the relativistic addition of velocities used above is only valid for
inertial frames, whereas the spinning devices used in Sagnac accelerometers are not inertial;
for example, the relevant lengths in these devices are not Lorentz contracted, and hence don’t
obey the usual simple rules of relativistic addition of velocities. No well-known work has been
done in this difficult and specialised area of relativity.

4.3. Carrying a Clock on a Rotating Earth

Suppose we have a set of clocks that are fixed to the rim of a disk that rotates in an inertial
frame, and they are synchronised in this frame (say, the ECI). We now carry one of them
to the location of another clock and compare their times. They will no longer agree because
their average speeds in the ECI have been different. By how much do their displays differ?
Note that the following analysis is necessarily relativistic. Despite this, it is often confused
with the Sagnac effect in precise-timing literature, as discussed in Appendix B.1.

Suppose the disk rotates “eastward” in the ECI such that the clocks all have velocity v > 0
in the ECI. Initially, all display zero in the ECI. One of these clocks (“clock 1”) is moved with
velocity V relative to the disk through a displacement D on the disk’s edge to arrive at the
location of “clock 0”. V and D are positive for eastward motion of the clock. (Note that unlike
the situation of Section 4.1 that used a distance D > 0, here D is a displacement and so can
be negative.) Clock 1’s reading t1 is then compared with the reading t0 of clock 0. We require
t0 − t1.

The ECI time for clock 1 to move to the location of clock 0 is

ECI time for trip =
displacement of clock 1 on disk

velocity of clock 1 on disk
=

D

V
. (4.25)

The times elapsed on clocks 0 and 1 during this trip are each reduced from this time D/V by
each clock’s gamma factor in the ECI, γ0 and γ1:

t0 =
D

V γ0
, t1 =

D

V γ1
. (4.26)

Hence

t0 − t1 =
D

V

(
1

γ0
− 1

γ1

)
. (4.27)

We know that clock 0 moves at velocity v in the ECI, in which case

1

γ0
=

√
1− v2

c2
≃ 1− v2

2c2
, (4.28)

where the last term results if we assume v ≪ c, which is certainly true for Earth’s rotation. If
we assume small speeds, relativistic velocity addition can be approximated by non-relativistic
velocity addition,6 and so

1

γ1
=

√
1− (v + V )2

c2
≃ 1− (v + V )2

2c2
. (4.29)

6In fact, adding velocities relativistically in a rotating system is problematic and beyond the scope of this
analysis. I am not aware of any discussion of it, or of more complex situations that include gravity, in the
literature.
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Equation (4.27) becomes

t0 − t1 =
D

V

(
1− v2

2c2
− 1 +

(v + V )2

2c2

)
=

D

c2

(
v +

V

2

)
. (4.30)

Here are some examples that all use a disk that is Earth’s Equatorial slice (radius 6378 km),
and which spins once in a sidereal day (hence v = 465 m/s).

1. Clock 1 does a full circuit east at a vanishingly small speed on the disk. Here
V = 0, and (4.30) becomes, using SI units throughout,

t0 − t1 =
Dv

c2
=

2π × 6378×103 × 465

9×1016
seconds ≃ 207 ns. (4.31)

That is, clock 1 that was moved east will be 207 ns behind the other clocks after a full
circuit. This is because it has moved faster than the other clocks in the ECI (the inertial
frame in which this relativistic analysis holds), and so has been affected more strongly
by time dilation.

2. Clock 1 does a full circuit west at a vanishingly small speed on the disk. This
is the same as item 1 above, except that D is now negative:

t0 − t1 =
Dv

c2
=

−2π × 6378×103 × 465

9×1016
seconds ≃ −207 ns. (4.32)

The westward-transported clock will end up ahead of the other clocks by 207 ns. This
is because it has travelled slower than the other clocks in the ECI, and so has not been
affected as much by time dilation.

3. Clock 1 does a full circuit east at V = 100 km/h.

t0 − t1 =
D

c2

(
v +

V

2

)
=

2π × 6378×103

9×1016

(
465 +

100,000

2× 3600

)
seconds ≃ 213 ns. (4.33)

[The previous version of this report had a numerical error in (4.33), which produced its
erroneous result of 219 ns.]

4. Clock 1 does a full circuit west at V = −100 km/h.

t0 − t1 =
D

c2

(
v +

V

2

)
=

−2π × 6378×103

9×1016

(
465− 100,000

2× 3600

)
seconds ≃ −201 ns.

(4.34)
[The previous version of this report had a numerical error in (4.34), which produced
its erroneous result of −195 ns.] The time differences for these last two scenarios don’t
have the same magnitude because time dilation is not linear in speed. (Remember that
the gamma factor uses the speed in the ECI, not the speed on the disk.)

5. Clock 1 moves 10 km east at V = 50 km/h.

t0 − t1 =
D

c2

(
v +

V

2

)
=

10,000

9×1016

(
465 +

50,000

2× 3600

)
seconds ≃ 0.05 ns. (4.35)

This eastward-transported clock has thus lost 0.05 ns. This is a small amount by the
needs of modern clocks, but is useful as an indicator of what can be expected in practice.

The above analysis shows the extent to which a transported clock will gain or lose time;
but even so, none of it addresses the simple fact that clocks on a rotating Earth cannot be
synchronised.
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4.4. TAI and the Date Line

Appendix C introduces the time on Earth’s geoid, known as TAI. Reference [19] states that
a suggestion has been made that a need exists for a discontinuity in TAI to be placed at the
International Date Line, although it gives no details. I argue there that any such suggestion is
based on a wrong application of relativity to precise timing. (The fact that TAI incorporates
gravity is irrelevant to the current discussion, since the same ideas apply to clocks fixed to
the edge of a disk rotating in an inertial frame far from any gravity.)

First, picture the set of clocks shown in Figure 5. These are fixed to the edge of a disk
that rotates in an inertial frame, and can be envisaged as being fixed to Earth’s Equator,
which rotates in the ECI. If the clocks are all synchronised in the ECI, then they will not be
synchronised relative to each other. The Lorentz transform describing the MCIF at each event
on the Equator produces a set of planes of simultaneity, one of which is shown in Figure 5.
This plane results from applying the two-space-dimensional Lorentz transform to the MCIF
of clock 0: it is the approach used in [11] and is the bread and butter of special relativity:
constructing MCIFs and Lorentz transforms. In Figure 5, with all clocks synchronised in
the ECI, when clock 0 displays time 0, clock 0 says that clock 90 displays 33 nanoseconds,
clock 180 displays 0, and clock 270 displays −33 nanoseconds.

In contrast, the standard precise-timing approach to this set of clocks has been to apply
a chain of one-space-dimensional Lorentz transforms around the Equator. With reference to
equation (A.8): clock 0 then maintains that clock 1 reads ahead by approximately vL/c2,
where v ≃ 465 m/s is the clocks’ speed in the ECI, L is their separation, and because v ≪ c,
we are ignoring the squared gamma factor of (A.8). Hence, clock 0 supposedly maintains
that clock 1 reads ahead of clock 0 by vL/c2 ≃ 0.576 ns. Similarly, clock 1 maintains that
clock 2 reads ahead of clock 1 by 0.576 ns, and so on, until we get to clock 359, which
maintains that clock 0 reads ahead by the same amount. The upshot of this chaining together
of one-space-dimensional Lorentz transforms is a build-up of time differences that amounts
to 360× 0.576 ns = 207 ns back at clock 0.7

This approach of the precise-timing community was in fact first put forward a century ago
in discussions of the rotating disk: see [1] for details. Special relativity has evolved since then
to treat MCIFs with much more care. The problem with the one-space-dimensional argument
above is that it chains together a set of MCIFs in a way that produces a contradiction, in
that the first MCIF ends up as saying that “now” is simultaneous with a moment 207 ns into
its own future. This alone should indicate that chaining MCIFs together in this one-space-
dimensional way is not valid; yet, the precise-timing community persists with such a model.
The use of MCIFs in relativity is far more subtle than that: they must be sewn together
with care even in the simplest non-inertial frame, the uniformly accelerated frame described
in Section 2.2.

The above (mis)use of MCIFs has led some in the precise-timing community to suggest that
a need exists for a discontinuity in TAI to be placed at the International Date Line [19]. But
such a discontinuity would be a disaster, because the very existence of that 207 ns discontinuity
is based on a wrong application of relativity: namely, using a chain of one-space-dimensional
Lorentz transforms when relativity calls for a single two-space-dimensional Lorentz transform,
which produces no build-up of time going around the Equator. The two-space-dimensional
transform simply means that such clocks cannot be synchronised in any sort of “ECEF frame”.

7Despite the appearance of the 207 ns (well known in the Sagnac effect), this is not the Sagnac effect, because
the Sagnac effect contains no relativity, whereas the above scenario is built on the relativity of simultaneity.
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For any one observer in Figure 5, no discontinuity exists; the problem is only that different
observers have different standards of simultaneity. Relativity makes no excuses for this dis-
agreement in simultaneity, and making TAI discontinuous along some chosen meridian will
not “fix” that. Nothing here needs fixing.

