UNCLASSIFIED

Australian Government

Department of Defence
Science and Technology

The Vital Planning and Analysis (ViPA) ORBAT Data
Service Architecture and Design Overview

Kyran Lange
Joint and Operations Analysis Division

Defence Science and Technology Group

DST-Group-TN-1539

ABSTRACT

The Vital Planning and Analysis (ViPA) workbench is an automated logistics feasibility
analysis tool used to support planning and logistics. ViPA makes use of Order of Battle
(ORBAT) data as an input for its calculations. The ORBAT Data Service is a Web Service
for storing force structures to be used by the ADF. The service is composed into what is
known as a Service Oriented Architecture which provides a loose coupling of self-
contained services. This architecture helps to provide a reusable, access controlled and
resilient data source. This report describes the design of the ORBAT Data Service and how

it is used to manage and share ORBAT data between tools such as ViPA.

RELEASE LIMITATION

Approved for public release

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

Published by

Joint and Operations Analysis Division
Defence Science and Technology Group
West Avenue

Edinburgh, South Australia 5111 Australia

Telephone: 1300 333 362
Fax: +61 8 7389 6567

© Commonuwealth of Australia 2016
AR-016-657
Updated July 2016

Approved for Public Release

UNCLASSIFIED

UNCLASSIFIED

The Vital Planning and Analysis (ViPA) ORBAT Data
Service Architecture and Design Overview

Executive Summary

The Vital Planning and Analysis (ViPA) workbench is an automated logistics feasibility
analysis tool used to support planning and logistics. ViPA makes use of Order of Battle
(ORBAT) data as an input for its calculations. ORBATs describe the identification,
strength, command structure, and disposition of the personnel, units, and equipment of a
military force. They are complicated structures which are often captured in spreadsheets
and maintained by various personnel over long periods of time in different levels of detail
for a range of purposes. However, there was previously no authoritative, consolidated,
shared source of ORBAT data in the Australian Defence Force (ADF).

The ORBAT Data Service was developed by the DST Group in 2008 to address
requirements identified by the Logistics Planning Dedicated User Group (DUG) for
modelling and sharing ORBAT data. The DUG was run and managed by Strategic
Logistics Branch (SLB) for input, review and comment on the creation of user
requirements for logistics operations planning tools. The ORBAT Data Service has since
been deployed onto laptops that were taken into theatres overseas, installed on the
Mission Secret Network (MSN) for Army exercises, and has been transitioned to the
Defence Restricted Network (DRN) and the Defence Secret Network (DSN) by Defence
project JP2030.

The ORBAT Data Service is a Web Service for storing force structures to be used by the
ADF. Web Services are software used to share business logic and data across a network
through application programming interfaces (APIs) using open standards to simplify
sharing and reuse. The service is composed into what is known as a Service Oriented
Architecture which provides a loose coupling of self-contained services. This architecture
helps to achieve the design intent of the ORBAT Data Service to be a reusable, access
controlled and resilient data source.

Part of the work in creating the service involved developing a data model for storing force
structures and including the dynamic relationships between them. This included a
solution for capturing the temporal dimension of force structures to represent changes in
capability and force composition (e.g. unit rotations) over time. The data model caters for
different types of ORBATSs, namely generic capability bricks, force-in-being, hypothetical
future forces, etc. Robust APIs were also designed to expose a powerful service that
enables users to create, search, read, update and delete data models of ORBATS.

A comprehensive data management process was also designed and built into the service to
support a rigorously managed collection of accurate, fit-for-purpose data with associated
metadata.

ORBAT data services enable the Australian Defence Organisation to access authoritative
ORBAT data using various applications in a number of domains including operations

UNCLASSIFIED

UNCLASSIFIED

planning, logistics analysis and planning, joint movement and preparedness. It allows for
different instances of an ORBAT data service to be set up to manage different types of data
for actual operations, specific exercises, simulations, strategic analysis, training, etc. and it
is also deployable for standalone use on laptops or on fixed and adhoc networks.

This report describes the design of the ORBAT Data Service and how it is used to manage
and share ORBAT data between tools such as ViPA.

Acknowledgements

I would like to thank and acknowledge Mr Shane Reschke who co-developed the ORBAT
Data Service and wrote some documentation which was used to create this report.

I would also like to thank Dr Mark Nelson who read through drafts of this report and
provided many helpful suggestions. His help was invaluable.

I would also like to thank both Mr Hing-Wah Kwok and Mr Kuba Kabacinski (Consunet
Pty Ltd) for aiding with some of the concepts outlined in this paper. Kuba also contributed
documentation which was used in the creation of this report.

UNCLASSIFIED

UNCLASSIFIED

DST-Group-TN-1539

Contents
GLOSSATYvviiiiiici s
1 INETOAUCHION. ..t 1
1.1 Related WOTK ..o 2
L2 PUIPOSE...eieiiiiit s 5
1.3 Intended AUAIENCE.ccoeiriiriiiiiiiicice et 5
1.4 Document StIUCLUTE...........cooiiiiiiiiiiiicc s 5
2 VIPA o 6
2.1 Background.........cocoovoiiiiiiiicc 6
2.2 Support to PIanning.........cccooeuiiiiiiiiiiii 7
2.3 ATChIteCtUToviiiiiicii e 8
3. Main RequiIrements..........cccoiiiiiiiiiiiiiiccceec 10
4. Data MOdel........ccoiiiiiiiii 13
4.1 RelationShiPs.cuooviiiiiiiiiiic e 20
4.1.1 Static Link vs Dynamic LinK.........cocooooiiiiiiiiiiiec 21
4.1.2 Relationships Between ORBATS...........ccccocouiiiiiiiiiiiciccccccccce e 21
4.1.3 Relationships Between Units..........ccccooiiiiiiiiiiiiccccec 23
4.1.4 Relationships in @ DPR..........cccovoiiiiiiii 23
4.2 Type ReStriCtONS. ...c.couiiiiiiiiiiicic s 24
4.3 Capability Brick CONStruction.........cccoueveuiiiiiiiiicicc 24
4.4 Mandatory Fields..........ccccoviiiiiiiiiiiic 27
4.5 SYMDOIOZYouviiiiiiiiiectc 27
5. Temporal Modelling and Entity Versioning............cccccceeeeiviiniiinniinniiiiiiicieieiens 28
5.1 Temporal DeSign........cocooveiiiiiiiieicicc e 29
5.2 Temporal LINKING.......cccoiiiiiiiiiiiiiiicceee e 30
6. Fetching Strategies...........ooeiiiiiieicc e 31
6.1 Temporal Fetching Strategies............ccccccoviiiiiiiniiiiiiiiiiic 31
6.2 Timeline — Version Continuity..........cccoceoiiiiiiiiiiiiiiiiccc 38
6.3 Fetching Dependencies............ccccoiiviiiiiiiiiiiiiiiicee e 39
6.4 Lazy Loading.........ccccoiiiiiiiiiiiiiiiiii s 39
6.4.1 ORBAT Of URItS....oouiuiiiiiiiiiiiciiiiccccccc e 41
6.4.2 ORBAT Of ORBATS.....c.coiiiiiiiiiiiiciciiniieie ettt 41
7. 5e1vice INtErface.cccuoviiiiiiiiiiic 42
7.1 General INterface.ccoeoviiiiiiiiiiiiiicieeee e 43
7.1.1 getORBAT/GetUNit.......coiuiiiiiiiiiiiicicicicicicce s 43
7.1.2 searchORBAT /searchUnit/SCATChL........ccoiveuiiiiiiieeiiieee ettt eeeeeeeeeens 45
7.1.2.1 Entity Name Search..........cccoooiiiiiiiiiicc 45

UNCLASSIFIED

UNCLASSIFIED

DST-Group-TN-1539
7.1.2.2 Type/Structure Type Filter.........ccccooeiiiiniiiiiec, 46
7.1.2.3 General Field SEarch........c.ccooiiovieivieeeieeee et e 46
7.1.2.4 Specific Field Search...........ccoooiiiiii 47
7.1.2.5 Current/Latest SEATCR.......c.ooovviiiieiceieeee et 48
7.1.2.6 ASSOCIAION SEATCH......cccvviiiitieeeeeee e et et e e e 49
7.1.2.7 Orphan Search.........cccoooiiiiiiiicc 49
7.1.2.8 Temporal Search...........ccccovviiiiiiiiiiiiiii 49
7.1.3 summariseUnits /summariSEORBATS........cc.ooooiiiiieieeeeeeeeecee e 50
7.1.4 summariseUnitsExpanded...........ccccocoviiiiiiiiiiiiie, 52
7.1.5 getUnitSUMMATYcoooviieieiciiiieecc s 55
7.1.6 get2525SYMDOL.......cooiiiiiiiii s 55
7.1.7 listCapabilities /listPrimaryCapabilities...........c.cccoovviiiiiiiiiiiiiiiiiiii, 55
7.2 Administration INTEIface.........ooiiiiiiiiiiiceecee ettt et e 56
7.2.1 putORBAT/putUnit........ccooviiiiiiiiiiiiiiiiiiiccc s 56
7.2.2 depORBAT /dePURit......cocciviiuiiiiiiiiiiiiiiiiiciceee s 56
7.2.3 getDraftORBAT / getDraftUnit..........cccccocviiviiiiiiiiiiiiiiicicccce 57
7.2.4 updateState...... ..o 57
7.2.5 searchORBAT /searchUnitS/SEarch.........ccceueeeeieiuieiciieeieeceeeceeeete et e evee v 57
7.2.6 getAuthorisedROIes...........cccviviiiiiiiiicc 57
7.2.7 getUserJuriSAiCtiON.c.ccovuiuiiiiiiiiiiiiiiicc e 57
7.2.8 getRepOSItOryID.... ..ot 57
7.2.9 listCapabilities/listPrimaryCapabilities.............ccocoviiiiiiiiiiiiiiiiiicce 57
7.3 REST INTEITACE.iccueieeeeeeeeee ettt ettt et e e e e e eaeeeeaeseteeeteeeenaneeeeenn 58
7.4 ORBAT Administration CHENt...........ooovviiieiiiiiiiiee et e 58
8. DESIGIN. ..ttt 61
8.1 Design Patterns.........ccooviiiiiiiiiiii 61
8.2 TEChNOLOZYcviuiiiiiiiiiiiiiiic e 61
9. Data Management FrameworK...........cccoooviiiiiiiiiiiiic 63
9.1 Data Management Stages...........cccocouvuririiiininieiccecc e 63
9. 1.1 MANQAEe.....c.oioiiiiiiittt s 63
9.1.2 CaPtULC....oviiciiice s 64
9. 1.3 VT Y. 64
S B L 01 o) 1] o WO USSR 66
0.1.5 COMSUIME. ...ttt et ee e ettt e e et e e e et e e etaeeeeteeeeeaseeeeetaeeeenseeeeesseeeaeeeeeaans 66
S B Y=Y 1T =Y T RORRR 66
0.1.7 CLRAMSE. ...ttt et eeee e et e e e e et e e e et e e e eteeeeeseeeensseeeeteeeennseeeenaneereeeeeeaanns 66
9.1.8 Data Migration.........cccoviiiiiiiiiiiiiiiiicccicc 66
9.1.9 DePrecaten.......ccciiuiiiiiiiiiiiiciec s 66
9.2 Entity States.......cccooiviiiiiiiiiiiiic 67
9.3 Linking to Draft Entities..........cccoviiiiiiiiiiiiiicccc 68
0.4 TUSE CASES...uveiiereeeeeireee ettt e ettt e eetteeeeaeeeeetbeeeebaeeesabaeeeesseseeasaseeassaeeesseeesssseeansseesessnnssssanees 68
9.4.1 Creating an ORBAT from Scratch..........ccccoeiiiiiiiiiiniiiiiiiiiiicncc 68
9.4.2 Editing an ORBAT Without Editing its Units...........ccccoooeviiiiiiiiiie, 69
9.4.3 Editing an ORBAT and its UNits..........ccccooviiiiiiniiiiiniiiiiiiiicccccccicns 69

UNCLASSIFIED

UNCLASSIFIED

DST-Group-TN-1539

9.4.4 Verifying and Approving an ORBAT.............cccooiiiiiie, 69

9.5 Jurisdiction Based Edit ReStriCtions..........ccceeieierierieniinieieierieseeeeee e 70
9.6 Data Synchronisation and Multi-Repository Deployment..............cccoccovvveviiiiiiinnnnn. 70
10. Model Management.............c.coiiiiiniiiiiininicccccc s 74
10,1 SECUTTEY ..ttt 74
10.2 POIfOTINANCE. ... eeueenieiiiieiieiieteete ettt ettt sttt ettt e e sbesbeeseesaae et e snbeenbeesaseenns 75
10.3 CONCUITENCYcviiiiiiiiiiicieiit e s 76
10.4 Data Validation........ceeeierieriiririeieiesiesese ettt ettt et sbe et beesneeebee e 77
10.5 Data AUAItING.......ccoiviiiiiiiiiiiiiir s 79
10.6 Data PersiSteNCe.cocuiiiiiiiiiieiieteeteete ettt ettt st ettt e s e e s 80
10.7 Data Mapping......c.ccoiiieiiieiiiiiceiee s 81
11 FUBUTE WOTK .ttt ettt e e et e st e st e st e e e nneeeeanneeeanes 82
11.1 Phase Out the Data Management Framework.............ccccccoceiviiniiiiincnniiincnn, 82
11.2 Data Model Improvements............cccccovviiiiiiiiiiiniiiiieee s 82
11.3 Container ORBATS.cootiiiiiiieeeet ettt ettt ettt st st st e e sbaeeeans 83
11.4 Improved Reporting..........cccovviiiiiiiiiiiiiiiiiiiiicc e 83
11.5 Capability Hierarchy...........ccocoviiiiiiiiiiiiicccc s 84
11.6 Graphical ORBAT Administration Client.............ccccoeiiiiiiiiniiiiiiiiiccc 84
12, REFEIEIICES. ...eeuventitieieeiteteete ettt ettt ettt ettt et et et e e be e st e st en s e b e saeeseeneensensenbesseesnseenseas 87
13. Appendix A: ORBAT Data Model Schema.............ccccoceiviiiiniiiniiniiiiiiiccce 91
14. Appendix B: ORBAT Data Model Validation Rules............c.ccccoooiiiiiiii 105

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

This page intentionally blank

UNCLASSIFIED

ADF
AM
AMDS
API
ASJETS
COA
CONOPS
DES
DMO
DPR
DRN
DSN
DST Group
DSTO
DUG
EIS
FTE
HTML
HTTP
HQ
IBM
IDA
Java EE

JAX-WS

UNCLASSIFIED
DST-Group-TN-1539

Glossary
Australian Defence Force
Aide Memoire
Aide Memoire Data Service
Application Programming Interface
Australian Joint Essential Tasks
Course of Action
Concept of Operations
Defence Entitlement System
Defence Materiel Organisation
Defence Preparedness Requirement
Defence Restricted Network
Defence Secret Network
Defence Science and Technology Group
Defence Science and Technology Organisation
Logistics Planning Dedicated User Group
Enterprise Information Systems
Full Time Entitlement
Hyper Text Markup Language
Hyper Text Transfer Protocol
Headquarters
International Business Machines Corporation
Integrated Defence Architecture
Java Platform, Enterprise Edition

Java API for XML Web Services

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

JAXB Java Architecture for XML Binding
JDBC Java Database Connectivity

JIPB Joint Intelligence Preparation of the Battlespace
JLO Joint Logistics Orientation

JMAP Joint Military Appreciation Process
JPA Java Persistence API

JTDS Joint Training Data Services

LE Loan Entitlement

MLOC Minimum Level of Capability

MVC Model View Controller

NATO North Atlantic Treaty Organization
ODM Order of Battle Data Model

OLOC Operational Level of Capability
oro Operational Preparedness Objective
ORBAT Order of Battle

ORBATDS Order of Battle Data Service

ORBO ORBAT of ORBATSs

ORM Object/Relational Mapping

OWG ORBAT Services Working Group
POJO Plain Old Java Objects

RCP (Eclipse) Rich Client Platform
RDBMS Relational Database Management System
REST REpresentational State Transfer
RTS Raise, Train, Sustain

SIDC Symbol ID Code

UNCLASSIFIED

SLB

SME

SOA

SOAP

SPA

TOPFAS

UE

Ul

UML

ViPA

wucC

XML

XPA

XSL

XSLT

UNCLASSIFIED
DST-Group-TN-1539

Strategic Logistics Branch
Subject Matter Expert

Service Oriented Architecture
Simple Object Access Protocol
Security Protected Assets

Tool for Operations Planning Functional Area Service
Unit Entitlement

User Interface

Unified Modeling Language
Vital Planning and Analysis
Weapon User Category
Extensible Markup Language
eXtreme Programming Activity
Extensible Stylesheet Language

XSL Transformation

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

This page intentionally blank

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

1. Introduction

The Vital Planning and Analysis (ViPA) workbench is an automated logistics feasibility
analysis tool used to support planning and logistics. ViPA makes use of Order of Battle
(ORBAT) data as an input for its calculations. ORBATs describe "The identification,
strength, command structure, and disposition of the personnel, units, and equipment of
any military force."[22] They are complicated structures which are usually captured in
spreadsheets and maintained by various personnel over long periods of time in different
levels of detail for a range of purposes. However, there was previously no authoritative,
consolidated, shared source of ORBAT data in the Australian Defence Force (ADF).

The ORBAT Data Service (ORBATDS) was developed by the Defence Science and
Technology Group (DST Group) in 2008 to address requirements identified by the
Logistics Planning Dedicated User Group (DUG) for modelling and sharing ORBAT data.
The DUG was run and managed by Strategic Logistics Branch (SLB) for input, review and
comment on the creation of user requirements for logistics operations planning tools.

The ORBATDS is a Web Service which acts as a storage facility for different types of
ORBATs including generic force structures (i.e. capability bricks), actual force structures
(i.e. force-in-being and unit entitlements) and capability lists for Defence Preparedness
Requirements (DPRs).

Web Services are software used to share business logic and data across a network through
application programming interfaces (APIs) using open standards to simplify sharing and
reuse. The service is composed into what is known as a Service Oriented Architecture
(SOA) which provides a loose coupling of self-contained services. This architecture helps
to achieve the design intent of the ORBAT Data Service to be a reusable, access controlled
and resilient data source. The purpose of the service is to store these various ORBATs and
control access across different applications. Thus applications can consume these ORBATSs
and modify them locally within the application to satisfy their business requirements or
alternatively applications can consume, modify and produce ORBATSs for storage back
into the service.

A particularly challenging aspect not handled before is how force structures change over
time. Force structures in defence change for a number of reasons including through unit
rotations while on deployment, with the introduction of new capabilities (e.g. new
equipment) and with the Defence White Paper which provides guidance about Australia's
long-term defence capability. By adding a temporal dimension to the data stored in the
ORBATDS it is possible to model the evolution of the force over time and then to use
planning and simulation tools to analyse the impacts of that change on ADF capability in
various scenarios.

Historically the ADF has used a variety of methods for maintaining ORBATSs. Not all of
these are formalised and included the use of notebooks, spreadsheets and presentation
slides, with email and formatted military messaging used to distribute ORBAT
information. There are some problems with this haphazard method of maintaining

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

ORBAT data. Firstly, by not having a centralised source of truth it is difficult to know
whether the information you currently have is up-to-date. Because copies are getting
emailed and forwarded, possibly with modifications, there is no easy method to know
how correct the version you are looking at is. This leads to wasted effort in determining
the correctness of the information and makes collaboration very difficult.

The ORBATDS addresses many of these problems. As it is a web service it is not tied to
any particular user ORBAT editing application, thus allowing potentially multiple user
interfaces to be created for specific purposes. The SOA based design more easily
accommodates the uptake of new information technologies. The ORBATDS has been
designed to allow for multiple services to co-exist making it scalable for different
situations. By following open standards it is easily interoperable with other applications
which assists in information sharing and openness. Being a Web Service also assists with
collaboration. Multiple people can interact with the service simultaneously using it as a
platform for collaboration. In addition, it meets the need for a centralised authoritative
data source of force information. When users access data from the service they can be
guaranteed that it is the most accurate and up-to-date representation of the force that is
available.

ORBAT data services enable the Australian Defence Organisation to access authoritative
ORBAT data using various applications in a number of domains including operations
planning, logistics analysis and planning, joint movement and preparedness. It allows for
different instances of an ORBAT data service to be set up to manage different types of data
for actual operations, specific exercises, simulations, strategic analysis, training, etc. and it
is also deployable for standalone use on laptops or fixed and adhoc networks.

The ORBATDS has been transitioned to the Defence Restricted Network (DRN) and the
Defence Secret Network (DSN) by Defence project JP2030. The ORBATDS has also been
deployed onto laptops that were taken into theatres overseas, installed on the Mission
Secret Network (MSN) for Army exercises, and is attracting interest from other parties.

1.1 Related Work

The Australian Army have a system called the Defence Entitlements System (DES) which
is used to manage an instance of ORBAT data called Unit Entitlements (UEs). This has a
command-line interface and has maintenance issues due to the small number of people
who are familiar with this legacy system. It acts as a centralised repository for the UEs, but
handles information sharing poorly as the UEs are exported into a spreadsheet which is
then distributed. This causes the same problems as mentioned above. The data is also
difficult to then use in other applications due to the lack of open standards.

There are a number of foreign tools used to assist with the management of, and facilitate
the use of, ORBAT data. The Tool for Operations Planning Functional Area Services
(TOPFAS) provides data and planning support tools for North Atlantic Treaty
Organization (NATO) operational planning. It is developed by the NATO Consultation,

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

Command and Control (C3) Agency, together with partners from industry since before
2001 [29]. TOPFAS has a component called the ORBAT Management Tool (OMT) which is
used to populate the TOPFAS database with the ORBAT to support the operational
planning process. The OMT, similarly to the ORBATDS discussed in this report, can
support the representation of real units as well as generic units and allows for the breaking
down of units into command structures. TOPFAS outputs are Microsoft PowerPoint and
Microsoft Word documents. [26, 27]

Another related work is the Joint Training Data Services (JTDS) which is sponsored by the
United States of America Department of Defense Joint Staff J7. It is a web-based set of
services that provide modelling and simulation ready data and scenario development
tools to support theatre level constructive training [23]. JTDS comprises three services [24],
one of which is the Order of Battle Service (OBS). The OBS provides distributed editing
and validation with user assignable permissions, a web based data repository and the
ability to 'drag and drop' entities to form a scenario.

Prior to 2005 an ORBAT Services Working Group (OWG) was established involving
Defence Materiel Organisation (DMO), DST Group and Defence Industry staff. The OWG
role was to ensure that ORBAT tools and ORBAT data used in multiple Australian
Defence systems interoperate to a level acceptable to the Command Support Systems
Branch of the DMO. The OWG met formally on four occasions and the results were
documented by Coomber et. al. [11]. During the meetings, concepts, use cases and
specifications were evolved through the development of a number of prototypes by both
DST Group and industry. This experience was distilled as a detailed design for ORBAT
services including definitions of it's data model, interface and technologies. The ORBATDS
shares some of the design developed by the OWG, most importantly by being a Web
Service. In addition, the ORBATDS data model shares many similarities and the
technologies used such as XML, WSDL and SOAP make it compatible with their design.
XSLT could be used to share data between the data models making the ORBATDS
interoperable with the specification developed by the OWG.

One of the ways the ORBATDS differs from the OWG specification is it's adoption of the
MIL-STD-2525B w/CHANGE 2 symbology standard [31]. Military symbology is used
widely within the military to denote ORBATSs and their capability so it is important for this
information to be captured and used by the ORBATDS. Unfortunately various aspects of
symbology have been adopted inconsistently across the ADF making finding a suitable
standard to implement difficult. Based on army doctrine publications, LWP-G 0-1-5
Military Symbology is the doctrinal publication for the military symbols, which
unfortunately at the time was not yet published with the previous publication being from
1997 and marked as obsolescent. Minutes of the 2-09 Joint Operations Doctrine
Management Group show that APP-6 [44] and MIL-STD-2525 [31] are supported by the
Attorney General and by Defence. ADFP 103 [45] doctrine also covers military symbology,
with Part 2 defining ADF specific unit size symbology which was one of the points of
contention for adopting MIL-STD-2525B, but the minutes noted previously indicate that
this specification will not be used post 2010. A Defence Symbology Stakeholders Group
was established in 2008 in order to update ADFP 103 and establish and maintain a readily

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

accessible glossary of symbols after determining the extend of symbology used in Defence
and organisations linked to Defence. No meeting minutes from this group could be found.
The Army doctrine LWD 5-1-1, Staff Officers' Guide, 2007 has a section on operational
symbology which is based on MIL-STD-2525B. Based on the information found and
desired interoperability with coalition partners, MIL-STD-2525B was chosen for use by the
ORBATDS.

In 2003 a VCDF directive [30] initiated an evaluation of logistic support arrangements for
operations conducted in the Middle East Area of Operations. This culminated in what is
known as the Hingston Report [25] which provided an evaluation of ADF logistics support
to operations in the middle east with a view to informing future logistic capability
development. This report identified that there was a lack of competent logistics analysis
tools to inform planning for operations and that their development should be advanced as
a matter of priority. This prompted the development of ViPA and the ORBATDS.

The CIOG Integrated Defence Architecture (IDA) Technology Stack, pictured in Figure 1,
was developed as a means to guide and align future Defence investment decisions in
information technology [28]. One of the core tenets of this architecture is the Service
Oriented Architecture Backbone with services providing functionality useful to Defence in
an interoperable, modular and reusable package. The ORBATDS itself is a Web Service
which fits into the Data and Infrastructure layers of the IDA. An administration client was
built to manage the data stored in the ORBATDS and fits into the Data layer of the
technology stack. The ViPA application, which utilises the Web Services, aligns with the
top three layers. By fitting within the CIOG IDA Technology Stack this should future proof
these tools.

‘ Uzer Interfaces I} User experience

‘ Composie Applicatiens |} Businass processes

Applications

Senvicss } Business senvices

Services Orienled Archilacturs (SOA) Backbone :}— Business service integration

Data } Data management services

|rfrastuctures } Storage and computational services

Mework } Communication services

Infrastructure

Figure 1: The layers of the CIOG Integrated Defence Architecture (IDA) technology stack

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

1.2 Purpose

This report gives a detailed overview of the design of the ORBAT Data Service
(ORBATDS) and how it is used to manage and share ORBAT data for use between tools
such as ViPA. It consolidates the requirements addressed by the service as well as
documenting design choices and the technologies that were chosen. It also describes the
data model and behaviours of the service to give readers a comprehensive account of the
ORBATDS and give readers a thorough understanding of the service.

1.3 Intended Audience

This document is intended for those who are interested in representing and sharing
ORBATSs and for developers who want to integrate with the ORBATDS or wish to develop
other data services using the same standards, designs and technologies.

In addition, it is hoped this document will improve awareness of the ORBATDS and its
capabilities to increase its adoption within Defence and avoid duplication of effort to build
a similar service.

1.4 Document Structure

Section 2 of this document gives a brief history and overview of the Vital Planning and
Analysis (ViPA) project which was built in conjunction with the ORBATDS. ViPA was the
initial consumer of the ORBATDS and stimulated many of the requirements for the
service. Section 3 outlines the requirements and use cases for the service. The structure of
the remainder of this document addresses each layer shown below in Figure 2. This
structure is similar to that of the IDA stack, starting with the service interface and
gradually delving deeper into the supporting detail.