5. Clock Rates with Gravity Present

Earth’s gravity affects clocks greatly, such that when two of these interact over large differences
in altitude, their timing rates can be markedly different. Appendix A gives some background
to calculating the flow of time as a function of altitude. In particular, we will use the weak-field
metric (A.22) of Appendix A.2 to calculate some clock rates of interest. Use of this metric is
certainly conventional, and probably quite sufficient, in the field of precise timing.

As an example of using the weak-field metric to investigate a clock’s timing, suppose that
we have two clocks. One is fixed to Earth’s surface at sea level, and the other is fixed at the
top of a tower, one kilometre vertically above the first. After one day, what is the difference
in their displayed times? What about after one million years?

These two clocks are at latitude λ. The one at sea level (“height 0”) counts out a time
∆τ0. The other, at height h above this clock, counts out a time ∆τh. As Earth turns, for
each clock r is constant. We require ∆τh −∆τ0 when, say, ∆τ0 equals one million years and
h equals one kilometre. Begin with

∆τh −∆τ0 = ∆τ0

(
∆τh
∆τ0

− 1

)
. (5.1)

The weak-field metric is appropriate here. Its version in Schwarzschild coordinates, (A.21),
will shortly turn out to be useful. Omitting factors of G and c (which are easily restored
later), this is

dτ2 ≃ (1 + 2Φ) dt2 − (1− 2Φ) dr2 − r2 dθ2 − r2 sin2 θ dϕ2 . (5.2)

We can assume Earth is spherical; thus Φ = −M/r where M is Earth’s mass. This metric
gives the square of the proper time dτ between two events

(t, r, θ, ϕ) and (t+ dt, r + dr, θ + dθ, ϕ+ dϕ) . (5.3)

Because both r and θ are fixed for our two clocks, the square of the proper time between any
two such events that a clock is present at will then be

dτ2 ≃ (1− 2M/r) dt2 − r2 sin2 θ dϕ2 . (5.4)

Now apply this equation to each clock. The lower clock is at r = R, Earth’s radius. The
square of the proper time for this clock between two infinitesimally separated events is then

dτ20 ≃
(
1− 2M

R

)
dt2 −R2 sin2 θ dϕ2 . (5.5)

The higher clock is at r = R+ h. The square of the proper time for this clock between two
infinitesimally separated events is

dτ2h ≃
(
1− 2M

R+ h

)
dt2 − (R+ h)2 sin2 θ dϕ2 . (5.6)
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Following the discussion just after (A.20), the Schwarzschild coordinates allow us to equate
Earth’s angular velocity ω in the ECI with dϕ/dt. Hence

dτ2h
dτ20

=
1− 2M

R+h − (R+ h)2 sin2 θ ω2

1− 2M
R −R2 sin2 θ ω2

. (5.7)

Now compute the relative sizes of the terms in (5.7). For this, we must restore all factors of
G and c to make all the terms dimensionless, so they can be compared with the “1” in (5.7).
Also refer to (C.3), and the fact that the speed of a point on Earth’s Equator in the ECI is
Rω ≃ 465 m/s:

M

R
becomes

GM

Rc2
≃ 4×1014

6.4×106 × 9×1016
≃ 10−9.

R2ω2 becomes

(
Rω

c

)2
≃
(

465

3×108

)2
≃ 10−12 ≪ M

R
≪ 1 . (5.8)

It follows that we can ignore the terms involving ω in (5.7)—which also means we can ignore
the latitude of the clocks. Equation (5.7) then becomes

dτ2h
dτ20

≃
1− 2M

R+h

1− 2M
R

≃
(
1− 2M

R+ h

)(
1 +

2M

R

)
≃ 1 +

2Mh

R2
. (5.9)

Hence
dτh
dτ0

≃ 1 +
Mh

R2
. (5.10)

The right-hand side of (5.10) is constant in time. That means the slope of a plot of τh versus
τ0 is constant in time, which allows us to say

∆τh
∆τ0

=
dτh
dτ0

. (5.11)

Equations (5.10) and (5.11) allow (5.1) to be written as

∆τh −∆τ0 = ∆τ0

(
dτh
dτ0

− 1

)
≃ ∆τ0Mh

R2
. (5.12)

Restoring factors of G and c gives

∆τh −∆τ0 ≃
∆τ0GMh

c2R2
. (5.13)

Now set h = 1 km and ∆τ0 = 1 day = 86,400 s, and refer to (C.3) for the necessary parameters.
Equation (5.13) becomes

∆τh −∆τ0 ≃
86,400× 3.99×1014 × 1000(
3.00×108

)2 × (6.38×106
)2 seconds ≃ 9 ns . (5.14)

Thus in one day, the upper clock counts (that is, it ages) 9 nanoseconds more than the lower
clock. Should we have set ∆τh to be one day rather than ∆τ0? Doing so will not affect the
answer to the accuracy we have used.
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Retaining h = 1 km, set ∆τ0 = 1 million years = 31.56×1012 s. Equation (5.13) becomes

∆τh −∆τ0 ≃
31.56×1012 × 3.99×1014 × 1000(

3.00×108
)2 × (6.38×106

)2 seconds ≃ 3.4 s . (5.15)

In one million years, the upper clock counts 3.4 seconds more than the lower clock.

The above analysis should not be understood as implying a notion of simultaneity that is
not present in general relativity. It would be wrong for the clock at sea level to say “Simultan-
eous with my display showing 1 day, the clock at altitude displays 1 day plus 9 nanoseconds”.
We can say that if we could switch gravity and Earth’s rotation off and zero both clocks,
then switch gravity/rotation back on and let the lower clock count for one day, then switch
gravity/rotation off again, the upper clock would display one day plus 9 nanoseconds. That
latter statement does not use or require any concept of simultaneity when gravity and rotation
are present.

Finally, the above analysis has no great effect on questions of synchronising clocks that
are, for example, both at sea level. Those clocks tick at the same rate—but, as in the previous
paragraph, this does not mean that either clock can say anything about what the other clock
displays “at this moment”.

5.1. Differential Flow of Time Within a Large Clock

Consider a clock whose mechanism is one metre high. At its base (h ≡ 0), a time ∆τ0 of, say,
one second elapses. Ten centimetres up (h = 10 cm), equation (5.13) says that the amount of
time elapsing is

∆τ (h = 10 cm) = 1 s +
1 s×GM × 0.1 m

c2R2
≃
(
1 + 1.1×10−17

)
s. (5.16)

The right-hand side of (5.13) is proportional to h (where h is assumed much less than R); so
at the top of the clock (h = 1 m), the amount of time elapsing is

∆τ (h = 1 m) ≃
(
1 + 1.1×10−16

)
s. (5.17)

This variation in space is presumably different from the expected variation in time of one part
in 1018 that is now said to characterise clocks of cutting-edge accuracy. But how these two
variations might relate to each other is not clear.

Note that this gravitational variation is much larger than the 10−19 seconds evident in
Figure 10. But the point here is that the gravitational variation can be factored in when
comparing rates of clocks at different heights. (It even reduces to zero for two clocks at the
same height.) In contrast, the time difference shown in Figure 10 is absolute, because it results
from Earth’s immutable spinning.

5.2. How Often Must Clocks be Synchronised?

Although we must abandon the idea of synchronising clocks in any known sense in the presence
of gravity, the above calculation using the weak-field metric gives a notion of “correcting” the
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time on the clock at height h at, say, periodic intervals, to keep its time aligned with that of
the clock at height zero. Consider that (5.13) gives the “excess” time Texcess displayed on the
clock at height h:

Texcess ≡ ∆τh −∆τ0 ≃
∆τ0GMh

c2R2
. (5.18)

So, we might hope to determine at least approximately the length of time ∆τ0 that can pass
on the clock at height zero before the time on the clock at height h has advanced by that
same amount plus some excess Texcess, by inverting (5.18):

∆τ0 ≃
c2R2Texcess

GMh
. (5.19)

When the clocks are separated in height by h = 100 m and we allow their time difference to
be no more than Texcess = 1 ns, (5.19) produces ∆τ0 ≃ 1 day. That is, to maintain some form
of synchronicity to within a nanosecond, we must ensure that the clocks are synchronised
(however that might be done) at least once per day.

5.3. The Speed of Light and GPS

The standard algorithms used by GPS receivers employ the SI value of the speed of light:
c = 299,792,458 m/s. How is light’s speed changed by gravity, and what effect might that
have on the position returned by a GPS receiver?