Data Model
Entity Versioning _
Funetion
Fetching Strategies
[Interface
Design Patterns
Design

Technology

Data Managment
Framework

L

S— _’ e te— S— S— S— Y—

[Model Management

Figure 2: An overview of how the rest of this document is structured

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

Sections 4 through 7 describe the high-level functions of the service. Firstly the data model
is dissected to give the reader knowledge on what data is recorded and how it is
structured and manipulated. Following this the entity versioning is explained along with
the different fetching strategies that are available. Then the application programming
interfaces (APIs) that support searching and accessing the data efficiently and the
administration interfaces used to manage the data within the service are described.

Section 8 focuses on the design of the service, outlining the common design patterns that
have been adopted and the technology choices that were made.

Section 9 outlines the technical data management framework that is implemented by the
service and explains how it behaves in certain use cases. This also includes information on
how the service supports the deployment of multiple instances on the same network
and/or different networks for various purposes.

Non-functional aspects of the service are outlined in section 10. This includes information
about the security model employed by the service, performance limitations, the
concurrency model and how the data is validated, audited, persisted and mapped.

Finally, opportunities for future development of the service are outlined in section 11.

2. ViPA

2.1 Background

The Planning and Logistics Group at the DST Group began developing ViPA in 2006
through a series of prototypes supported by user centred design activities with ADF
sponsors and the end-user community. The purpose of these prototypes was originally to
assist in the development of user requirements. However, due to shortfalls in current
operational capability and no suitable commercial products being available on the market,
these prototypes were expedited for limited interim use, as ViPA version 1.1. ViPA 1.1
shipped with the Aide Memoire Data Service (AMDS) which stores, maintains and allows
network access to logistic planning data. The AMDS data included equipment, people,
containers, supply items, organisations, facilities and their associated dimensions,
components, consumption models and production models.

In 2008 development of ViPA 2.0 began by building upon ViPA 1.1 functionality, refining
and improving the existing tools, and incorporating additional functional components
which added value to the ADF logistics planning process [20]. This included moving the
organisation component of the AMDS into its own data service to become the ORBAT
Data Service (ORBATDS).

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

2.2 Support to Planning

The ViPA workbench provides automated decision support to operational and strategic
level logistics planning in the areas of sustainment and distribution. The Joint Military
Appreciation Process (JMAP) is the key decision-making model used in the ADF by
operational and strategic level planners and is described in ADFP 5.0.1 [18]. It consists of
four steps, shown in Figure 3:

1. Mission Analysis — determine which tasks are necessary to fulfil the mission. This
step ensures that there is a clear understanding of the commander's intent and
assists with identifying the mission and associated tasks that are essential to
successfully satisfying that intent and achieving the end state.

2. Course of Action (COA) Development—refine the commander's guidance and
themes into developed COAs. The COA should provide the commander with a
range of workable options that can be analysed and further developed.

3. COA Analysis—test the advantages and disadvantages of each COA. This is done
by analysing the friendly COA developed in step 2 against adversary COAs using
a selected war gaming method.

4. Decision and Concept of Operations (CONOPS) Development—decide upon the
optimal COA and develop a CONOPS for commander approval. The strengths and
weaknesses of each viable COA identified during COA Analysis are compared to
determine which has the highest probability of success.

As resource limitations have the potential to limit the options available to commanders,
logistic planners must determine what is possible within the operational constraints while
supporting the commander's intent. ViPA 2.0 allows ADF logistics planners to perform
broad logistic COA analysis including comparing relative efficiencies and effectiveness of
alternative distribution arrangements. With the data contained within the AMDS, ViPA
also supports the Mission Analysis phase of the JMAP by providing ready access to
planning data required in the development of the Joint Logistics Orientation (JLO) [20],
which is described in Annex A of ADFP 4.2.2 Chapter 3 [19]. The JLO is the logistic
intelligence process that supports the Joint Intelligence Preparation of the Battlespace
(JIPB) which itself is a systematic, dynamic process for analysing the environment and
advesarary and is also a processing medium through which intelligence staff can provide
an assessment of environmental effects on an operation.

The high level context for ViPA is shown in Figure 3. Mission parameters for the current
COA under consideration together with various environmental factors are provided as
inputs to ViPA. The data services provide quality, authoritative data to the workbench
which calculates the sustainment for that COA as well as feasibility of the movement and
distribution plans to support it.

Military decision making is both an art and a science. Necessarily, the planning process is
a problem solving task where solutions are being designed concurrently to new

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

information being sourced and challenges discovered. Thus the application of the JMAP
for non-trivial problems will tend to be non-sequential and jump around across the
different steps. This makes it difficult for logisticians as they endeavour to keep up with
what new schemes of manoeuvre are being contemplated by planners. ViPA better enables
logisticians to keep up with fast changing plans while being able to quickly analyse what
the planners are creating and to do so on the basis of rigorous computational analysis of
authoritative ORBAT and Aide Memoire data.

ViPA Workbench

~ . -
{ Mission

—_—— ———_ Analyser

/ .
G o

EEepetEl Mission Profiler
Planner

Locations,
Routes. A A
aver Map
L onsumptlcrj LLnad Engine
Engine
- s
Concurrency ove
Engine Calculator
Medical
Casualty More...

Calculator

1 Joint Military Appreciation Process (JMAP)

_—

\
| |

! |

| |

L N (e |

| Step 1 : Mission Step 2: COA :

| Analysis Development |

! |

! [} |

I ('

! JipB : no
! |

| |

! |

| |

| |

| |

! |

—

Force
Definition

Y

Step 4: Decision & (Stap 3: COA g

Supply Chain
Exacution Analysis

Flanner

=]
=
-
- T
Z 5
i

=)

Aide Memaoire

- ORBAT Service
Service

Figure 3: ViPA is used to support the Joint Logistic Orientation (JLO) which is the logistic intelligence
process that supports the Joint Intelligence Preparation of the Battlespace (JIPB) that prepares
the foundation for the JMAP. The four step JMAP process is shown on the left and the primary
tools within the ViPA workbench which support the JMAP are shown on the right. The
workbench consumes quality, authoritative data from the data services which is used to model
and analyse different COA.

2.3 Architecture

ViPA has a multi-tier architecture as shown in Figure 4. This architecture is known as a
‘client-server architecture' where tasks are partitioned between the providers of a resource,
the data services, and the service requesters, the ViPA workbench. The first tier of the
VIPA architecture is the Client Tier which contains the Presentation layer and the
Application layer.

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

vl?A As at 1/04/2014
o Aide
Geospatial ORBAT Mission Distribution Memoire Logwiki
Planner Builder Profiler Planner Admin Client
Missi: Distributi oo
ission |51 ution
And More... Service
Analyser Analyser Admin Client
Client Tier
Medical Explosive Distribution
l:gnsumplinn Casualty Ordnance Load [Path Finder Risk
alculator G
g Analysis
ovP Movement Concurrency
Calculator [{ calculator Analyser
..............
Middle Tier
Ajde Memoire "

Figure 4: Overview of the ViPA multi-tier service oriented architecture

The Presentation Layer includes the interfaces that users use to interact with the system.
The system includes both thick and thin client user interfaces. The ViPA workbench
utilises IBM's Eclipse Rich Client Platform (RCP) which is a mature programmer tool
which makes it easier to integrate independent software components. It provides a
framework for the application including many user interface components. The AMDS and
ORBATDS have their own thin clients for data service administration which are web
applications that utilise Java Enterprise Edition (Java EE) and a number of JavaScript
libraries.

The Application Layer contains engines and utilities which are invoked by the
presentation layer. It also contains some functional business logic processing which
provides coordination between the presentation layer and the service layer. The modules
are used to process commands, make decisions, perform calculations and make
evaluations. Each of the modules is written as a 'plug-in' which is a self-contained
functional piece of software loaded into the RCP. The software components communicate
with each other via a core-controller, thus the plug-ins don't interact directly with the
presentation layer but via the controller, thus implementing the model-view-controller
(MVQC) architectural pattern within the client tier.

The Middle Tier of ViPA contains the Service Layer which provides the AMDS and
ORBATDS Web Services that use open standards to allow for interoperability and to

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

promote re-usability. The administration clients for the AMDS and ORBATDS in the
presentation layer are used to maintain the data in those services and ensure it is fit for use
in the ViPA Workbench.

Finally the Enterprise Information Systems (EIS) Tier contains the Data Layer which is
used by the Web Services to store and persist the data in databases.

3. Main Requirements

The Logistics Planning Dedicated User Group (DUG) was consulted on user requirements
for the ORBATDS in eXtreme Programming Activities (XPAs) which are requirements
workshops held with stakeholders. XPAs are where prototypes were demonstrated and
feedback gathered to provide a large set of requirements. Their goal is to enable software
development to be more user-centred and agile than traditional engineering approaches
such as the waterfall model. By demonstrating prototypes it allows the users to refine their
ideas about what they want, making it a useful exercise. Some of the problems identified
in existing ORBAT handling solutions led to some further requirements for the ORBATDS
such as the need for there to be an authoritative source of fit for purpose ORBAT data.
After consolidating and rationalising the main functional requirements that were
implemented in the ORBATDS we were left with the list below, as captured in the ViPA
2.0 System Specification [20].

1. Provide ORBAT and unit templates: The ORBATDS is to provide template
ORBATSs and Units which can be used to build up a force structure.

2. Support different types of Force Structures: Different areas of Defence use force
structures in different ways so the ORBATDS should allow different types of
ORBAT to be represented in the service, perhaps with different structural rules. For
example, allowing the storage of capability bricks and unit entitlements. In
addition, the service should allow the modelling of different national forces (e.g.
Red Force).

3. Allow force structures to be modelled at different levels of abstraction: The service
should support different fidelities of modelling depending on how much detail the
user wants to store.

4. Store/retrieve properties about ORBATs and units: The ORBATDS needs to store
and retrieve properties about ORBATs and units including name, formal name,
description, time period, type, primary capability, battle dimension, echelon,
affiliation, symbol (2525B) and jurisdiction.

5. Store/retrieve relationships between entities: The ORBATDS needs to store
relationships between units within an ORBAT. This should allow multiple types of
relationships such as command, support and maintenance. The service should also

UNCLASSIFIED
10

10.

11.

12.

13.

14.

15.

UNCLASSIFIED
DST-Group-TN-1539

allow storing relationships between different ORBATSs to form up larger structures
and reduce the overall maintenance overhead.

Store/retrieve Aide Memoire components which belong to a unit: Units within the
ORBATDS should be allocated persons, equipment and containers from the Aide
Memoire Data Service (AMDS). The ORBATDS should remain loosely coupled
with the AMDS such that a connection to the AMDS is not required for the
ORBATDS to be usable. The AMDS data is used to determine what an ORBAT
'has', that is, its units' load outs.

Capture the temporal dimension of force structures: Units are rotated and
capability changes over time which needs to be captured in the ORBATDS.

Incorporate doctrinal symbology: The service should incorporate the military
standard 2525B (with Change 2) into the data to allow for accurate unit
representations. The capabilities should be informed by the standard [31].

Ability to search for ORBATSs and units: The ORBATDS needs to provide the ability
for users to search the service in order to find the ORBAT or unit that they need.
The search should allow flexible searching such as searching across multiple fields
or temporally to find entities within a particular time frame.

Incorporate a data management framework: To support the collection of data the
service should have a data management framework which allows for the
verification, approval and publishing of data. This is intended to improve the data
quality.

Provide data validation: The service should have an autonomous data validation
framework in order to ensure the data is fit for purpose.

Have a reporting framework: The service should have a framework for generating
reports on the data for data management purposes. The reports should include
results from the data validation (requirement 10).

Determine access privileges based on user roles: Users of the ORBATDS are
assigned roles which are used to determine what administrative actions they are
allowed to make. The ORBATDS enforces this security policy only allowing actions
based on the roles: user, editor, verifier and approver. In addition, users and data
should be able to be segmented into jurisdictions such that only users from a
certain jurisdiction such as army, navy, joint, etc. can edit data with a matching
jurisdiction.

Entities should be versioned: As changes are made to an entity a new version
should be created so that the changes are not lost. The service should maintain a
complete map of the data updates and provide temporal connectivity.

No deletion allowed: The ORBATDS should not allow users to delete entities,
instead they should be deprecated so the historical data is not lost. This also makes

UNCLASSIFIED
11

UNCLASSIFIED
DST-Group-TN-1539

sure that people who reference a particular entity at a particular time in the service
will always be able to find it. The exception to this is unpublished drafts which can
be deleted as these are unable to be referenced and so can safely be deleted.

16. Provide a SOAP interface: The ORBATDS should provide a SOAP 1.2 [32]
compliant interface, published via WSDL 1.1 [33], to interact with the ORBATDS.
This includes things such as get, search, create, edit and deprecate functions.

17. Allow multiple instances of the ORBATDS: The ORBATDS should provide a
mechanism to support multiple different ORBATDS instances being used
simultaneously on a network. It will do this by preventing the local modification of
entities that were imported from a different ORBAT data repository in which they
were initially created.

As well as these somewhat ORBATDS specific requirements there are also system
requirements to have a flexible, interoperable and extendible architecture. The data service
needs to be designed for collaboration, for example military planning requires
collaboration within a multi-disciplinary environment, which is important for a good
operational outcome. It is also important for other applications to be able to integrate and
reuse the functionality provided by the service, which means developing APIs based on
open standards and technologies. Finally, it should be extensible so that custom extensions
or adaptors can be built around the service architecture. These requirements are recorded
in the ViPA 2.0 System Specification in section 3 [20].

Table 1 lists a number of high-level use cases which were developed for the ORBATDS to
indicate how it can be used.

Table 1: High level use cases for the ORBATDS

Use

Title Scenario
Case
The user creates a new ORBAT by defining the building blocks (units)
and their load out (Aide Memoire components) and then creating a
1 Createa | command hierarchy between them to form an ORBAT. The user is able

new ORBAT | to select whether the ORBAT they are creating represents a force-in-
being such as a UE or a capability brick. Any data being stored should
automatically be validated to ensure it is usable.

Find an The user performs a search using filters such as type, name and
2 capability to find a suitable ORBAT. A list of matching entities is
ORBAT
returned to the user.

Retri The user retrieves an ORBAT from the service. The retrieved ORBAT is

etrieve an

3 ORBAT returned in an open structured format so it can be interpreted for use in
other applications.

UNCLASSIFIED
12

UNCLASSIFIED
DST-Group-TN-1539

Use

Title Scenario
Case

The user updates an ORBAT's structure and details to keep it relevant.
The user can modify its structure such as adding or removing units or
updating the command hierarchy. Unit's can also be modified by
4 Modify an | changing their properties or the Aide Memoire load-out. Changes
ORBAT made to a unit are automatically propagated up to any ORBATs which
contain that unit. Major changes to an ORBAT can be captured as a
new temporal version, such as when there is a major change in
capability. Versions and revisions of an ORBAT can be navigated.

The user sets up an ORBATDS for an exercise. They populate the

Multiple | ORBATDS with ORBATS relevant for the exercise. The data created in
ORBATDS | the service is later merged into another service without overwriting or
corrupting any data in the other service.

4, Data Model

A data model is a specification for how data is defined in a system and how the data
elements relate to one another. Thus a data model explicitly determines the structure of
data and serves a number of purposes. Firstly, it is used to describe how the real word
entities which the system is representing, in this case ORBATSs, are defined in the service.
In this way it can be thought of as a translation between reality and the system. Secondly,
it allows users to understand the 'language' used by the service which enables them to
understand and interact with the service.

The structure and fields in the data model were evolved over time to meet the
requirements and use cases defined in Section 3.

An ORBAT describes "The identification, strength, command structure, and disposition of
the personnel, units, and equipment of any military force."[22] There are many
relationships between the components of an ORBAT and so the structure is best referred to
as a graph (or network) rather than as a tree (or hierarchy). In fact, the graph for an
ORBAT can contain different relationships that link multiple trees, for example, for
'‘Command’, 'Support' or 'Maintenance' relationships between military units in the ORBAT.
ORBATSs are used to represent an armed force participating in activities such as raise,
train, sustain (RTS), current operations or a potential future contingency. Knowing how a
force is made up is important for a variety of tasks such as planning, movement,
preparedness, etc. For example, the force structure can be used to determine the
sustainment which will be required for a deployed force.

Figure 5 shows the ORBAT Data Model (ODM) as a UML 2 [46] class diagram. The ODM
is used to represent the graph structure of ORBATs needed to address requirements in
Section 3 and to support the functionality described in the following sections. The data
model is also defined in an XML schema which can be found in Appendix A. The
terminology used in the data model is explained below.

UNCLASSIFIED
13

UNCLASSIFIED

pkg orbat

= 3 =
DataType
&1 name:String
&1 formalName:String
§1 description:String
<<annotations>> &1 timeType:QTimeType ==annotations>==
ORBATDataType &1 primaryCapability:String UnitDataType
- L - ==annotations==
secondaryCapability:List<T1-=Capability Type= -
nationality:MationalityEnum 21 rreapabiity pawility e $1 noAmObjReT Integer UnitType Stub
1= &1 battieDimension:BattieDimensionEnum =
noUnits:Integer & ==} &1 position:PositionType
§1 echelon:ForceSizeEnum -
noLinks:Integer t)) &1 typeTypeEnum
" &1 affiliation:AffiliationEnum - .
structureType:StructureTypeEnum = &1 maintenanceType:MaintenanceTypeEnum
&1 environmental:ClimateEnum =)
? &1 wuciWeaponUserCategoryEnum
1 ownerAuthorType
FstructureType @1 symbol2S2SE:String !\ﬂ:ype/ #maintenanceType
<=annotations>> @1 attributes:List=T1-—AttributeType= <<annotationss> —=annotations==
ez $1 metabata List<T1»Metabata~ P — B
StructureTypeEnum @1 role:String TypeEnum Maintenance TypeEnum
§1 service:ServiceEnum
uE &1 sourceData:SourceDataType BRICK = “Brick” INTEGRAL = “Integral”
oo &1 idString INSTANCE = "Instance™ CLOSE = "Close™
oPo &1 iid:String GEMERAL = "General”
So_BRICK 21 viostring
CONTAINER &1 revinteger
§1 isHead:Booclean
&1 security: String
§1 previd:String
==annotations== - ==annotations== ==annotations==
©1 nextid:String _ _ ~
ORBAT Type - UnitType UnitTypeAmObjRef
&1 state State
&1 units:List<T1-=UnitType> &1 Iockversion:integer &1 amObjRefs List<T1-=UnitTypesimObiRef> &1 typeAmObiectTypeEnum
£ links:List<T1->ReMype= @1 repositoryld:String £1 maximum.AmObjiReType
&1 lazy:Boolean #amObjRefs $1 minimum:AmObjMReType:
#units &1 required.amObBMReTType
©1 amRefList<T1-=AmObiMRe Type=
#secondaryCapability &1 wucWeaponUserCategeryEnum
&1 id:String
~=annotations== v
Capability Type 1 amid:String
$1 name:String
&1 capabiltyName:String @1 wersion:int
&1 symbolCode:String §1 prescribed:-Boolean
§1 id:String
==annotations==
#links AmMObiMRefType
==annotations== $1 capabilityType:String
RelType city:double
&1 id:String

&1 attributes: List<T1-=Attribute Ty pe=
&1 id:String

&1 name:String

&1 type:RelationshipType
§1 parentOrbatvid: String
&1 parentOrbatiid: String
&1 childOrbatvid: String
é-] childOrbatiid: String
&1 parentUnitVid: String
Sl parentUnitlid: UnitType
&1 childUnitvid:String

&1 childunitid:UnitType
&1 cardMininteger

&1 cardMax:integer

Generated by UModel www _altova.com

Figure 5: A UML 2 class diagram of the ORBAT Data Model used to represent ORBAT data in the ORBATDS

UNCLASSIFIED
14

UNCLASSIFIED
DST-Group-TN-1539

The two main classes are ORBATType and UnitType, where an ORBAT (i.e. an instance of
ORBATType) contains one or more units (i.e. instances of UnitType). All other classes
flesh out the detail of these two classes and the relationships between them. DataType is
the common type which captures fields that are common between ORBATType and
UnitType. The common fields are:

id, iid, vid, rev, prevId, nextId are identifiers used to identify individual
entities (i.e. units and ORBATSs) and are also used in versioning and revisioning of
the entities. More information about how these are used can be found in Section 5.
isHead is used in versioning to indicate which revision is most up-to-date and
hence the 'head' of the revision tree.

name is the short informal name of an entity and often includes abbreviations and
acronyms for example '1 BDE' or '5 RAR'. This short name is used when there is
little space to display such as in reports and diagrams.

formalName is the formal name of the entity that tends to be longer as it expands
any abbreviations and acronyms. For example '1 Brigade' or '5 Royal Australian
Regiment'.

description is used to provide a description of the entity and to also capture any
useful information that isn't covered by other fields.

timeType is used to capture the time dimension of an entity. This describes the
period of time when a particular version of an entity is valid and so enables the
modelling of historic and future ORBATs. More information on how this is used
can be found in Section 5.

primaryCapability defines the main operational role or task for which the
entity is intended to perform. Where possible this should be taken from MIL-STD-
2525B with Change 2.

secondaryCapability allows for a list of secondary roles or tasks to be defined.
Each capability can be associated with a MIL-STD-2525B symbol.
battleDimension defines the primary mission area for the war-fighting entity
within the battle-space. If the battle dimension can not be or has not been
determined it is considered to be unknown. If the battle dimension is known, an
entity can have a mission area above the earth's surface (i.e., in the air or outer
space), on the earth's surface, or below the earth's surface. If the mission area of an
entity is on the earth's surface, it can be either on land or sea. The ground
dimension includes those mission areas on the land surface and is divided into
units, equipment, and installations. The sea surface dimension includes those
entities whose mission area is on the sea surface, whereas the subsurface
dimension includes entities whose mission area is below the sea surface. More
information can be found in the MIL-STD-2525B standard [31].

echelon indicates the command level or size of the entity e.g. squad, section and
platoon.

affiliation refers to the threat posed by the entity. The basic affiliation
categories are unknown, friend, neutral and hostile.

symbol2525B is used to store a code that identifies the military symbol or icon for
an entity to be used in visualisations such as on maps or in ORBAT wire diagrams
(i.e. organisational charts). A symbol ID code (SIDC) is a 15-character

UNCLASSIFIED
15

UNCLASSIFIED

DST-Group-TN-1539

16

alphanumeric identifier that provides the information necessary to display or
transmit a tactical symbol between MIL-STD-2525 compliant systems.

o Position 1, coding scheme, indicates which overall symbology set a symbol

belongs to.

Position 2, affiliation, indicates the symbol's affiliation.

Position 3, battle dimension, indicates the symbol's battle dimension.
Position 4, status, indicates the symbol's planned or present status.
Positions 5 through 10, function ID, identifies a symbol's function. Each
position indicates an increasing level of detail and specialisation.

o Positions 11 and 12, symbol modifier indicator, identify indicators present
on the symbol such as echelon, feint/dummy, installation, task force,
headquarters staff, and equipment mobility.

o Positions 13 and 14, country code, identifies the country with which a
symbol is associated. Country code identifiers are listed in the Federal
Information Processing Standard (FIPS) Pub 10 [47] series.

o Position 15, order of battle, provides additional information about the role
of a symbol in the battlespace. More information can be found in the MIL-
STD-2525B standard [31].

environmental is used to describe the climatic conditions where the entity is
physically located. It uses an Enumeration of climate types from Keoppen's climate
classification [43].

owner is used to record who is responsible for a particular data entity. It is used in
the Data Management Framework (see Section 9). This includes their name, user
name, email address and jurisdiction.

state is used the indicate the state of the entity data within the Data Management
Framework (see Section 9). For example if the data is in a draft state or a published
state.

attributes is a list of attribute triples (name, value, vocabulary) for the entity.
metaData is a list of metadata which is used to capture the author, last modified
time, source and version information. It also captures the authority under whom
the change has been made. It includes a comment which best practices dictate
should be completed by the change author for every change.

role is typically tied to specific force elements based on 'proficiencies' from
Australian Joint Essential Tasks List (ASJETS) and is used to find entities which
meet the requirements to fulfil a specific role.

service defines the service which the entity is associated i.e. Army, Navy, Air
Force.

sourceData captures information about where data for the entity was sourced
from. This is so the original source can be queried if required and lends authority
to the data. A confidence level is applied to the data based on the accuracy of the
source.

security defines the security classification of the data.

repositoryID identifies the repository in which the entity was created. It is used
to assist data management between multiple service instances. More information
about how this is used can be found in Section 9.6.

o O O O

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

e lazy is used when fetching to indicate if an entity is a cut down, lazily loaded
version of the full entity. For more information on this see Section 6.4.

This common DataType class is extended by more specific types which are then used to
build up the ORBAT structures.

UnitType is the main building block of the ODM and is used to represent 'units' or 'sub-
elements', henceforth referred to as units. Each unit can be allocated references from the
Aide Memoire Data Service (AMDS) to indicate the holdings such as persons, equipment
and containers of the unit. Some fields are specific to units and are defined in
UnitDataType. These are:

e noAmObjRef which records the number of Aide Memoire references the unit has.
These will be described more shortly. The purpose of this field is to assist with lazy
loading as it allows for partially completed objects to be quickly fetched without
retrieving all of the aide memoire references, but still being useful by being able to
query the number of references the unit has.

e positionrepresents a unique geospatial position where the unit is located. This is
generally not stored in the service, but is provided for when it is required to record
the disposition (i.e. physical arrangement or positioning) of an ORBAT.

e type is used to differentiate between units which are Capability Bricks (type =
BRICK) or units which refer to the force in being (type = INSTANCE).

e maintenanceType is used to describe the type of maintenance which a unit is
capable of providing. Valid options are Integral, Close, or General.

e wuc is used to define the default Weapon User Category for the unit.

The ODM allows units to loosely reference Aide Memoire (AM) objects such as persons or
equipment. Inside the UnitType there exists a field called amObjRefs which is a list of
UnitTypeAmObjRef where each object represents a reference to an AM object. Each
UnitTypeAmObjRef contains a number of fields:

e type indicates the AM type which the object references, i.e. Equipment, Person,
Container, Supply Item or Facility.

e amid is the unique identifier for the AM object so that it can be found in the
AMDS.

* name is the name of the AM object at the time which the object was referenced.

e version is the version of the AM object at the time it was assigned to the unit
entity. This can be used to see if the AM object has been updated in the AMDS
since being assigned to the unit.

e maximum is used to define the maximum quantity of an AM object which has been
assigned to the unit. When describing a Unit Entitlement (UE) this is the
Operational Level of Capability (OLOC)' entitlement. This is the default quantity
which should be used if no others are specified.

e minimumis used to define the minimum quantity of an AM object which has been
assigned to the unit. When describing a UE this is the Minimum Level of

1 OLOC is the task-specific level of capability required by a force to execute its role in an
operation at an acceptable level of risk. In other words it is the equipment requirement for the
unit at OLOC.

UNCLASSIFIED
17

UNCLASSIFIED
DST-Group-TN-1539

Capability (MLOC)® entitlement. This is not populated for Capability Bricks which
only use the maximum.

e required is used to define the Full Time Entitlement (FTE)® when describing a
UE.

e amRef is a collection of AmObjMRefType objects which allows for users to describe
other capability types/quantities for the AM reference. When describing a UE this
will contain the Loan Entitlement (LE)*. Users are able to append other capability
types if required.

e wuc specifies the Weapon User Category for the AM object.

e prescribed indicates if the unit has additional specialist capability for the piece
of equipment and can therefore perform all levels of maintenance on that piece of
equipment, i.e. Close (1st Line)/Integral (2nd Line)/General (3rd /4th Line).

The AmObjMRe fType is used to define the quantity of an AM reference, i.e. the amount of
the AM object which is assigned to the unit. The capabilityType is used when multiple
quantities might be assigned to the unit for different situations and multiplicity
defines the quantity.