Assume that a GPS radio signal is sent along a radial path near Earth, in a spacetime
governed by the weak-field metric (5.2), which is reasonable to use in Earth’s vicinity. Setting
dθ = dϕ = 0 gives

dτ2 ≃ (1 + 2Φ) dt2 − (1− 2Φ) dr2 . (5.20)

Assume Earth is spherical, so that its potential is Φ = −M/r in units where G = c = 1. (The
actual non-sphericity of Earth has negligible effect on the numbers below, since they concern
how light’s speed changes depending on whether Earth is present or not, rather than whether
or not that Earth is exactly spherical.) Light travels on world lines such that dτ = 0, in which
case (5.20) becomes

0 ≃
(
1− 2M

r

)
dt2 −

(
1 +

2M

r

)
dr2. (5.21)

With |Φ| ≪ 1, it follows that light’s velocity is approximately

dr

dt
≃ ±

(
1− 2M

r

)
. (5.22)

In conventional units, this is a speed of⏐⏐⏐⏐drdt
⏐⏐⏐⏐ ≃ c− 2GM

rc
. (5.23)

Clearly this speed is less than c in Earth’s vicinity, and tends toward c as the distance r from
Earth goes to infinity. With GM = 3.986×1014 SI units, the discrepancy from c in (5.23)
becomes

discrepancy =
2GM

rc
≃ 2× 3.986×1014

r
1 km × 1000× 2.998×108

≃ 2659

r/(1 km)
. (5.24)
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At a distance of r = 6400 km from Earth’s centre, this discrepancy is 42 cm/s. At a distance
of r = 26,000 km from Earth’s centre, the discrepancy is 0.10 cm/s. If we reduce the speed
of light by these tens of centimetres per second in an algorithm that returns the position of
a point on Earth based on GPS measurements, the horizontal and vertical position estimates
are typically changed by some millimetres, and the estimated receiver clock error changes by
about one part in 109. So if a typical clock was in error by one second before acquisition
of a set of GPS signals, then after acquisition and the subsequent processing, it could still
be in error by a nanosecond. This suggests a bound on ECI synchronisation of Earth-bound
clocks via GPS (such as in two-way time transfer), that depends on the initial time error of
the relevant clocks.

The Shapiro Delay

Suppose we send a beam of light radially from some r0 to r1 > r0 in Earth’s vicinity. How
long does it take? Non-relativistically, we expect an answer of (r1 − r0)/c. Relativistically,
light slows down near a mass, and so we expect the time to be greater than (r1 − r0)/c by
some small amount, called the Shapiro delay. (The existence of this delay has been verified
successfully for radio signals sent across the inner Solar System.) Using (5.22), the time of
flight is

flight time =

∫
dt =

∫ r1

r0

dt

dr
dr

(5.22)
∫ r1

r0

dr

1− 2M/r
=
[
r + 2M ln(r − 2M)

]r1
r0

= r1 − r0 + 2M ln
r1 − 2M

r0 − 2M
. (5.25)

In conventional units, this is

flight time =
r1 − r0

c

non-relativistic
value

+
2GM

c3
ln

r1 − 2GM/c2

r0 − 2GM/c2

Shapiro delay

. (5.26)

For Earth, with GM ≃ 4×1014 SI units,

2GM

c2
≃ 2× 4×1014

9×1016
m ≈ 1 cm. (5.27)

This is so much smaller than typical values of r0 and r1 that we can ignore it, and write

Shapiro delay near Earth ≃ 2GM

c3
ln

r1
r0

. (5.28)

If a beam of light is sent from Earth’s surface (r0 ≃ 6400 km) to a low Earth-orbit satellite
(r1 ≃ 6900 km), the Shapiro delay is approximately

2× 4×1014

27×1024
ln

6900

6400
s ≃ 2.2 ps. (5.29)

That is, the signal takes 2.2 picoseconds longer to reach the satellite than we would predict
without using relativity. This is negligible for the satellite: not knowing it is equivalent to
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making an error of half a millimeter in the satellite’s estimated range. But the number is a
useful indication of the size of a typical relativistic effect near Earth.

6. Concluding Comments

An important question asked in this report [see, for example, the discussion following (B.12)]
is: “When does a coordinate transform equate to a bona-fide frame in relativity?” For example,
suppose we start with the metric for flat spacetime in one space dimension, dτ2 = dt2 − dx2,
and make a Galilei transform

t′ = t , x′ = x− vt . (6.1)

Then, the metric that results,

dτ2 = (1− v2) dt′2 − 2v dt′ dx′ − dx′2, (6.2)

does not describe a true relativistic frame; whereas, if we make the usual Lorentz transform,
the resulting metric dτ2 = dt′2 − dx′2 does describe a true relativistic frame. In particular,
the Lorentz transform (and not the Galilei transform) produces a time coordinate with the
property that events with the same value of that time coordinate are simultaneous in the
relevant frame—which is precisely what a time coordinate is meant to do. But how are we to
know that, based purely on inspecting those metrics? I see this as a key question in relativity,
but I am not aware of it being addressed anywhere. It cannot be waved away simply by
redefining simultaneity as describing two events that have the same time coordinate, where
this time coordinate has been constructed in some arbitrary way to suit the task at hand.
Such a redefinition carries no real physical meaning, because then any two spacelike events
can be arranged to be called simultaneous, and the concept becomes empty.8 Indeed, placing
the Galilei transform on a par with the Lorentz transform runs counter to the very existence
of the field of relativity. Simultaneity runs far deeper than merely defining coordinates; it is
defined by the behaviour of light in a well-known way, and is extended in a restricted fashion
to non-inertial frames by using MCIFs [10].

This distinction between a coordinate change and a frame change seems currently to be
absent from the discipline of relativistic precise timing. It is a change of ECI coordinates
that produces a “rotating set” of ECI coordinates that are currently used in the ECEF; but
these are not a fully relativistically meaningful set of ECEF coordinates; they are just the
best that we currently can do. In the coming years as clocks becomes ever more precise and
networks connecting them expand, I think that this lack of knowledge will create contradiction
and confusion in the relativistic precise-timing community. (I think it has already: see the
discussion of TAI and the Date Line in Section 4.4.) A good understanding of special relativity
is required—but special relativity does not currently have a high profile in universities, where
academic relativists are generally expected to devote their time to the more bankable subject
of general relativity. General relativity is usually said to incorporate special relativity, but it

8Proof: since an observer always exists for whom two given spacelike events are simultaneous in the true
sense of relativity, we would then only have to invoke the Lorentz transform appropriate to that observer to
declare that the events were simultaneous, thus trivialising the whole concept of simultaneity. Note that it’s
certainly true that, given any two spacelike events, in principle an observer exists who says those events are
simultaneous in the true sense of simultaneity; but it does not follow that for a given observer, a particular
choice of time coordinate renders those events simultaneous.
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should be said that a knowledge of general relativity does not help in analysing the famous
problem of producing coordinates for the rotating disk in flat spacetime. It should also be said
that the languages of general and special relativity are very different, so that familiarity with
one does not imply or impart familiarity with the other. And it’s worth repeating here the
result of a recent survey [20] that demonstrated a poor understanding of special relativity even
among academic physicists—despite those physicists rating themselves with various degrees
of confidence in the correctness of the wrong answers that they provided in the survey.

The upshot is that academic relativists generally have little interest in or time to devote
to special relativity, and few have an interest in precise timing. The subject of timing suffers,
and becomes dominated by precision-timer analyses whose relativity content can be poor
or simply wrong. For example, the subtleties of simultaneity in the context of accelerated
frames, which are well known in relativistic circles and are crucial to a proper understanding
of special relativity, seem to be rejected by fiat in [8]. I have pointed out other misconceptions
in precise-timing literature throughout this report.

But even seemingly innocuous mistakes can be found in precise-timing literature. Con-
sider [19], in which it is stated that observers at rest on Earth attribute the special-relativistic
slowing of the tick rate of moving clocks (incorrectly equated to the Sagnac effect by the
author of that reference: see Appendix B.1) to “gravitomagnetic effects—that is to say, the
warping of spacetime due to spacetime terms in the general-relativistic metric tensor”. It’s
not at all clear what “spacetime terms” means, but aside from that, such observers would
still detect such a slowing of a clock’s tick rate if Earth were hollow and thus spacetime were
flat. Hence curved spacetime plays no role here: if spacetime is curved, then it is curved for
all observers, and if it is flat, then it is flat for all observers. The statement appears to say,
incorrectly, that spacetime curvature is observer dependent.

An example of an apparently widespread misunderstanding of the metric tensor in the
precise-timing community occurs in [21]’s equation (5.49) and similar equations, which writes
what it calls “the metric tensor components in the ECEF up to terms of order 1/c2” in a
notation that is equivalent to the following metric:

dτ2 = (1 + 2Φ− v2) dt2 − 2 dt (vx dx+ vy dy + vz dz)− dx2 − dy2 − dz2. (6.3)

How this metric has been produced is not made clear in [21], although it seems to be a
combination of (6.2) and the weak-field metric (5.2). In particular, the space part of (6.3)
has no gravitational contribution, and yet this contribution is clearly present in the weak-
field metric (5.2). The point here is that we must know the relative sizes of the time and
space infinitesimals in (5.2) to be able to write a “1/c2 approximation” to a metric. A metric
concerns all events in spacetime, and we can only omit terms in an integral of the proper time
dτ along some world line when we have applied the metric to the events on that world line.
Such a metric as in [21]’s (5.49) is, at most, only relevant to specific set of events (ones that
are connected by a slow-moving object), and yet it is incorrectly touted as an approximation
to the metric of all of spacetime.