As an example there may exist an A COY unit (UnitType) which contains two references
(UnitTypeAmObjRef), a reference to a person and a rifle. When describing UEs all of the
fields in the UnitTypeAmObjRef objects need to be defined. When describing capability
bricks only the maximum quantity needs to be defined as the other quantities (minimum,
required and the amref collection) are UE specific and are optional for capability bricks.

The capabilityType value is set depending on the AM capability being defined. For
maximum it would be set to OLOC, for minimum it would be set to MLOC, for required
it would be set to FTE and when putting in the amRef collection it will be LE.
UnitTypeAmObjRef has been designed such that it can be extended in the future by
allowing for a list of quantities in case there are extra capability types created.

Figure 6 gives an example in Java of assigning a Rifle to a UE unit.

2 MLOC is the lowest level of capability from which a force element can achieve its OLOC within
readiness notice, and it encompasses the maintenance of core skills, safety and professional
standards. Readiness Notice is the specified amount of time in which a force is to complete its
workup from MLOC to OLOC.

3 The FTE is the level of equipment necessary to enable a unit to conduct routine training and
administratve activities. A units FIE is its authority to hold Principal Items of equipment on
permanent issue. The FTE may be less than the MLOC entitilement, with the shortfall being
made availbale through an entitlement to loan equipment.

4 Loan pools provide equipment for simultaneous training at authorised scales for a balanced
proportion of Australian Regular Army training establishments, the General Reserves,
integrated units and Cadet units authorised to draw from the pool. The entitlement for units to
draw this equipment is termed the Loan Entitlement (LE). LE is the unit's entitlement to hold
equipment on a temporary basis.

UNCLASSIFIED
18

UNCLASSIFIED
DST-Group-TN-1539

UnitType unit = getUnit();

UnitTypeAmObjRef amRef = new UnitTypeAmObjRef () ;
amRef.setAmid ("492771479923672-1178510364941") ;
amRef .setType (AmObjectTypeEnum.EQUIPMENT) ;

amRef .setName ("F88 Steyr™");

amRef .setVersion (18);

AmObjMRefType am = new AmObjMRefType () ;

// OLOC

am.setCapabilityType ("OLOC") ;
am.setMultiplicity(6.0);
amRef.setMaximum (am) ;

// MLOC

am = new AmObjMRefType () ;
am.setCapabilityType ("MLOC") ;
am.setMultiplicity(6.0);
amRef.setMinimum (am) ;

// FTE

am = new AmObjMRefType () ;
am.setCapabilityType ("FTE") ;
am.setMultiplicity (6.0);
amRef.setRequired (am) ;

// LE

am = new AmObjMRefType () ;
am.setCapabilityType ("LE") ;
am.setMultiplicity(0.0);
amRef.getAmRef () .add (am) ;

unit.getAmObjRefs () .add (amRef) ;

Figure 6: Java code showing the creation of a valid Unit Entitlement Aide Memoire reference and assigning it
to a unit

The other main component of the ODM is ORBATType which is used to represent
'ORBATS' of entire forces or individual 'Force Elements' that compose a force. This acts as
a container for units and the relationships between them. Each ORBAT inherits the
common fields from DataType but also has some ORBAT specific fields.
ORBATDataType has the fields:

e nationality defines the nationality of the ORBAT. It uses country codes from
the FIPS Pub 10 series. This is used in the MIL-STD-2525B and is also a part of the
symbol2525B code.

e noUnits indicates the number of units associated with the ORBAT. This is used in
lazy loading so when the full graph isn't fetched from the service the number of
units can still be found.

UNCLASSIFIED
19

UNCLASSIFIED

DST-Group-TN-1539

noLinks indicates the number of links associated with the ORBAT. This is used
when lazy loading so the number of relationship links can still be found.
structureType defines the type of ORBAT that is being represented. The service
supports the storage and retrieval of different types of ORBATs which follow
different processing rules such as Capability Bricks and Unit Entitlements. The valid
values for this are OU BRICK for a capability brick made up of units (ORBAT of
Units), 00 BRICK for a capability brick made up of ORBATs (ORBAT of ORBATS),
UE for a Unit Entitlement ORBAT containing units, 0O for a Unit Entitlement
ORBAT of ORBATSs and OPO for a Defence Preparedness Requirements (previously
Operational Planning Objective) shopping list. Note that the terms OPO and DPR
will be used interchangeably in this report.

4.1 Relationships

ORBATType has a list of units and a list of links which are used to define the relationships
between those units. Relationships are defined by using Rel1Type objects which have a
number of fields:

name is used to record a name/label for the relationship which may be shown to
the user.

type defines the relationship type such as command, support, maintenance etc.
parentOrbatIid, parentOrbatVid, childOrbatIid, childOrbatVvid are
used to define a link between ORBATS. The fields which are populated determine
how the link is processed.

ParentUnitIid, parentUnitVid, childUnitIid, childUnitVid are used to
define a link between units within an ORBAT. How the fields are populated
determine how the link is processed.

cardMin is the minimum cardinality of the relationship which has a default value
of 0.

cardMax is the maximum cardinality of the relationship and has a default value of
1.

As mentioned, the combination of fields populated determines how a link is processed.
Table 2 shows the valid combinations of fields for ORBATSs of different structure type.

Relationships are defined between units or ORBATs but not both, that is, the ORBAT
service does not support defining a relationship between an ORBAT and a unit.
Relationships between ORBATSs can only be defined in ORBATs with structureType
00, OU_BRICK or OPO.

20

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

Table 2: Matrix showing the valid combination of RelType fields based on the structureType of the containing
ORBAT. A 'Yes’' indicates that the field can be populated. A '-' indicates it shouldn't be

populated.
StructureType / RelType | pOIid|cOIid|pOVid|cOVid|pUIid|cUIid|pUVid|cUvid

UE - - - - Yes | Yes | Yes | Yes

(0]0) Yes | Yes | Yes | Yes - - - -
OU_BRICK - - - - Yes | Yes | Yes | Yes

OO_BRICK Yes | Yes | Yes | Yes - - - -

OPO (Unit) - - - - Yes - Yes -

OPO (ORBAT) Yes - Yes - - - - -

4.1.1 Static Link vs Dynamic Link

As mentioned in Section 5 there are two different ways to construct links which affects the
fetching strategy that is used. These are static and dynamic links.

To define a static link relationship between two entities the parent and child iid are the
only fields that are populated on the Re1Type object. To define a dynamic link between
two entities then both the parent iid and vid must be defined, as well as the child iid
and vid.

The reason the iid is defined on a dynamic link as well as the vid is because the iid
fields on a RelType object are actually an XML Schema IDREF and so having them
specified can increase performance and simplify searching the entity graph.

4.1.2 Relationships Between ORBATSs

ORBATs with structureType 00, or OU BRICK are referred to as ORBAT of ORBATS,
or ORBOs, for want of a better term. These types of ORBAT can only contain other
ORBATSs and can not contain any units. They are used to define the associations and links
between different ORBATs. In the case that a command link is defined between two
ORBATs it is assumed that the root unit inside the parent ORBAT (HQ) commands the
root unit within the child ORBAT. The reason that this is assumed is that it is not
technologically possible for the ORBATDS to define unit to unit links across ORBATSs. Unit
to unit links contain an IDREF in the parent/child iid fields. When the link is marshalled,
if the linked unit is not inside the ORBAT being sent in the request then the link is

UNCLASSIFIED
21

UNCLASSIFIED
DST-Group-TN-1539

persisted with the iid being null, thus creating an invalid link and preventing the ORBAT
from being persisted.

To define an ORBAT relationship within an ORBO you need to define a RelType with
type set as ASSOCIATION between the container ORBO and the associated ORBATs and
store it in the links list of the ORBO. This will have the parent set as the ORBO and the
child set as the associated ORBAT. In addition, for ORBATs of type OO, or OU_BRICK
(but not OPO, they can only contain ASSOCIATION links) it is also possible to define other
relationship such as COMMAND relationships. These are constructed by creating a Re1Type
object with type COMMAND with the parent set to the commanding ORBAT and the child set
as the subordinate ORBAT.

Figure 7 shows how the links for an ORBAT of ORBATSs representing 1 Brigade would be
constructed:

ASSOCIATION link: 1 BDE == HQ 1 BDE
ASSOCIATION link: 1 BDE == 1 ARMD REGT
ASSOCIATION link: 1 BDE == 1 CER
ASSOCIATION link: 1 BDE == 1 CSR
ASSOCIATION link: 1 BDE == 2 CAV REGT
ASSOCIATION link: 1 BDE == 5 RAR
ASSOCIATION link: 1 BDE == 7 RAR
ASSOCIATION link: 1 BDE == 1 CSSB
ASSOCIATION link: 1 BDE == 8/12 MDM REGT
COMMAND link: HQ 1 BDE ==> 1 ARMD REGT
COMMAND link: HQ 1 BDE ==> 1 CER
COMMAND link: HQ 1 BDE ==> 1 CSR
COMMAND link: HQ 1 BDE ==> 2 CAV REGT
COMMAND link: HQ 1 BDE ==> 5 RAR
COMMAND link: HQ 1 BDE ==> 7 RAR
COMMAND link: HQ 1 BDE ==> 1 CSSB
COMMAND link: HQ 1 BDE ==> 8/12 MDM REGT
Figure 7: An example of how links are constructed within a valid ORBAT of ORBATs. '==" indicates a non-

directional link as ASSOCIATION links have no direction. '==>" indicate a directional link as the
parent commands the child.

The ORBAT to ORBAT RelType objects stored in ORBOs must be structured as follows:

e To define a dynamic relationship between two ORBATSs the Parent ORBAT Version
Identifier, vid (which refers to a specific version of an ORBAT), Child ORBAT
Version Identifier, vid, the Parent ORBAT Instance Identifier, iid, and the Child
ORBAT Instance Identifier, iid, need to be exclusively defined. That is, they must
all have values while the other fields must remain null.

e To define a static relationship between two ORBATs both the Parent ORBAT
Instance Identifier, iid (which refers to a specific ORBAT instance) and Child
ORBAT Instance Identifier, iid need to be exclusively defined.

e For all ORBAT-to-ORBAT links only ASSOCIATION or COMMAND links can be
defined.

UNCLASSIFIED
22

UNCLASSIFIED
DST-Group-TN-1539

For capability brick ORBOs, of structure type 00 BRICK, a cardinality can also be defined
on the link. This allows for defining relationships such as "ORBAT A commands 3 of
ORBAT B". To define the cardinality the cardMax field is set on the Re1Type object.

4.1.3 Relationships Between Units

Relationships between units within an ORBAT can only be defined within ORBATSs of
type UE or OU BRICK as these are the ORBATs which contain units. The data model
supports defining different types of relationships such as support or maintenance, but
only command relationships can be persisted in the service.

To define a relationship between units within an ORBAT a RelType object must be
structured as follows and stored within the ORBAT:

e To define a dynamic relationship between two units the Parent Unit Version
Identifier, vid (which refers to a specific version of a Unit), Child Unit Version
Identifier, vid, Parent Unit Instance Identifier, iid, and Child Unit Instance
Identifier, iid, need to be exclusively defined. That is, they must all have values
while the other fields must remain null.

e To define a static relationship between two units both the Parent Unit Instance
Identifier, iid (which refers to a specific Unit instance) and Child Unit Instance
Identifier, iid need to be exclusively defined.

For capability bricks of structure type OU BRICK, a cardinality can also be defined on this
link. To define the cardinality the cardMax field is set on the Re1Type object.

4.1.4 Relationships in a DPR

A DPR ORBAT is slightly different than the other structure types. The DPR can be thought
of as a shopping list of different ORBAT and unit entities. It doesn't contain any command
structure between the entities. Because of this only ASSOCIATION links can be defined.
DPR ORBATSs also allow cardinality to be defined for the entities it contains. Both the
minimum and maximum cardinality can be defined to express relationships such as 'This
ORBAT contains between 3 and 5 of this unit'. The maximum cardinality must not be less
than the minimum cardinality and both default to 1.

e To define a dynamic relationship to an entity the parent (and only the parent)
instance identifier, i id, and version identifier, vid, need to be defined.

e To define a static relationship to an entity only the parent instance identifier, 1id,
needs to be defined.

In both cases, the identifiers used on the Re1Type object are for the ORBAT or unit being
included in the DPR. Every entity should have an associated relationship defined in the
DPR.

UNCLASSIFIED
23

UNCLASSIFIED
DST-Group-TN-1539

4.2 Type Restrictions

When developing an ORBAT there are some restrictions on the type of units and ORBATSs
which can be included based on the structure type of the ORBAT being constructed. These
restrictions are listed in Table 3 below.

Table 3: Table shows the containment type restrictions. An X' indicates that type of entity can't be
contained in an ORBAT with the specified structure type.

Structure UE OO | OU BRICK | OO _BRICK OPO
Type:
Unit Type | INSTANCE X BRICK X BRICK
OU_BRICK, | OU_BRICK,
ORBAT Type X UE, 00 X OO_BRICK | OO_BRICK

Cells which have a cross in them indicate that entities with the given type can not be
included in the ORBAT. These restrictions are to prevent the mixing of Unit Entitlement
data, which is based on real forces, and capability brick data which don't have a defined
real force.

4.3 Capability Brick Construction

A capability brick is a generic force structure which characterises a kind of capability and
are used to build up a force structure for a contingency. There can be both ORBAT and
unit capability bricks, for example a Ready Combat Team (RCT) would be an ORBAT
capability brick and a Head Quarters (HQ) would be a unit capability brick.

The construction of capability bricks is similar to the construction of UEs with a couple of
differences. Firstly, the structure type for capability brick ORBATs must be 00 BRICK or
OU_BRICK, and the units must be of type BRICK. The other difference is that capability
bricks can contain cardinality on the COMMAND links by setting the cardMax field on
the Re1Type object.

ORBATs should be modelled in a particular way to increase the re-usability of
components. Figure 8 shows a diagram of what a capability brick we want to model in the
service might look like while Figure 9 shows how this capability brick would be modelled
using the ODM.

UNCLASSIFIED
24

UNCLASSIFIED
DST-Group-TN-1539

-------------------------- - e
!
|

GCompany HQ |
|
|
|
|

i '
|
|
] |
L srermimmmimris -+ |
- [B] :
Platoon HC | Piatoon HO Platoon HQ |
| |
| |
|
PRy | Upply |
il | il B !
[o
1 i |
] !] .
1 | !
1 H [1 [|
Section Section Section : Section Seclion Section Section Section Seclion :
| |
[|
o A |
___________ Plafoon — — — ~~~— ~ 77 /’
—— o7 T R S S S S S S S S S S S

Figure 8: A wire diagram of the ORBAT for a generic company with three generic platoons, each with three

generic sections

UNCLASSIFIED
25

UNCLASSIFIED
DST-Group-TN-1539

Company (00_BRICK)

Company HQ {OU_BRICK)

Coy HQ
(BRICK)

COMMAND- | COMMAND-

Admin Supply
(BRICK) (BRICK)

Platoon (O0_BRICK)

[FRwonHOOUBRICK

L
(BRICK)

[—

Admin Supply
{BRICK) (BRICK)

COMMAND (cardMax=3)

Saction (OU_BRICK)

Section
(BRICK)

Figure 9: A representation of how the ORBAT in Figure 8 would be represented in the ORBATDS Data
Model

UNCLASSIFIED
26

UNCLASSIFIED
DST-Group-TN-1539

4.4 Mandatory Fields

There are a number of mandatory fields which need to be populated in order for the
ORBATDS to accept the entity as valid and store it in the service. Some of the fields are
mandatory to support the functionality described later in the report and/or to support the
functionality of external tools, particularly ViPA. The set of mandatory fields depends on
the structure type of the entity, as different types are used in different use cases and have
different business rules applied.

There are some mandatory fields which are common across all types of entities, these are:

e Instance identifier (iid)

e Version identifier (vid)

e Start time (timeType.start)

e Structure type (for ORBATS) or type (for units)
e Primary capability

e Echelon

e Battle dimension

e Affiliation

e Name
¢ Formal name
e Service

In addition, capability brick ORBATs and Units are required to have role populated.

4.5 Symbology

The ORBATDS implements US Department of Defense Interface Standard MIL-STD-2525B
with Change 2 [31] for symbology since this is the standard which Australian symbology
is based on, as discussed in Section 1.1. This allows ORBATS to be displayed on different
user interfaces such as in Figure 10.

The standard provides a standardised, structured set of graphical symbols for the display
of information in command and control (C2) systems and applications. In joint military
operations, it is imperative to have a common language clearly understood among all
users. Graphical representation of units are observed and readily understood faster than
text alone [31].

The ODM stores the 2525B 15-character alphanumeric SIDC which provides the
information necessary for a system to transmit and display a tactical symbol and its
modifier fields. The ODM also has separate fields for storing the information which is
encoded in the symbol such as primary capability, echelon, battle dimension, affiliation
and nationality so this information is known in systems which don't implement MIL-STD-
2525B. The values of these fields should be based on the standard.

UNCLASSIFIED
27

UNCLASSIFIED
DST-Group-TN-1539

© ASLAV Sgn
PaX:- 132
= VEH: 48
ASLAY Sgn HQ
[I I I T |
ASLAVAZ Det ASLAV A1 Ech ASLAY Survl Tp ASLAV Tp Engr Recon Det Cav JFT Cav

N N e

Figure 10: An example display of an ORBAT using MIL-STD-2525B symbology. This diagram is generated
by the ORBAT Builder web application currently being prototyped by DST Group. More
information can be found about this in Section 11.6.

The ViPA Data Manager who is responsible for the consistent use of descriptors and
symbology based on US MIL-STD-2525B estimates that the standard covers only 75% of
ADF units.

5. Temporal Modelling and Entity Versioning

The ORBAT Data service provides a novel solution to capturing and representing the
evolution of force structures over time. This is to meet requirement 7 in Section 3 for
enabling the service to represent unit rotations and changes to unit capability. This was
achieved by providing each entity with a time line along which different versions (major
changes) and revisions (minor changes within a version) are managed. The term 'entity"' is
used here when addressing both units and ORBATS.

When users update an entity they may choose to create a new version which has its own
time line defined starting from the date at which those changes apply to the real world
object represented by that entity. For example, a new entity representation might be
created with a time period starting on the 1st of January 2020. Later the user decides to
make a new version of the same entity to record a unit rotation occurring on the 1st of
February 2021. The initial version will now have a time line defined from the 1st of
January 2020 to the 1st of February 2021 and a second version with its own timeline
starting on the 1st of February 2021.

In addition to major versions, the service also maintains the history of all minor changes or
corrections that do not impact on unit capability and include changes like correcting a
typographic error in the unit's description or augmenting a model by adding missing

UNCLASSIFIED
28

UNCLASSIFIED
DST-Group-TN-1539

information. The history is formed by capturing these different 'revisions' of the entities to
meet requirement 14 so as to ensure that changes made to an entity are not lost.

A two dimensional revision control system was designed to ensure that all changes made
to an entity are retained. Revision Control Systems (RCS) offer many benefits that have led
to them being widely adopted across a number of domains. The software engineering field
being the most prominent adopter, has been using RCS since the early 1970s [12, 13] to
manage changes to software, particularly when being made by teams of developers. The
ORBATDS implements a RCS for entities stored in the service. The main benefits of having
a RCS are maintaining historical records and the ability to rollback changes. This promotes
data sharing which encourages collaboration and thus helps to improve data quality [14,
15, 16]. As all changes are reversible the data entry risk is reduced, encouraging subject
matter experts to contribute without fear of losing any of their data, thereby wasting their
time and effort [17].

This system allows client applications which require a specific version and/or revision of
an entity to query and fetch that specific represntation for its purposes, but also to be able
to view past versions and/or revisions and determine how entities have changed over
time.

5.1 Temporal Design

When creating an ORBAT or a unit, each change to an entity will either create a new
version or revision of the entity. A version is the representation of an entity for a particular
period of time, while a revision describes a minor change to a version during that time
period. A new version of an entity is intended to be created when an entity undergoes a
significant change to its capability. This might occur when an organisation is restructured
or equipment is upgraded providing a significantly enhanced capability. The new version
would become effective from whenever the change is implemented.

For example, the F-111 strike fighter is a supersonic long-range tactical strike aircraft that
was in service since the early 1970's and in late 2010 was replaced with the F/A-18F Super
Hornet, giving the military a significantly upgraded air combat capability. In this case the
asset was upgraded resulting in a major change to the air combat capability of No. 82
Wing. Consequently, the temporal model of No. 82 Wing would have two versions; the
first has the F-111 equipment and spans from the early 1970's up until late 2010. The
second version has the F/A-18F equipment and spans from late 2010 to some as yet
unknown point in the future.

To more formally define the temporal modelling of the system; every entity in a model can
contain m versions where m >= 1. Each version has a distinct time line defined by a start
date and an end date. The start date is defined when an entity is initially created and all
subsequent versions of that entity must exist after this initial start date. The end date on
the other hand is initially undefined, indicating that the version currently applies and has
an unknown end date. When a new version is created the start date of the new version

UNCLASSIFIED
29

UNCLASSIFIED
DST-Group-TN-1539

must follow the end date of the previous version. Therefore the end date of the previous
version is set to be the start date of the new version, thus creating a continuous time line
for each entity where no versions overlap.

For each version of an entity there also exists n revisions where n >= 1. Each revision of a
version applies for the whole time period of that version, usually because it's a correction
to that version. When a version is created it is said to be the first revision of that version.
As subsequent revisions are made, the revision which has the latest changes denotes the
head revision and supersedes all previous revisions. The determining factor used by the
ORBATDS when deciding whether a change should result in a new version or revision is if
the start date of an entity has been modified.

Figure 11 illustrates the changes to an entity over time. Here you can see an entity which
has evolved through three separate versions, each of which contain multiple revisions. The
head revision of each version has been highlighted by a striped pattern. Note that the end
date of version 3 (V3) is undefined, indicating that it is the latest version.

Time Unit
9 8 7 6 -5 -4 -3 210 1 2 3 4 5 6 7 .. =

S s e B

SEtr?: Z .-5? V1IR2 Séﬁ';}if V2/R2 gtr‘?gt:i V3[R2
Ehdda V2R3 | 2 vaRs
"t V2/R4

Fiqure 11: The evolution of an entity over time. There are three versions of the entity, each defined for
different periods along the horizontal axis. Each version has multiple revisions shown along the
vertical axis. The striped areas indicate the head revision of each version. The time unit of 0
represents the present time, with negative units representing the past and positive units
representing the future.

The latest version of an entity will always have its end date defined as null which is used
to indicate infinity. Every version of an entity will have its end date set to the start date of
the next version, ensuring that each entity has a continuous life cycle of versions with no
overlaps.

5.2 Temporal Linking

To support working with this temporal model for units and ORBATS, two different linking
techniques have been implemented which are known as dynamic linking and static linking.

UNCLASSIFIED
30

UNCLASSIFIED
DST-Group-TN-1539

These linking techniques determine the behaviour of the fetching strategies, which retrieve
the particular revision needed by the user application. A static link references a particular
instance of an entity, that is, a particular revision of a particular version. Every time an
ORBAT containing a static link is retrieved from the service, the exact instance of the
linked entity will be returned. This makes it possible to create and recreate the exact same
snapshot of an entire ORBAT based on specific versions/revisions of entities.

In contrast, a dynamic link references a particular entity, but not which specific
version/revision of that entity. A fetching strategy is then used when retrieving an
ORBAT from the ORBATDS and the latest revision of the linked entity will be resolved
and returned to the client application. However, the version that is retrieved will depend
on the particular fetching strategy being used. Any changes which have been made to the
linked entities will be reflected in the ORBAT returned from the service. The advantage of
the dynamic linking technique is that it allows each entity to be managed independently.
Any modifications made are automatically propagated throughout the models which are
dependent on the entity. This linking technique also gives data consumers the guarantee
that entities retrieved contain the most up-to-date information.

6. Fetching Strategies

When retrieving an ORBAT it is likely that the ORBAT and the entities within it have
multiple versions (see Section 5). A number of fetching strategies are provided that use a
set of rules to determine which version of each entity is included in a response to the client
application. For example, when using an ORBAT in ViPA to support immediate planning
the user will need the current version of that ORBAT, where as someone using ViPA to
support deliberate planning for possible future contingencies will need the latest version
of an ORBAT, which could be defined to be in the future according to the scenario being
addressed. This section outlines the different fetching strategies that are available to client
applications.

6.1 Temporal Fetching Strategies

There are three different fetching strategies that determine how entities which are
dynamically linked are returned from the timeline. The first strategy is used to fetch the
current version of an entity (i.e. the head revision of the current version for time unit 0),
the next is used to fetch the latest version of an entity (i.e. the head revision of the version
furthest into the future) and the final one is used to fetch a specific instance of an entity
(i.e. the head revision of a specific version).

A simple example will be used to introduce the fetching strategy concept. This example
has an ORBAT O1, which contains two units Ul and U2. There is a dynamic link between
Ul and U2. Each entity contains multiple versions and revisions. Assume the current
version of the ORBAT Ol1 is to be fetched. This is the recommended fetching strategy for

UNCLASSIFIED
31

UNCLASSIFIED
DST-Group-TN-1539

most use cases as it is designed to retrieve the version of each entity which applies to now.
Figure 12 shows how this strategy looks.

Current Time

!

Time : 2 . ; :] g 12
o1 Start=-9, Stop = 1 V%}rsior_n 1 Révisiozn 1 Sst;'; 1{ X:;T;?;n21 sigt:niu : %’25'7;?5“31
Start = 9 Stop = 1 V(;ersion 1, Revisian 2 Ssmi é ;g;?;?gnzé
;17 T Start = -9; Stop = -2 ;’::izi;nn 1‘1 S£p==-§. ;:ﬁ;?;n%l star;t = 3,. Stopg = nuI;{ \:fersion & Eevision 1 7
Start = -9, Stop = -2 F\;:\:SS'E}T] 12 Sé?:pi'i' ;é:?;?gizz' Start = 3,58t0p:= nulzl \é’ersio:n 3. FEEevisiﬁn 2
Start = 3,EStop;= null \:n"ersio:n 3, Revision 3 _
;z ______ Start = -9, Stop = 8 i | : i Version: 1, Rt:avisioin 1 Sst‘:;“;n?j'“ g::fs'f;':ﬁ)
e P | Srt=8, Verson2 |
ol v i il e ol e vl i e Lt e Stop:nu“ Re“riSionz -
Sst;?;ni"l |°'“fgeevr|:2ﬁ fs1

Figure 12: This figure illustrates the current fetching strategy for an ORBAT containing two units which are
dynamically linked

The current strategy shown in Figure 12 uses the current time at Time = 0 to resolve each
entity to the version which intersects this point of time. In this example it will return those
highlighted in the figure: O1 (V1, R2), U1 (V2, R2) and U2 (V1, R1). If the current time lies
at the border between two versions, the version to the right will be returned.

In the latest strategy the service will resolve entities to their latest version. This strategy is
illustrated in Figure 13. In this example it will return the highlighted entities: O1 (V3, R1),
Ul (V3, R3) and U2 (V2, R2). Note that U2 has a draft revision which has yet to be
published. More information about drafts and the data management system can be found
in Section 9.

UNCLASSIFIED
32

UNCLASSIFIED
DST-Group-TN-1539

Current Time

!