Another example of an application of relativity whose mathematics and physics are demon-
strably wrong appears in [17]’s discussion of the relativity of simultaneity in an inertial frame:
in a simple special-relativistic scenario whose infinitesimals (predictably) obey the Lorentz
transform dx′ = γ(dx− v dt), that reference says that dx′ equals dx; then, when the resulting
expressions start to go awry, it swaps primed and unprimed coordinates to arrive at the known
correct result. Indeed, if the correct expression dx′ = γ(dx− v dt) is used from the outset,
the correct result emerges very simply.
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The success of GPS—whose relativity content is sufficient but actually very small—appears
to have spawned many purportedly relativistic analyses by the precise-timing/GPS community
that are assumed correct by fiat in that community, even when those analyses have no GPS
content. Some of those analyses trample roughshod over subtle concepts that are still being
argued about by relativity physicists a century after relativity first appeared. Up until now,
what I see as a mis-handling of relativity in precise timing has caused no big problems; for
example, it has no bearing on the performance of GPS. But as the world’s timing requirements
grow ever more stringent, I think that the chance of a poorly reasoned precise-timing analysis
having adverse effects—civilian and military—is set to grow.
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Appendix A. Primer on the Lorentz Transform and

the Inclusion of Gravity

We discuss here a basic special-relativistic scenario that is basic to the subject. This involves
two reference frames, S and S′. The S frame measures S′ to move with constant velocity v in
S, along the x axis of S. Cartesian coordinates for the two frames are related by the standard
Lorentz transform:

t′ = γ(t− vx) + constant ,

x′ = γ(x− vt) + constant ,

y′ = y ,

z′ = z , (A.1)

where γ ≡ 1/
√
1− v2 > 1, and where

{t, t′} = c× time in {S, S′} , and v = velocity/c . (A.2)

The equations in (A.1) are inverted simply by changing the sign of v, to express unprimed
coordinates in terms of primed coordinates.

Both for this report and for an understanding of relativity in general, it’s crucial to realise
that the Lorentz transform defines coordinates for S′ that are useful and meaningful, in that
they satisfy two requirements of good coordinates:

1. events that are simultaneous in S′ have the same time coordinate t′, and

2. an object that doesn’t move in S′ has a fixed space coordinate x′.

We could certainly relate the two frames with, in fact, any arbitrary transform—even the
everyday Galilei transform of non-relativistic physics, which replaces the first two lines of
(A.1) with t′ = t and x′ = x− vt. But such a t′ and x′ would not satisfy the above two
requirements, and so would be very difficult to use, since the necessary relativity in any
scenario would have to be injected as an extra set of procedures. In contrast, the Lorentz
transform has these procedures built in.

To gain a feel for the use of the Lorentz transform, we establish the four key ingredients
of special relativity.

Time dilation: This follows from the inverse of (A.1). Consider two events: two successive
ticks of a clock at rest in S′. Between these two events, S records a time ∆t, and S′

records a time ∆t′. The clock moves along the x axis with a velocity v, and we know
that ∆x′ = 0. It follows from the inverse of (A.1) that

∆t = γ(∆t′ + v∆x′) = γ∆t′. (A.3)

That is, ∆t′ = ∆t/γ, meaning that a clock with velocity v ticks slowly by a factor of γ.

Length contraction: Consider two clocks, 1 and 2, at rest in S′ and a distance ∆x′ apart in
that frame. We require their separation ∆x in S. We define two events as the positions
of the clocks at the same time in S, since such positions define the clocks’ separation
in S. So ∆t = 0, and now consider

∆x′ = γ(∆x− v∆t) = γ∆x . (A.4)

Hence ∆x = ∆x′/γ: the moving clocks’ separation is measured as contracted by γ.
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clock 1 clock 2

t′1 t′2

Figure 15: The times t′1, t
′
2 on clocks 1 and 2 are to be found at the same moment t = t1 = t2

in S

Different levels of synchronisation: Figure 15 shows two clocks at rest in S′, that are
synchronised with each other (and with all clocks at rest in S′). Compare their readings
t′1 and t′2 at a single time t = t1 = t2 in S. Do this by applying the Lorentz transform
t = γ(t′ + vx′) to the equation “t1 = t2”:

γ(t′1 + vx′1) = γ(t′2 + vx′2) , (A.5)

in which case
t′1 − t′2 = v(x′2 − x′1) = vL′ . (A.6)

It follows that clock 1 displays ahead of clock 2 by the amount vL′, where L′ is the
clocks’ “rest separation”. The fact that clocks synchronised in their rest frame S′ are
found to be unsynchronised in a frame in which they move is central to this report.

As an example, consider two clocks at rest on Earth’s Equator that are relatively
closely spaced compared to Earth’s radius, so that they have almost the same velocity
in the ECI. They can then be regarded as effectively the two clocks of equation (A.6),
moving with an eastward speed of v = 465 m/s in the ECI. If the clocks are respectively
1 km, 100 km, and 3000 km apart and have been synchronised in the ECEF, then in the
ECI we might expect that the western clock will display ahead of the eastern clock by
[from (A.6), with factors of c restored]

vL′

c2
=

465 m/s× {1 km, 100 km, 3000 km}
9× 1016 m2/s2

≃ {5 ps, 0.5 ns, 15 ns} . (A.7)

The first two times on the right-hand side of (A.7) are realistic, but when the clocks’
separation is comparable to Earth’s radius [such as the 3000 km value in (A.7)]—they
do not share the same inertial frame, and this one-space-dimensional picture starts to
break down. More on this is said around equation (2.1).

Conversely, suppose that the clocks of Figure 15 have been slaved to the time of the
frame in which they are moving. Then, they do not tick at their natural rate: they
must be made to tick quickly by a factor of γ, since this will then cancel the slowing of
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x

t

t = vx+ constant

t =
x
v + constant

Figure 16: The dashed line shows all events that the clock following the solid world line regards
as simultaneous

their tick rate by the same factor in the frame of the figure. A simple argument shows
that the clocks agree that clock 2 displays a time that is later than that of clock 1 by
an amount γ2vL, where L is the clock’s separation in the frame of the figure:

both clocks say that clock 2 leads clock 1 by γ2vL . (A.8)

We use this expression in Section 4.4.

Set of simultaneous events: Finally, we plot the set of all events that a moving clock says
are simultaneous. The solid line in Figure 16 is the world line of a clock at rest in S′,
and thus moving at velocity v in S. We ask: what events does it say are simultaneous
with the event shown as the small black disk? We require all events (t, x) such that t′

for each of these events is some given number. Applying the Lorentz transform

t′ = γ(t− vx) + constant (A.9)

gives

constant = γ(t− vx) + constant. (A.10)

It follows that the set of simultaneous events (t, x) is given by

t = vx+ constant. (A.11)

This set of events is shown as the red line in Figure 16. The main point here is that
the line of simultaneity to a world line of slope 1/v has slope v. This should be borne
in mind in all relevant analyses of this report. Note that if two space dimensions are
being considered, the line of simultaneity becomes the plane of simultaneity: the set of
events (t, x, y) described by (A.11) augmented with all values of y; that is, the plane in
xyt space with equation −vx+ 0y + t = constant. This has a normal vector of (−v, 0, 1)
in xyt coordinates. In three space dimensions, we augment this with all values of z.
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2∆t′

t′

Figure 17: The case of observers who are relatively receding, with no gravity present. The
frame is that of the emitter, always at x = 0, whose world line is the t axis. The
world line of the receding “primed” receiver is red, which is then the t′ axis.

A.1. Relative Motion with No Gravity

In the absence of gravity, spacetime is flat, and so can be drawn in such a way that all light
rays follow straight lines on a diagram of time versus one space dimension. Figure 17 shows
such a diagram where the time axis is conventionally scaled so as to make light rays (the wavy
curves) run at 45◦ to both axes. This scaling is equivalent to calling the quantity ct “time”
and then omitting the c. All factors of c will be omitted in what follows.

Consider the frame of the emitter, in which the receiver is receding at constant velocity
with speed v. Suppose that initially the emitter and receiver coincide momentarily, at which
moment the clocks of both their frames are set all to display zero. Special relativity tells us
that the rate of flow of the emitter’s time t differs from the rate of flow of the receiver’s time t′.

The emitter now sends a light signal to the receiver at each of times t = 0, T, 2T as displayed
on the emitter’s clock. The receiver receives these signals at times t′ = 0,∆t′, 2∆t′ respectively.
From the emitter’s perspective, those signals were received at times t = 0,∆t, 2∆t respectively.
Note that this last statement requires a notion of simultaneity, which is carefully defined in
special relativity. The emitter says “Simultaneous with my clock displaying 0, the receiver’s
clock displays 0; simultaneous with my clock displaying ∆t, the receiver’s clock displays ∆t′;
and simultaneous with my clock displaying 2∆t, the receiver’s clock displays 2∆t′.” Any two
events (points on the spacetime diagram) will be simultaneous for the emitter if and only
if those events lie on the same horizontal line of Figure 17. In particular, portions of the
infinitely long lines of simultaneity for the emitter at times t = ∆t and 2∆t are drawn as
dashed green. Although all events lying on any horizontal line are regarded by the emitter as
simultaneous, they are not regarded by the receiver as simultaneous.