Time : 2 i 7 3
o1 Start = -9, Stop =1 Véa-rsior_n 1 Révisiozn 1 Sstt?;; == 1:, ;2;?;?;1”21, Sstgn:n?;ll i ;;':;Si;?:ns'i
Star = 9 Stap =1 Véersion 1 Rfevisidn 2 Sstf'q'; 7 ﬁg{,?;?;‘fz’

;1 ______ Start = -9; Stop=-2 ;’:Vr:g; 11 Sstgtpig ;::?;?;n%l Start =3, Stop:= nuI;I \.fersion 3 Rewrision 1)
o Start =-9, Stop = -2 F\;;rfslg; 12 Sstf:pig ;:L?;?;nzz Start = 3, Stop = null \;f'ersio_n g Reviséon 2 -
Start = 3, Stopi = null Versian 3, Revision 3 _
e e : : ; . - -

U2 Start = -9, Siop = 8 7% Version 1, Ré"iSiU:”) sstf;?::n?fll g:ﬁ%ﬁ
o Start = 8, Version 2 .
77777 Stop = null Revision 2)

Sst;:api:n%] IDmfh\;evﬁiig: ?1

Figure 13: This figure illustrates the latest fetching strategy for an ORBAT containing two units which are
dynamically linked

In the Instance strategy the service will return a specific version and revision of an entity
as specified by its unique identifier, thus making it possible to get old revisions of entities.
When resolving dynamic links the service will fetch the latest version which exists within
the time period of the ORBAT entity being retrieved. Figures 14, 15 and 16 illustrate this
instance fetching strategy. In Figure 14 the client has requested O1 (V1, R1). When
resolving the dynamic links it will return the latest revision of the latest version of Ul and
U2 which intersect the end date of the ORBAT. In this case U1l (V2, R2) and U2 (V1, R1).

UNCLASSIFIED
33

UNCLASSIFIED
DST-Group-TN-1539

Current Time

i

Time 10 8 : 4 : . . 2 :. 4] [7 8 9 101 12
o1 Start = 9 Stop = 1 V(:érsion 1, R:evisiqn 1 Sstt?;; é— Xg;?;?;na Ssi;n:n%" gg\r:;?gn31
Start=-9, Stop=1 V(ézrsiori 1, Revision 2 %‘;‘;z é gg;?;?;nzz

;1 ______ Start = -9% Stop =2 ;’:\rﬂs;:;nn 11 Sé‘{fpig' ;Z\rj;?;ni Star'.t Z 3 Stclp5= nUI;I _;'ersic'n 3, EevisiIOn 4 -
Star.l =-9 Stop = —2_ ::\:ig:] 12 Sst?::;:g' ;:IS‘?;?;LZZ Staft = 3,iStop:= null \é’ersio;n 3, Reviséon 2

i Start = 3,:St0p:= null \;'ersio:n 3, Revisibn 3 _

e e l L d . i d . - -

v | semsssepss L vemoniResont |SEUS (2

i i Start=8, Version 2
I I Stop = null~~ Revision 2

Start =8 Version 3
Stop = null - Revision -1

Figure 14: This figure shows which instances of each entity will be retrieved when using the instance fetching
strategy to retrieve version 1, revision 1 of ORBAT O1 that contains units U1 and U2 which are
dynamically linked

In Figure 15 the client has requested O1 (V2, R2). The dynamic links are again resolved to
the latest most versions which exist within the ORBAT time frame which are U1l (V3, R3)
and U2 (V1, R1).

UNCLASSIFIED
34

UNCLASSIFIED
DST-Group-TN-1539

Current Time

|

TS g 0 6 o % & & 9 2 0 1 2 3 4 5 5 7 8 3 0 11
o1 st~ 9, Stop =1 VJ%!rsior_n 1, Révision 1 Sstg'; 2 gg;‘;’s'?:rﬁ Sst;’t:n%" gif;?;n31
Star = 9, Stop=1 . Viarsiori 1, Rfevisidn 2 SS‘SI’; 7 ;g;?;‘i’;nzz’

;1 ______ Start = -9% Stop =g ;’:Vrzﬁjf; 1‘1 Sstgtp==_§' ;::?;?;ni Start = 3, Stop5= nuI;I \.;fersidn 3, IE?evisi.on 1 _
Star.t =-9 Stop = —2_ ;:;;fg:] 12 Sstz;:;g ;:;T;?Snzz Staft =3, Stop:= null \é’ersio;n 3, Reviséon 2

] Start = 3, Stop|= nul Versiqin 3, Revision 3 _

Lo i WA G B

U2 $tart =-9, Stop =8 i i E i Version: 1, Rtsavisiofn 1 Sﬁﬁ)b::nit" R\':ﬁl‘;’ﬁ

i i Starl=8, Version 2
I I Stop = null ~ Revision 2

Start = 8! ... Version 3
Stop = null - Revision -1

Figure 15: This figure shows which instances of each entity will be retrieved when using the instance fetching
strategy to retrieve version 2, revision 2 of ORBAT O1 that contains units U1 and U2 which are
dynamically linked

Finally in Figure 16, the client has requested O1 (V3, R1). In this case the ORBAT does not
have an end date (Stop = null) which implies it extends forward to infinity thus the latest
versions of the dynamically linked units are returned, U1 (V3, R3) and U2 (V2, R2).

UNCLASSIFIED
35

UNCLASSIFIED
DST-Group-TN-1539

Current Time

.1

Time 8 : 4 2 3 4 : B 7 8 ' | 12
o1 Stairt =9 Stop =1 Véérsion 1 Rjevisio;n 1 SStt?)r; == g, gg;?;?{r)ﬁ Sstg?;n:n%" i Xtﬁ;?;nsi
Start= -9 Stap = 1 Véersiori 1 Revision 2 SS‘S'; 7% ;g:f;?:nzz’

;1 ______ Start = -9% Stop =7 ;’:Vrzﬁjf; 1‘1 Sstf;tpig ;::?;?;ni Stat:t =3, Stop5= nuI?l _;'ersic'n 3, Iz?ta-visi.on 1)
Star.t =49 Stop=-2 ;;’;gg:] 12 Sstj;:;g ;2;?;?;22’ Start=3, Stop = null \;’ersio;n 3 Reviséon 2

] i Start = 3, Stopi= nul Versiqin 3, Revision 3 _

S ! I | 1 | | | _

u2 Start = -9, Stop = 8 - Version 1, Re:wisio:n 1 Ssti"’;)tn?;" ;’:ﬁ;’ﬁ

| i Start=8, Version 2
i [Stop = null Revision 2
! ' Start=8. . Version 3

: ! Stop = nuﬁlnmlh_evision -1

Figure 16: This figure shows the instance fetching strategy for an ORBAT containing two units which are
dynamically linked

Another example will be given using an entity command hierarchy shown in Figure 17
with three entities where entity E1 commands both entities E2 and E3.

Figure 17: An entity command hierarchy

Figure 18 shows an example of how the entities shown in Figure 17 could be represented
in the temporal model, visualising the versions and revisions of each entity.

UNCLASSIFIED
36

UNCLASSIFIED
DST-Group-TN-1539

Current Time

v

Tinle 9 -3 T 6 5 4 -3 2 A 0 1 2 3 4 5 6 7 8 9
Start =-9 Start = -3 Start=4
V2/R1 V3/R1
Stop = -3 Vi[R1 Stop =4 Stop = null
SRS Ry Starts -3 vairz| SB=4 yapo
E1< Stop =-3 Stop =4 Stop = null
Start = -3 vz/r3| SBU=4 - yaps
Stop =4 Stop = null
R V2/R4
L Stop =4
Start =-9 VAIRT Start=2 V2/R1
Stop=2 Stop = null
E2< Swart=o
Stop = 2 V1/R2
Start =-9 VI/R1 Start=-4 V2IR Start =3 V3/R1
E3 Stop=-4 Stop =3 Stop = null
Start =-9 Start =3
V3/R2
Stop=-4 *x: Stop = null

Fiqure 18: Three entities showing in light shading the head revision of each version

Figure 18 will be used to illustrate the following example, assuming that Time Unit 0 is the
current point in time. Here the client retrieves the entity E1 including its dependent child
entities, E2 and E3. When using the current retrieval strategy the head revision of the
version of each entity that intersects the current time will be retrieved. This includes E1
(V2/R4), E2 (V1/R2) and E3 (V2/R1). If the latest retrieval strategy were used then the
head revision of the latest version of each entity will be returned. This includes E1 (V3/R3),
E2 (V2/R1) and E3 (V3/R2). Finally, if the instance retrieval strategy were used then the
head revision of the version which intersects the end date of the chosen version of E1 will
be retrieved. For example if retrieving E1 (V2/R3) then the head revision of the latest
version of E2 and E3 which exists within the temporal bounds of E1 V2 will be retrieved,
as shown by the highlighted boxes in Figure 19. The red vertical line shows the end date of
E1 V2 and shows that the versions of E2 and E3 retrieved are those which intersect this
date. As a side case, if the version of E1 had no defined end date then the head revision of
the latest version of E2 and E3 will be retrieved.

UNCLASSIFIED
37

DST-Group-TN-1539

UNCLASSIFIED

Current Time
Tin;l_e -9 K] -7 -5 -4 -3 2 - 0 1 3 J 5 6 7 8 9
Start = -9 o Start=-3 = Start = 4
i [[' V2/R1 ' [V3/R1
Stop =-3 ! W’:fm Stop=4 ' Stop = null
Start=-9 ol YOS ypro| SET4 aps
E1 < Stop=-3.. . Stop =4 Stop = null
i i ' Start=4 ...
i ! ! ! ! ~V3/R3
! o Stop=null
- — -
Start =-9 I
Stop =2 b
B29 ISt
Stop=2 l l R
= I A ; "y o= i
Start =-9 VAR Sta;rt -4 . V2IR1 Stgrt=3 V3/R1
E3 Stop = -4 , A R R :
Start =-9 VA/R2
Stop =-4

1
Fiqure 19: Illustration of instance entity fetching strategy. The solid dark areas show which entities are
retrieved. The red vertical dashed line highlights the end date of E1 V2.

6.2 Timeline — Version Continuity

To ensure the correct operation of the system it is essential that each entity has a
continuous timeline. If there was no continuity of versions then it would not be possible to

guarantee that a linked entity can always be retrieved. Figure 20 illustrates an illegal
example where the timeline for E2 is segmented. To illustrate, the earlier example of
retrieving the instance E1 (V2/R3), shown in Figure 19, will be used. Using the instance

retrieval strategy, no version of E2 can be retrieved as E2 does not exist within the
temporal bounds of E1 V2.

38

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

Current Time
Tin}e 9 8 7 6 5 4 3 2 A 0 1 2 3 J 5 6 7 8]
Start = -9 i Start=-3 Start = 4
i [i V2/R1 ! [V3/R1
Stop = -3 V1{R1 Stop=4 | Stop = null
Eﬁ” 3 'g N Rg | Start=-3 V2/R2 S?tfa”_': 4” V3IR2
| SNV K
i Stop = null
> i - : : : I ' '
Start=-9 Rt A
Stop =-3.5 | A |
E2-< Start e 9 . : \ ! ! | | |
VIR2 A |
Stop ==3:hunniny P 1
= A =12
Start=-9 o |Stat=4 o0 SEt=3 g0
E3 Stop = -4 Stop =3 : 5 \ '
Start =-9 VA/R2
Stop = -4

Figure 20: An example of temporal model discontinuity

6.3 Fetching Dependencies

When fetching an ORBAT it is useful to specify whether its dependencies should be
retrieved or not. For example, a client application in one case might need to display the
entire ORBAT hierarchy, while in another case only the aggregated ORBAT is needed.
Furthermore, large ORBAT structures can be created in the service which can amount to a
lot of data. It can be time consuming to build up the entire ORBAT structure from the
database and return it to the client. Therefore, the ability to determine if dependencies
should be fetched or not was introduced. When dependencies aren't fetched, only the
parent ORBAT element that was requested is returned, thus significantly speeding up the
operation.

6.4 Lazy Loading

Lazy loading is designed to increase the performance of fetching entities from the service
and reduce the response time for clients. This acts as an intermediate approach which sits
between the empty dependency fetch which only retrieves the entity specified and the full

UNCLASSIFIED
39

UNCLASSIFIED

DST-Group-TN-1539

dependency fetch which retrieves all entities and their dependencies. Lazy loading
retrieves enough information to allow clients to process the ORBAT data without
experiencing large latencies. Figure 21 highlights the three approaches that the service
supports in order of increasing number of objects returned to the client.

Full Dependency
Fetch

Lazy Loading _R

Empty Dependency |:|
Fetch

Fiqure 21: Diagram showing increasing number of objects for different approaches

These various in fetching approaches cause different data objects to be returned to the
client as explained below:

Concrete ORBAT: These ORBAT entities contain all data fields including both lists
of links and units. These contain all the data from the persisted entity.

Half-lazy ORBAT: These ORBAT entities are completely populated as for Concrete
ORBATS, except their dependent entities are lazily loaded.

Lazy ORBAT: These ORBAT entities are lazily loaded and do not contain the lists
of links or units.

Concrete Unit: These unit entities contain all data fields and a complete list of aide
memoire references. Recall from Section 4, that each unit can be allocated
references from the AMDS to indicate the holdings such as persons, equipment and
containers.

Lazy Unit: These unit entities are lazily loaded and do not contain any aide
memoire references.

The returned data structure indicates whether it has been lazily loaded or not. When lazily
tetching ORBATS, the ORBAT being requested will be half-lazy and its dependencies will
be lazy.

The following diagrams illustrate the structures populated when using lazy loading and
how they differ based on the type of entity. The top tree of each figure gives the persisted
view of the entity (i.e. what is in the ORBATDS database) and then shows the lazily loaded
version of that entity which is returned to the client.