The time intervals ∆t,∆t′ in the ratio ∆t/∆t′ = γ ≡ 1/
√
1− v2 . This follows from an

analysis that incorporates the postulates of special relativity, and is not something that is
supposed to be evident in the figure. Note that in particular, the ratio of rates of flow of
times is not T/∆t′, because this latter quantity involves the travel time of light, which is not
relevant to the discussion of clock rates. In fact, T/∆t′ combines the clock rates with the
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relevant Doppler shift.

An additional postulate of special relativity, the Clock Postulate, says that a clock’s tick
rate is not affected by its acceleration. So when the receiving clock is able to accelerate, it
becomes more appropriate to consider only infinitesimal time increments, and to maintain
that dt/dt′ = γ = 1/

√
1− v2 , where γ and v are now functions of time. Consider two infin-

itesimally separated events, occurring at (t, x, y, z) and (t+ dt, x+ dx, y + dy, z + dz). The
infinitesimal time elapsed on a clock that connects them is called the“proper time”dτ between
those events. It follows that

dt

dτ
=

1√
1− v2

. (A.12)

That is,

dτ2 = dt2(1− v2) = dt2

[
1−

(
dx

dt

)2
−
(
dy

dt

)2
−
(
dz

dt

)2]
= dt2 − dx2 − dy2 − dz2. (A.13)

This expression dτ2 = dt2 − dx2 − dy2 − dz2 is independent of how the clock moves, and so
quantifies the geometry of spacetime itself. It is the metric of flat spacetime, a measure of
“spacetime distance”. Note that for comparison with the next section, this metric can be
written in spherical polar coordinates as

dτ2 = dt2 − dr2 − r2 dθ2 − r2 sin2 θ dϕ2 . (A.14)

A.2. Gravity With No Relative Motion

It’s natural to pursue the idea of Appendix A.1 in a context where gravity is present. The
presence of gravity precludes global inertial frames, so the postulates of special relativity no
longer hold. Even so, we might ask what aspects of Figure 17 might be retained. The following
approach is standard in the subject [10], but is described in more detail than usual here. In
particular, we make explicit use of the Clock Postulate of Appendix A.1: a necessary bridge
within the logic that seems to be glossed over elsewhere.

Separate emitter and receiver by a gravity gradient and give them no relative motion. We
place the emitter at some vertical position x and the receiver a height H above it. Figure 18
shows a spacetime diagram of this scenario, with the emitter again sending light signals to
the receiver. Discussions of non-zero spacetime curvature don’t prevent us from drawing this
picture on a flat page (just as world maps are printed on flat pages), but given that the
postulates of special relativity need no longer hold, we will allow for light to have a non-
constant speed by giving the rays curved world lines. But we will suppose that gravity is not
changing with time, and so the two curved world lines of light shown in the figure must be
congruent. This is crucial to what follows.

As in the previous case, the emitter again sends signals “up” at emitter times t = 0, T ,
and so on, although we now need consider only these first two signals, and not the one at
t = 2T . The receiver receives these signals at times t′ = t′1 and t′1 +∆t′. Suppose we say
that from the emitter’s perspective, these signals were received at times t = t1 and t1 +∆t.
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Figure 18: The case of observers who are relatively at rest in a gravity field. The frame is that
of the observer at x, whose world line is the t axis. The world line of the “primed”
receiver at a height H is red, which is then the t′ axis.

Again, this last statement requires a notion of simultaneity. The emitter says “Simultaneous
with my clock displaying t1, the receiver’s clock displays t′1; and simultaneous with my clock
displaying t1 + ∆t, the receiver’s clock displays t′1 + ∆t′.” At this stage, we will presume
that the events defined as simultaneous by the emitter form horizontal lines on the spacetime
diagram of Figure 18. Portions of the infinitely long lines of simultaneity for the emitter at
times t = t1 and t1 +∆t are drawn in dashed green.

As before, the rates of flow of times of emitter and receiver are in the ratio ∆t/∆t′, but a
new analysis is required here to calculate this ratio, since the postulates of special relativity
need not (and in fact do not) apply. The correct way is to solve Einstein’s equations for
gravity, but we can gain some insight with the following much simpler approximate argument.

Begin by using the congruency of the light rays’ world lines to infer that T = ∆t. (This
was not the case for special relativity in Figure 17, where T and ∆t differed by the Doppler
shift due to the relative motion.) We will imagine the two world lines in Figure 18 to represent
successive wave fronts of a single light ray. The frequency of this light can now be used to give
its period T , which equals ∆t, which has the ratio to ∆t′ (the period of the received ray) that
we are seeking. We also use the idea that a light ray of frequency f has photon energy E = hf ,
where h is Planck’s constant. We demand that the emitted light ray pays a gravitational
tax that reduces its energy from E = hf at height x to E′ = hf ′ at height x+H. If the
gravitational field at x has newtonian potential Φx, then a mass m has potential energy mΦx

there; a photon has mass E/c2, so (omitting factors of c) the photon has potential energy EΦx

at x. The energy that the photon gives to the gravitational field is then

E − E′ = loss in photon “kinetic” energy

= gain in photon “potential” energy

= final potential energy− initial potential energy = EΦx+H − EΦx . (A.15)
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Putting this all together gives the ratio of clock rates as

∆t

∆t′
=

T

∆t′
=

1/f

1/f ′ =
h/E

h/E′ =
E′

E
=

E − (EΦx+H − EΦx)

E
= 1− (Φx+H − Φx) < 1 . (A.16)

We see that a clock high up in a gravitational field runs fast compared to one lower down.
In essence, observers at x+H receive the signals from x as red-shifted because those signals
lost energy in climbing up the gravitational potential. Since their clocks tell them that they
are receiving successive wave fronts at a lower frequency (f ′) than the “factory standard” (f)
and yet no Doppler shift was present (since the clocks have no relative motion), they conclude
that their clocks are counting a comparatively large amount of time between successive wave
fronts. Hence their clocks must be running faster than those “lower down” at x.

Suppose that we lift the upper clock infinitely far up, taking the height difference H → ∞,
so that Φx+H → 0 and (A.16) becomes

∆t

∆t∞
= 1 + Φx < 1 . (A.17)

Given that this clock at infinity is unaffected by gravity, its time is conventionally labelled t.
Einstein’s Equivalence Principle says that any clock measures the proper time between two
events at its own location. Why? Because the Equivalence Principle says that the clock in
gravity runs at the same rate as a clock that is accelerating upward at the appropriate rate
in no gravity field; but we already know (from the Clock Postulate) that this latter clock
measures the proper time between two infinitesimally separated events.

In particular, we are interested in the clock at x. So label the time on this clock as τ , and
write (A.17) as

∆τ = (1 + Φ)∆t . (A.18)

For the space outside a spherically symmetric massM , the gravitational potential is a function
only of the distance r from the centre of the mass, and is Φ(r) = −GM/r, omitting a factor
of c2 as is conventional. Equation (A.18) becomes

∆τ = (1−GM/r)∆t . (A.19)

Comparing this with the gravity-free case (A.13) or (A.14), we see no dependence in (A.19) on
increments of space variables. This is because the two clocks in Figure 18 were at rest. Other
analyses can be made that do incorporate space increments: see, for example, Section 12.3.1
of [3]. A full analysis requires Einstein’s equation of general relativity, which is a postulate
for the subject. For a spacetime whose geometric structure is assumed to be spherically
symmetric, this equation yields the Schwarzschild metric outside a spherically symmetric
mass:

dτ2 = (1− 2GM/r) dt2 − (1− 2GM/r)−1 dr2 − r2 dθ2 − r2 sin2 θ dϕ2 , (A.20)

using “Schwarzschild coordinates”, where the radial coordinate r no longer precisely has the
meaning of radial distance. In these coordinates, the circumference of a circle of radius r
is 2πr. More generally, when the mass M is only approximately spherically symmetric, the
weak-field solution of Einstein’s equations turns out to be, using Schwarzschild coordinates,

dτ2 ≃ (1 + 2Φ) dt2 − (1− 2Φ) dr2 − r2 dθ2 − r2 sin2 θ dϕ2 , |Φ| ≪ 1 . (A.21)
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In “isotropic polar coordinates”, the weak-field metric is

dτ2 ≃ (1 + 2Φ) dt2 − (1− 2Φ)
[
dr2 + r2 dθ2 + r2 sin2 θ dϕ2

]
, |Φ| ≪ 1 . (A.22)

(Isotropic refers to the fact that the speed of light is independent of direction when using these
coordinates.) As expected, these metrics reduce to (A.14) in the limit Φ → 0. Equivalently,
consider the case of M = 0 with a clock moving in a circle in no gravity at constant r with
θ = 90◦. The Schwarzschild metric (A.20) reduces to

dτ2 = dt2 − r2 dϕ2 = dt2
[
1− r2 (dϕ/dt)2

]
. (A.23)

But r dϕ/dt is just the velocity v of the clock, so (A.23) becomes

dτ = dt
√

1− v2 , (A.24)

which matches (A.12). This demonstrates how special-relativistic time dilation is present in
general relativity.

For the case of constant r, θ, ϕ and the weak-field limit |Φ| ≪ 1, (A.21) and (A.22) both
yield approximately (A.18) [and (A.20) yields (A.19)], but not exactly. The reason for the
caveat “not exactly” is perhaps that this analysis uses the newtonian idea of potential; but
it could also be that an approximation is present in the analysis of Figure 18. What can
certainly be questioned in that figure is the idea of simultaneity: drawing straight lines to
denote events that can be regarded as simultaneous with each other, and thus all occurring at
the indicated times t1 and t1 +∆t. A clear definition of simultaneity is actually not present
in general relativity. If I am to synchronise my clock with a clock elsewhere in a gravity field,
to be able to say “At my time 12:00, you must set your clock to display 12:00” demands a
concept of simultaneity that is absent from the theory. For more analysis of these metrics, see
Appendix C.

The above analysis of Figure 18 required the gravitational field to have no time dependence.
If the field did have such a dependence, the two world lines of light in the figure would no longer
necessarily be congruent. We would then no longer know how T relates to ∆t. We know T ,
the period of the emitted light; but we require ∆t, to compare it with ∆t′, the period of the
received light, and we were only able to set ∆t = T in Figure 18 by using the symmetry arising
from the unchanging nature of successive light rays, because the conditions of the scenario are
static. In contrast, a real scenario’s gravity might change with time. At this point, it’s wise to
resort to the full form of Einstein’s equation of general relativity. Nonetheless, such analyses
are not widespread in the subject, and these very fundamental questions of simultaneity and
the flow of time in a changing gravity field remain ponderous in relativity.

Because Einstein’s equations are too difficult to solve exactly for a mass distribution as
complicated as Earth’s, the weak-field metric (A.22) forms the basis of all current timing
analyses. The potential Φ is often written for the case of an oblate spheroid Earth, usually
as the approximation in (C.2) of Appendix C. But given that the weak-field metric (A.22) is
valid only to first order in Φ, adding small refinements to it will be meaningless when those
refinements are of second order in Φ, as discussed briefly in Appendix C.2. Many refinements
to Φ can be found in publications of the International Astronomical Union, but I have not
checked the relative sizes of the various terms.

As regards the quantitative use of high-accuracy expressions for Φ, a complicating factor
is that many in the geodesy and precise-timing communities, along with the International

46
UNCLASSIFIED



UNCLASSIFIED
DST-Group–RR–0454

Astronomical Union (IAU), redefine the gravity potential to be −1 times the physicist’s grav-
ity potential. So, where a physicist writes Φ = −GM/r, the IAU writes “Φ = +GM/r”. The
IAU then compensates for this redefinition by changing the sign of Φ in the weak-field met-
ric (A.21), and no doubt in many other equations as well. In particular, when the IAU adds
refinements to the potential by writing“Φ = GM/r (1 + ε)”where ε is small, we must use great
care to decide whether this expression should be corrected to become Φ = −GM/r (1 + ε),
or Φ = GM/r (−1 + ε). I suspect that both conventions exist in the literature, with no in-
formation being given on which is being used. (I presume that geodesists, precise-timers, and
the IAU don’t redefine the electrostatic potential to be −1 times the physicist’s electrostatic
potential. Whereas the physicist’s potential is the product of much logical thought that gives
it a single definition regardless of that potential’s source, the IAU’s definition is presumably
source dependent. That can only lead to the unnecessary difficulty highlighted above.)
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Appendix B. Alternative Derivation and Comments

on the Sagnac Effect

Here is an alternative derivation of T1 and T2 in (4.5) and (4.8) that gives insight into a
related area of relativity: the question of a bona-fide change of frame versus a trivial change
of coordinates. We set c = 1 for the start of this discussion.

Taking our cue from the ECI picture in Figure 12, consider the metric for the assumed
flat spacetime of the ECI in polar coordinates. We are dealing with a disk: a two-space-
dimensional problem, so will use polar coordinates r, ϕ; we use ϕ rather than the conventional θ
because θ already appears in Figure 12:

dτ2 = dt2 − dr2 − r2 dϕ2. (B.1)

The simplest Sagnac scenario that we are analysing has r = R, the disk radius: we are con-
cerned only with events on the disk rim. Hence

dτ2 = dt2 −R2 dϕ2. (B.2)

For light, dτ = 0, and so

dt2 = R2 dϕ2 . (B.3)

If the light travels “eastward” around the disk, then dϕ/dt > 0, and (B.3) becomes

dt = R dϕ . (B.4)

The ECI time taken for its trip—T1 in Figure 12—is T1 =
∫
dt.

Now consider Figure 12 in a somewhat galileian way: as the light pulse traverses the disk
edge, in a time dt it gets “carried along” with the disk (which has angular velocity ω in the
ECI); plus, it traverses a little bit dθ of the total angle θ; hence

dϕ = ω dt+ dθ . (B.5)

We emphasise that this picture is galileian: it assumes the light is carried along with the disk
at the speed of the disk, which we know is not really true; after all, a light ray traversing
a stream of water is not carried along with the speed of the water. Relativistically, if light
traverses a medium of refractive index n that itself is travelling with velocity v in an inertial
frame, then the speed of light in the inertial frame will be

speed of light in inertial frame =
c

n
+ v

(
1− 1

n2

)
. (B.6)

(This constitutes the famous Fizeau experiment.) That is, the galileian statement of “speed of
light in inertial frame equals speed of light in medium (c/n) plus speed of medium in inertial
frame (v)” is only true in the limit n → ∞. Equations (B.4) and (B.5) combine to give

dt = Rω dt+R dθ . (B.7)

It follows that

dt =
R dθ

1−Rω
. (B.8)
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For a small disk edge speed Rω ≪ 1, this approximates to

dt ≃ R dθ (1 +Rω) = R dθ +R2ω dθ . (B.9)

The time for the light pulse to traverse angle θ on the disk is then

T1 =

∫ θ

θ=0
dt ≃ Rθ +R2ωθ . (B.10)

T2 can be calculated from the same procedure by imagining the disk to be spinning the other
way. The result of that is the simple substitution ω → −ω in (B.10):

T2 ≃ Rθ −R2ωθ . (B.11)

Finally, reinsert c, write v ≡ Rω, and D ≡ Rθ:{
T1

T2

}
≃ D

c
± Dv

c2
. (B.12)

These match (4.5) and (4.8) in the limit of small rotational speed. This limit of slow rotation—
which gave rise to the galileian approximation used above—is a key point here. Namely, despite
the use of a metric in (B.1) and the look of (B.5) (or more specifically, its non-infinitesimal
version ϕ = ωt+ θ), the above procedure was not a transform to a “rotating frame”. Instead,
(B.5) created the angular coordinate θ of a set of “rotating coordinates” in the inertial ECI,
{t, r, θ}. The bottom line is that rotating ECI coordinates, which are used in our modern
world in the ECEF, are not ECEF coordinates: see the comments at the start of Section 4.

The above procedure appears in a more convoluted form in Section 6 of [17], where it is
described as a transform to a rotating frame (the ECEF), supposedly with relativity built in,
constructed on the non-infinitesimal version of (B.5) (written in [17] as ϕ = ϕ′ + ωEt

′ with
t′ = t). But we see here that it contains no relativity; it is simply a galileian transform written
in relativistic language. For further discussion of this, see the start of Section 6.

B.1. Transporting a Clock is Not the Sagnac Effect

The relativistic slowing of the tick rate of a clock moving on Earth, discussed in Section 4.3,
is sometimes called the Sagnac effect in timing literature, such as in [17]. This is probably
because the Dv/c2 that appeared in (4.31) also appeared in (B.12). Nonetheless, the above
procedure of transporting a clock has nothing to do with the Sagnac effect. The reason is that
the moving-clock equation, (4.31), compares the different relativistic slowings of time on a set
of clocks (it is calculating and comparing the different “gamma-factor” slowings of the clocks
as they move in the ECI), whereas the Sagnac effect concerns a light beam chasing a moving
receiver, or a race between two light beams, and requires no relativity for its main analysis.
(It is modified by the relativistic slowing of the clock on a moving receiver, but this is not the
main content of the Sagnac effect.)

To see this more fully, consider the Sagnac calculation of Section 4.1. A main quantity of
interest is the difference between the actual transit time, say T1 in (4.4), and the value D/c
that we would expect if light travelled everywhere at c from the viewpoint of the disk. We
might think that to be fully relativistic, we must include a gamma-factor γ = c/

√
c2 − v2 for
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the slowing of the clock’s tick rate in the inertial frame in which the disk spins. But in fact
that’s not the case. The rotating clocks have different standards of simultaneity than that of
the inertial frame: if clocks 1 and 2 in Figure 12 are synchronised in the inertial frame, then
they are not synchronised from the viewpoint of the clocks, and so neither can simply divide
the times T1 and T2 by γ. So as before, we insist that v ≪ c. Then, the difference between
T1 and D/c is

Sagnac quantity of interest = T1 −
D

c
=

D

c− v
− D

c
=

Dv

c(c− v)
. (B.13)

To first order in v, this quantity is Dv/c2, as written in (B.12). Now consider moving a clock,
where we allow an arbitrary v but still take the limit V → 0. The quantity of interest here is,
from the discussion at the start of this section,

moving-clock quantity of interest = lim
V→0

t0 − t1
(4.27)

lim
V→0

D

V

(
1

γ0
− 1

γ1

)

= lim
V→0

D

V

(√
1− v2

c2
−
√
1− (v + V )2

c2

)
=

Dv

c
√
c2 − v2

, (B.14)

where the last result follows from L’Hôpital’s rule. In the limit v ≪ c, this quantity also
becomes Dv/c2. But clearly (B.13) and (B.14) are completely different results, despite having
the same low-v limit. That they share the same limit is not surprising, because the expression
“distance × velocity” occurs frequently in special relativity. Hence, moving a clock is not an
instance of the Sagnac effect. A similar appearance of “Sagnac” in the context of a moving
clock is in [22], equations (5) and (6). There, what amounts to the (v + V )2 in the gamma
factor of our (4.29) is expanded as v2 + V 2 + 2vV . The cross term analogous to 2vV is then
seemingly arbitrarily called the Sagnac effect in that paper, despite having no relation to
Sagnac’s non-relativistically valid scenario of light chasing a clock.
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Appendix C. Definitions of Various Times

In this appendix we discuss Earth’s geoid. The geoid is a mean sea level over the planet: it is
an equipotential surface, where the equipotential includes a centrifugal term for observers at
rest on the geoid, who thus rotate with Earth.

Because Earth’s geoid is an equipotential surface, no work is done on or by a photon that
connects two events on the geoid, and it follows that the photon’s frequency is unchanged
from emission to reception. From the discussion of Appendix A.2, we infer that all clocks at
rest on the geoid (thus rotating with Earth) tick at the same rate, because with no Doppler
shift to complicate what is seen when one clock on the geoid views another (since they are
relatively at rest), what is seen reflects reality.9 This common tick rate of clocks at rest on
the geoid is called International Atomic Time (TAI), denoted tTAI here. It is what accurate
laboratory clocks on Earth measure: its base unit is the SI second.

To examine TAI in detail, we begin with the weak-field metric in Schwarzschild spherical
polar coordinates r, θ, ϕ that is derived in textbooks on general relativity and mentioned
previously in (A.21):

dτ2 ≃ (1 + 2Φ) dt2 − (1− 2Φ) dr2 − r2 dθ2 − r2 sin2 θ dϕ2 , |Φ| ≪ 1 . (C.1)

Here dτ is the proper time between any two infinitesimally spaced events at (t, r, θ, ϕ); Φ is the
dimensionless gravitational potential at the point (r, θ, ϕ) (that is, Φ is the ECI gravitational
potential divided by c2); and in these coordinates, a circle of radius r has circumference 2πr—
which is a desirable feature when discussing our spheroidal Earth. With this metric, what
proper time elapses on a clock at a fixed position at spatial infinity (r → ∞)? There the
potential tends toward zero, and (C.1) becomes dτ2 = dt2. The coordinate t is thus the time
on a motionless clock at spatial infinity.

To some degree of precision (discussed in Appendix D), the weak-field metric describes
spacetime in the ECI. To the precision required here, Earth’s potential is (in dimensionless
form)

Φ =
−GM

rc2

[
1− a2J2

2r2
(3 cos2 θ − 1)

]
, (C.2)

where the following parameters appear:

GM ≡ gravitational constant × Earth’s mass ≃ 3.9860×1014 m3/s2,

r ≡ distance from Earth’s centre,

c ≡ speed of light ≃ 2.998×108 m/s,

a ≡ Earth’s WGS-84 equatorial radius ≃ 6,378,137 m,

J2 = largest “zonal harmonic coefficient”≃ 0.00108 ,

θ ≡ geocentric co-latitude (not geodetic co-latitude). (C.3)

We will also need:

b ≡ Earth’s WGS-84 polar radius ≃ 6.3568×106 m. (C.4)

9These statements don’t depend on the shape of the geoid, and hence disprove the claim in [19] that the
independence of tick rate on position arises from the fine details of Earth’s non-spherical mass distribution.
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Now return to the metric (C.1) where Earth’s centre is at r = 0, and consider a clock
at rest on the geoid. Its dr and dθ are both zero as time passes. The proper time squared
between two infinitesimally spaced events on this clock is then, from (C.1),

dt2TAI = (1 + 2Φ) dt2 − r2 sin2 θ dϕ2. (C.5)

Since all clocks on the geoid tick at the same rate, we can say that

time elapsed on clock

time elapsed at spatial infinity
=

dtTAI

dt
= a constant at all points on the geoid. (C.6)

But (C.5) says that

dt2TAI

dt2
= 1 + 2Φ− r2 sin2 θ

(
dϕ

dt

)2
. (C.7)

We infer that the right-hand side of (C.7) is a constant at all points on the geoid: call it
1 + 2A:

dt2TAI

dt2
= 1 + 2A . (C.8)

Now write Earth’s spin rate in the ECI—that is, with respect to the distant stars—as (re-
membering that t is really “c × time”)

ω ≡ dϕ

dt
≃ 2π

c× 86,164 s
≃ 2.4324×10−13 m−1, (C.9)

since Earth turns once in a sidereal day of 23 hours, 56 minutes, 4 seconds (86,164 seconds).
Combine (C.7) with (C.8) to infer that at all points on the geoid,

A = Φ− 1/2 r2ω2 sin2 θ = constant . (C.10)

How do the values of the quantities in (C.10) compare? On Earth’s Equator (where sin θ is
largest):

Φ ≃ −GM

ac2
≃ −3.9860×1014

6,378,137× 9×1016
≃ 7×10−10,

r2ω2 = a2ω2 ≃
(
6,378,137× 2.4324×10−13

)2 ≃ 2×10−12. (C.11)

Clearly, the gravity term is dominant here.

It so happens that the expression Φ− 1/2 r2ω2 sin2 θ appears in non-relativistic classical
mechanics as the effective potential Φeff on a rotating Earth. When an effective potential Φeff

is defined by its effect on a test mass m in a rotating frame [that is, −∇(mΦeff) is defined
to be the sum of gravity and centrifugal force acting on m], then Φeff turns out to equal
Φ− 1/2 r2ω2 sin2 θ. So we conclude that A = Φeff. Equation (C.8) is then usually written as

dt2TAI

dt2
= 1 + 2Φeff , (C.12)

with

Φeff = Φ− 1/2 r2ω2 sin2 θ = constant on geoid . (C.13)
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We can calculate the value of this constant in (C.13) by evaluating it, say, at the Equator,
where θ = 90◦. Equation (C.13) becomes

Φeff
(C.13)

Φθ=90◦ − 1/2 a2ω2 (C.2) −GM

ac2

[
1− ��a

2J2

2��a
2

×−1

]
− a2ω2

2
,

≃ −3.9860×1014

6,378,137× (2.998×108)2

[
1 +

0.00108

2

]
− 1

2

(
6,378,137× 2.4324×10−13

)2
≃ −6.9693×10−10. (C.14)

The (positive) constant 6.9693×10−10 is often called LG in the literature.10

Compared to a clock at spatial infinity, the rate of flow of time on the geoid is, from (C.12)
and (C.14),

dtTAI/dt = 1 + Φeff ≃ 1− LG . (C.15)

That is, clocks on the geoid tick slightly slower than stationary clocks infinitely far from Earth.
Nominally, the GPS system uses TAI as its time, but for historical reasons, GPS and TAI
differ by 19 seconds:

tGPS = tTAI − 19 seconds. (C.16)

TAI has the same rate as a historical relic, terrestrial time (TT), which has been used to set
the start point of TAI:

tTAI = tTT − 32.184 seconds exactly. (C.17)

The time t on a stationary clock at spatial infinity is called geocentric coordinate time (TCG),
and is the time coordinate used in the ECI in Earth’s vicinity (but not on board GPS satellites).
Equations (C.15)–(C.17) then say

∆tTAI = ∆tGPS = ∆tTT = (1− LG)∆tTCG . (C.18)

At distances farther from Earth, TCG is replaced by another time coordinate, barycentric
coordinate time (TCB). Barycentric coordinate time attempts to include the gravity fields of
all Solar System objects in its metric. This metric appears in a standard document of the
IAU [23], but details of how it was produced appear to be absent from [23].

C.1. The Distinction Between TAI and UTC

TAI is a uniform time that uses the SI second as its basic unit. It is effectively a reference
clock that ticks in a predictable way, and is never stopped. (That is, we’ll see shortly that it
has no leap seconds.)

If Earth’s orbit were exactly circular and Earth had no tilt, then by definition, one solar
day of fixed length would elapse between the Sun being at the same place in the sky on two
consecutive days: say, from midday (when the Sun was at the meridian) to midday. Because
Earth’s orbit is not exactly circular and Earth is tilted, one mean solar day is defined with

10Note that we could also evaluate Φeff at one of the poles to arrive at the same number. Since that pole
calculation makes use of Earth’s WGS-84 polar radius b ≃ 6.3568×106 m, combining that pole calculation with
(C.14) allows J2 to be expressed in terms of the two radii a and b.
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reference to Earth’s rotation in a mean sense relative to the Sun (or relative to a “mean Sun”),
and is defined to be exactly 24× 3600 = 86,400 mean solar seconds long.

But the SI definition of a second is such that a mean solar day currently lasts about
86,400.001 SI seconds. We require our clocks to count SI seconds—but we also require them
to display 00:00:00 at each midnight. These two requirements conflict. Specifically, imagine
a clock that displays the TAI time of Appendix C, a “TAI clock”. This displays “0 days,
00:00:00” at midnight at the start of the year. After one mean solar day, this clock displays
86,400.001 (SI) seconds, or “1 day, 00:00:00.001”. So, the TAI clock is reading 0.001 seconds
ahead of what we want our civilian clocks to display: “1 day, 00:00:00”. After two mean solar
days, the TAI clock reads 2× 86, 400.001 (SI) seconds, or “2 days, 00:00:00.002”.

The TAI clock is, in a sense, running too quickly for civilian purposes. 365 mean solar
days later, it displays 365× 86, 400.001 (SI) seconds, or “365 days, 00:00:00.365”. After three
years, it is displaying fully one second ahead of desired civilian time. We would like to stop
it for one second, but if we did that, it would no longer be a TAI clock. Instead, we make
a copy of the TAI clock, and stop that copy for one second; then we call this new clock a
“UTC clock”, where UTC stands for coordinated universal time. When the UTC clock ticks,
it counts SI seconds, meaning it ticks at the same rate as a TAI clock. But every few years,
we stop the UTC clock for one second to bring it back into line with the civilian requirement
of where the Sun should be at a given time. The time on the UTC clock is UTC time. Both
TAI and UTC use the SI second, but whereas the TAI clock never stops, the UTC clock is
sometimes stopped, and the second for which it is stopped is called a leap second.

The mean solar day is represented by a “mean Sun” that rises in the east and sets in the
west. Because TAI clocks effectively run too fast for the Sun’s motion, it’s as if the mean Sun
moves too slowly in the sky, and occasionally we must stop our clocks for an agreed time (the
leap second) to let it catch up, so that it will once again be due north at midday.

Note that the commonly found statement “Leap seconds are needed to account for Earth’s
rotation gradually slowing down” is actually wrong: although Earth’s rotation is slowing,
it is certainly not slowing so quickly that our clocks have a one-second mismatch with the
Sun’s position every three years. (It would have stopped spinning long ago if that were the
case.) Even if Earth’s spin rate stopped slowing completely, we would still have to insert leap
seconds into UTC time. Clocks that tick once per SI second simply outpace the Sun, and so
occasionally we must pause them for a second to allow the Sun to “catch up”. This pausing of
clocks concerns Earth’s current angular velocity, and it would still be needed if Earth’s spin
rate stopped slowing, since the latter concerns Earth’s angular acceleration. Even if Earth’s
spin rate began to increase, we would still need to pause our UTC clocks for the occasional
second, for perhaps some years until the Sun was moving quickly enough in the sky to match
the speed of an SI clock. If Earth’s spin rate increased to the point that the Sun was moving
“too quickly”in the sky, then we would occasionally have to do the opposite of pausing the
UTC clock for a second: every few years, we would need to make a specified minute have only
59 seconds instead of the 61 seconds that occurs at present when a leap second is required.

UTC time is the modern evolved form of Greenwich Mean Time. UTC is perhaps defined
more rigorously than GMT ever was, and so the two terms are now synonymous.
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C.2. The Role of J2 in Φ

Because Φ appears in the weak-field metric (C.1) to first order only, it’s worthwhile to establish
whether the absence of terms of higher order in Φ is potentially of greater consequence than
including J2 in the expression for Φ in (C.2), which models Earth’s slight oblateness. We need
only compare Φ for a spherical Earth (say, with Earth’s equatorial radius a), Φ for our oblate
Earth at Equator and a pole, and Φ2 for a spherical Earth.

Spherical Earth:

Φsphere =
−GM

ac2
≃ −6.9535×10−10. (C.19)

Oblate Earth: Use (C.2):

ΦEquator ≃
−GM

ac2

[
1 +

J2
2

]
≃ −6.9573×10−10,

ΦPole ≃
−GM

bc2

[
1− a2J2

b2

]
≃ −6.9693×10−10. (C.20)

Second-order term: We don’t know what the coefficient of Φ2 is in a more exact version
of the weak-field metric (C.1), so will assume it to be of order one. In that case, we
need examine only Φ2, and it suffices to calculate it for a sphere:

Φ2
sphere ≃

(
−7×10−10

)2 ≃ 5×10−19. (C.21)

The difference between the potentials for a sphere (C.19) and an oblate spheroid (C.20) is
around 10−12, which is about a million times larger than Φ2. So it’s reasonable to include
J2 in the expression for the potential Φ in the weak-field metric (C.1), while excluding terms
that are higher order in Φ.

C.3. The ECI Speed of Light Near Earth’s Surface

Section 4.2 requires the speed of light in the ECI near Earth’s surface. We calculate that speed
in this section by using the fact that spacetime near Earth’s surface can be described using
the weak-field metric (C.1). The light rays in the simple model of Section 4.2 travel along
circles of fixed latitude. Using TAI time and Schwarzschild polar coordinates, their speed is

c′ = r sin θ

⏐⏐⏐⏐ dϕ

dtTAI

⏐⏐⏐⏐ . (C.22)

Equation (C.15) says that dtTAI = (1 + Φeff) dt. Light rays connect events separated by zero
proper time. Setting dτ to zero in (C.1) on a circle of fixed latitude then gives

(1 + 2Φ) dt2 = r2 sin2 θ dϕ2 , (C.23)

and hence r sin θ |dϕ/dt| ≃ 1 + Φ. It follows that

c′ = r sin θ

⏐⏐⏐⏐dϕdt
⏐⏐⏐⏐ (1− Φeff) ≃ (1 + Φ)(1− Φeff)

≃ 1 + Φ− Φeff
(C.13)

1 + 1/2 r2ω2 sin2 θ = 1 + v2/2 , (C.24)
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where v is the speed of the Earth-fixed clock in the ECI. In conventional units, this result
“c′ = 1 + v2/2”becomes c′ = c+ v2/(2c). Because we have tended to disregard factors of v2/c2

throughout this report, it’s sufficient to write c′ = c, so that light on Earth’s surface can be
modelled as having speed c in the ECI, to first order in Earth’s spin rate. This speed is used
in Section 4.2.

It might be said that when TAI time is used, light travels slightly faster than c over Earth’s
surface because time flows slightly slowly near Earth’s surface: TAI clocks tick slightly slower
than clocks at infinity, as stated immediately following (C.15).
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Appendix D. Limitation of the Weak-Field Metric

A set of clocks to be synchronised might be fixed to the surface of the rotating Earth. In
Newton’s theory, the gravity field of a rotationally symmetric body is unaffected by whether
the body rotates. Up until now, following convention, we have employed this non-relativistic
idea by modelling an Earth-fixed clock’s timing as that of a clock moving in the gravity field of
a non-rotating Earth. Such a field is described up to standard levels of accuracy equally well
by the weak-field and Schwarzschild metrics. These metrics have been tested experimentally
to some level of accuracy in the famous Hafele–Keating experiment of the early 1970s, in
which the timing of clocks flown around the world for some days was measured and found to
agree with this non-rotating-Earth model to the level of about one standard error, which was
about 10–20 ns.

But, strictly speaking, the weak field and Schwarzschild metrics are not those of a rotating
body. So although these metrics are adequate to describe a situation such as that of Hafele–
Keating, they are not necessarily good enough to model the timing of clocks when we require
accuracies of 1 ns or better over the course of several days. In fact, no solution to Einstein’s
equations of gravity is known that is really applicable to clocks on a rotating Earth. The
“Kerr metric” might be considered: the Kerr and Schwarzschild metrics are both “vacuum
solutions” of Einstein’s equations, describing a universe that contains a point mass but is
otherwise empty. Unlike the Schwarzschild metric, the Kerr metric allows the point mass to
have angular momentum. But whereas the Schwarzschild metric also describes the gravity
field external to a non-rotating spherical mass of non-zero radius (a result known as Birkhoff’s
theorem), the Kerr metric does not describe the gravity field of a rotating mass of non-zero
radius.

Even so, the Kerr metric might be hoped to at least slightly describe the effect on spacetime
of the rotation of a non-point mass. The metric predicts that a particle can orbit the central
point mass yet carry no angular momentum. This instance of “frame dragging”, also known
as the Lense–Thirring Effect, has possibly been observed by the Gravity Probe B satellite,
although the relevant measurements are so exceedingly difficult to make that the results of
this experiment will no doubt be discussed in the relativity community for years to come.

The bottom line is that no solution to Einstein’s equations is known that describes the
details of timing, to a “very high” level of accuracy, of clocks fixed to a rotating Earth. The
subject is subtle and not in a finished form; and while it might be thought that experiments
can decide what metric is sufficient for all purposes, the philosophical difficulties in applying
relativity correctly when interpreting those experiments are not universally agreed upon by
the relativity community.
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