40

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

6.4.1 ORBAT of Units

An ORBAT of Units describes an ORBAT which contains units in a command hierarchy.
When lazily loading a structure of this type the ORBAT will be loaded, but the units it
contains will be lazy (i.e. no aide memoire references). A subsequent call can be made to
the service to fetch those missing references. This case is illustrated in Figure 22.

|:| Concrete ORBAT I:I Concrete Unit

[[;
ﬂ Half lazy ORBAT /A Half lazy Unit
| i | ——
P Lazy ORBAT {] Lazy Unit

— ==

Persisted
Objects

Lazy Fetch for ORBAT
af Units

Rotumed o~

Figure 22: Illustration of the lazy loading of an ORBAT of Units
6.4.2 ORBAT of ORBATSs

For want of a better term, an ORBAT of ORBATs (OO) represents an ORBAT which
contains other ORBATSs in a command relationship. This is useful when modelling, for
example, a joint task force or coalition force structures. These embedded ORBATs may
themselves contain other ORBATs or could contain just individual Units. In part this
depends on how the ORBAT is being modelled for the purpose at hand. When lazily
loading a structure of this type the requested ORBAT will be loaded and dependent
ORBATs will be lazily loaded without a populated list of units or links. These ORBATSs can
be loaded by making further requests to the service. This case is illustrated in Figure 23.

UNCLASSIFIED
41

UNCLASSIFIED
DST-Group-TN-1539

Basically, the requested ORBAT will be returned as a concrete object and any dependent or
child elements will be lazily loaded.

D Concrete ORBAT D Concrete Unit D Concrete 00 ORBAT

% Half lazy ORBAT a Half lazy Unit Half Lazy 00 ORBAT

== [P] ~"
P Lazy ORBAT : ' Lazy Unit ! :l.axyononam

Persisted
Objects

Lazy Fetch for ORBAT
of ORBATs
Returned I/D\
Objects

r 1 i

Figure 23: lllustration of the lazy loading of an ORBAT of ORBATs

7. Service Interface

The ORBAT data service has been designed with two separate Simple Object Access
Protocol (SOAP)[32] interfaces, one is a general public interface for client systems to
consume data from the service while the other is an administration interface used to write
data to the service. This separation allows general users to gain read-only access to the
service while hiding away destructive functions behind the administration interface,
which can only be used by authenticated users. The permissions for the administration
interface can be tightly controlled.

The authoritative definitions for these the general and admin interfaces can be accessed via
HTTP from any instance of the service at:

* http://<hostname>:<port>[/<context path>]/ORBATimplService/?
wsdl and

* http://<hostname>:<port>[/<context path>]/ORBATadminImplServi
ce/?wsdl, respectively.

These define the two key endpoints for the service where ORBATPort and
ORBATadminPort have the implementations ORBATimpl and ORBATadminImpl written

UNCLASSIFIED
42

UNCLASSIFIED
DST-Group-TN-1539

in Java EE, respectively. The definitions for the interfaces are specified in Web Service
Description Language (WSDL) [33].

The following sections outline the general and administration interfaces along with the
operations that they make available.

7.1 General Interface

The ORBATDS ORBATPort provides read-only access to ORBAT data including search
functionality and is the primary interface used by client systems. Both ORBATSs and Units
have a corresponding get operation that is able to retrieve either a single data item or a set
of items. In addition, several search operations are provided that apply to ORBATS, Units
or across both of them.

7.1.1 getORBAT /getUnit

This operation enables an ORBATDS client to retrieve ORBATs/Units from the service. A
class defined in the SOAP XML schema called GetReqType is used to define the query to
the service. ORBAT requests use a GetORBATReqType which extends GetReqType and
adds the additional field fetchDependencies to determine the behaviour for fetching
dependencies. If fetchDependencies is true then the service will fetch all child
ORBAT dependencies, if set to false only the requested ORBAT will be returned and if it
is set to LAZY then the ORBAT's dependencies will be lazy loaded. Lazy loading is
described above in Section 6.4. Unit requests just use the base GetReqType which doesn't
have, nor require, the fetchDependencies field.

A number of use cases are handled by this method as explained in Table 4, along with the
field combinations required to perform the get. When performing a get the user needs to
specify which temporal version they want to retrieve, as shown in the 'latest’ column.
More information about the temporal versioning of entities which explains the meaning of
current, latest and instance can be found in Section 6.1.

Table 4: A list of request field combinations required to perform a particular operation. A dash (-) indicates
that the field shouldn't be populated. The fetchDepdendencies field is only present for
ORBAT requests. A star (*) in the fetchDepdendencies column indicates that the field is
ignored since all requests will be lazy.

Entity | ;4| id | vid |rev| head | latest Fetch

Operation Description Types Dependencies

This is used to get a specific | Unit,

version of an entity. ORBAT Yes) -)) i INSTANCE FALSE

Get instance
Get instance (with | Get a specific version and its

dependencies) |related ORBATS. ORBAT) Yes| -)) i INSTANCE TRUE

Get instance (with | Get a specific version of the
lazy entity and lazily fetch its ORBAT | Yes| - - - - INSTANCE LAZY
dependencies) |dependencies.

UNCLASSIFIED
43

UNCLASSIFIED

DST-Group-TN-1539

Operation Description Entity iid | id | vid | rev | head latest Fetch .
Types Dependencies
Get the current version of an
Get current entity, the head of the Unit,
version current version will be ORBAT Yes| -))) CURRENT FALSE
fetched.
Get current Get the current version and
version (with |, o ¢ CUTENt Versio ORBAT|Yes| - | - | - | - | CURRENT TRUE
. its related ORBATS.
dependencies)
Get current Get the current version of
version (with lazy | the ORBAT and lazily fetch |ORBAT |Yes| - - - - CURRENT LAZY
dependencies) |its dependencies.
Get the latest version of an Unit
Get latest version | entity, the head of the latest "1 Yes| - - - - LATEST FALSE
; . ORBAT
version will be fetched.
Get latest version Get the latest version and its
(with ORBAT | Yes| - - - - LATEST TRUE
. related ORBATS.
dependencies)
Get latest version | Get the latest version of the
(with lazy ORBAT and lazily fetchits |ORBAT | Yes| - - - - LATEST LAZY
dependencies) |dependencies.
e Get a specified revision of a .
Get specific | /. sion. Useful for Unit |1 - | Yes | Yes| - | INSTANCE .
revision . .. ORBAT
traversing the revisions.
Get head re.VlSlOl’l Get .the head I‘(?VISIOI’I ofa Unit,) - |Yes!| - | TRUE| INSTANCE .
of a version particular version. ORBAT
. Return all revisions of a .
History fetch | - ticular version of the Uit |1 . Yes| - | - | INSTANCE .
(version) . . ORBAT
entity to the client.
. Return all revisions of all Unit, .
History fetch (all) versions of an entity. ORBAT | ~ Yes | - - - INSTANCE

An example of using the get operation in Java is seen in Figure 24:

GetORBATreq req = new GetORBATreqg():;

GetORBATReqType regt = new GetORBATReqType () ;
regt.setFetchDependencies (FetchEntityDependenciesEnum.TRUE) ;
regt.setlLatest (FetchEntityEnum.CURRENT) ;

reqgt.setIid(iid);

req.getORBATid () .add (reqgt) ;

GetORBATres results = orbatdsproxy.getORBAT (req) ;

Figure 24: A snippet of Java code for making a request to get the current version of an ORBAT and its
dependencies

UNCLASSIFIED
44

UNCLASSIFIED
DST-Group-TN-1539

7.1.2 searchORBAT /searchUnit/search

These operations provide an ORBATDS client with the ability to search over ORBATs
and/or Units in the service. There are operations to separately search each entity type or a
combined search over both entity types. It is possible to refine the search using many
different criteria.

The search takes a SearchCriteriaType object to define the search parameters.
Searching is a very important part of the ORBATDS as a powerful search helps improve
the usability of the service and promotes user uptake. The criteria for the various types of
search functionality are described below.

e Entity name search

e Type/Structure Type filter

e General string search across all fields

e Specific field (or field combination) search

e Current/latest search

e Association search for entities associated with a specific entity
e Orphan search

e Temporal search for entities in a specific time period.

Each of the different searches can be performed by populating the relevant fields on the
SearchCriteriaType object and although the criteria for the different searches can be
combined in different ways, only a limited number of combinations are supported. For
example, an association search cannot be combined with any other search criteria. A
current/latest search and a temporal search must be used mutually exclusively, but can be
combined with a name, general search, structure type and/or field search criteria. If an
invalid search combination is used the ORBATDS will notify the client by returning a
SOAP Fault.

All of the string searches are case insensitive.

7.1.2.1 Entity Name Search

The entity name search is used to find entities in the service with a name matching a
search term provided by the user. The search term is compared against the Name and
Formal Name fields of the ORBATType or UnitType objects in the service (depending on
which search operation is used).

Two search use cases are supported:

e Exact Match searches for entities which have exactly the name or formal name
provided. This is the default behaviour and nothing special has to be done to do
this. For example, if searching for "foo", entities with exactly the name "foo" will be
returned, but entities with the names "fooaaabbb", "aaafoobbb" or "aaabbbfoo"
won't be.

e Fuzzy Match searches for entities whose name or formal name contains the search
term. To get this behaviour, the user must prefix and/or postfix wildcards to the
search term. This will replicate a 'match anywhere' search, so entities with names

UNCLASSIFIED
45

UNCLASSIFIED
DST-Group-TN-1539

which contain the search term anywhere in their names will be returned. For
example, if searching for "*foo*", entities with the name "foo", "fooaaabbb",
"aaafoobbb" or "aaabbbfoo" will be returned. The wild card character '*' matches
zero or more characters in the name and the service also accepts '?' to substitute
any single character. These characters were chosen as they are likely to be the most
familiar to users. To search for wild card characters themselves they can be escaped
by prefixing a "\'. For example "\ *" can be used to find entities with the name "*"
and "*\ **" can be used to find entities with a *' anywhere in their names.

7.1.2.2 Type/Structure Type Filter

The Type/Structure Type filter allows only entities of a particular type (in the case of
UnitType objects) or structureType (in the case of ORBATType objects) to be searched
over. It is possible to specify multiple filters in a single search which are combined with an
OR operator. The search will return elements with the same structure type as any of those
specified. The allowed values for type and structureType can be found in Section 4 by
looking at the description of UnitType.type and ORBATType.structureType.

As an example, if an ORBAT search is performed and the structure type list in the search
contains two elements, 00 and UE, then only ORBATType objects with the
StructureType of UE or OO will be returned. If a unit search sets the type to INSTANCE,
only UnitType objects with the type set to INSTANCE will be returned.

When performing a general search, that is using the search operation rather than the
more specific searchUnit and searchORBAT operations, it is possible to combine
StructureType and Type filters in a single search request. This search will return only
UnitType and ORBATType objects which have a matching type and structureType,
respectively.

7.1.2.3 General Field Search

This general field search is across many different fields in a single operation to find entities
which have a matching string value. More specifically, this string will be compared to
values in the name, formalName, description, primaryCapability, role,
battleDimension, echelon and affiliation fields provided they are not explicitly
specified in the search criteria (i.e. they are null).

If this search is combined with a specific field search, the general search will be matched
across the other fields. For example, if the user specified a FieldCriteria in the field
search with echelon set to "company" and a generalSearch set to "Bob", the service
will look for entities with an echelon of "company" and a name or formal name or primary
capability or battle dimension or role or affiliation which matches "Bob".

This field supports wild cards as explained in Section 7.1.2.1.

UNCLASSIFIED
46

UNCLASSIFIED
DST-Group-TN-1539

7.1.2.4 Specific Field Search

The specific field search is used to find entities which have particular values in specific
fields and is defined using a FieldCriteria object.

The fields that can be specified are:
e Capability
e Echelon

¢ Battle Dimension
e Affiliation

e Role
e MIL-STD-2525B Symbol Code
e Service.

These fields can be combined or omitted as desired.

The echelon, battleDimension, affiliation and service fields all have
enumerated values that can be used to find entities with an exact matching value. When
used in combination a quite fine grained search can be performed. The capability
criterion takes a string which is matched against capabilities defined in MIL-STD-2525B
[31] and entities which have the specific primary capability or a more specialised variant of
the capability are returned. This is because MIL-STD-2525B defines a hierarchy of
capabilities. The further down the hierarchy the more specialised and fine grained the
capability, while higher nodes are more general.

For example, let's say there are three Units. The first two Units have the capabilities of
"CARGO AIRLIFT (MEDIUM)" and "CARGO AIRLIFT (HEAVY)" respectively. These
capabilities are leaf nodes in the capability tree. They both have the same parent, "CARGO
AIRLIFT (TRANSPORT)", which itself has the parent "FIXED WING". The third unit has
the capability "FIGHTER" which is also a child of "FIXED WING".

If a capability search is performed with the string "CARGO AIRLIFT (MEDIUM)" only the
first unit will be found. If a search were performed with either "CARGO AIRLIFT
(TRANSPORT)" or "CARGO AIRLIFT" then the first two units will be returned. If a
capability search was performed with "FIXED WING" then all three units would be
returned as they have "FIXED WING" as an ancestor of their capabilities.

Something to note is that capability names in MIL-STD-2525B are not unique. For example,
there are aircraft with a cargo capability, as well as ships with a cargo capability—both of
these capabilities are different, but have the same name. Consequently, when performing
capability searches entities returned may not match the desired capability exactly.

The capability criterion is also used to find entities which list a matching capability as
one of their secondary capabilities. In addition this criterion can also be combined with
some flags to control its behaviour:

e If primaryOnly is true, then only the primary capability field will be used in the
criterion—secondary capabilities won't be included in the search.

UNCLASSIFIED
47

UNCLASSIFIED
DST-Group-TN-1539

e If exactCapabilityMatch is true, then only entities whose primary capability
string matches the search term will be returned. The MIL-STD-2525B capability
hierarchy will not be used.

These two flags make it possible to create a lazy loaded ORBAT explorer which groups
entities based on their primary capability. It also makes it easier to find custom capabilities
which are not a part of the MIL-STD-2525B as it reduces the number of false positive
matches. Many of the capability names preferred by the ADF can not be found in MIL-
STD-2525B making custom, non-standard capability descriptors necessary.

The MIL-STD-2525B Symbol Code criterion allows searching for entities which have a
particular symbol code. Searching with the symbol code 'SHGPEWA—HAU' will return all
entities which have that exact symbol code. The field also supports wild cards so
specifying 'SHGPEWA---227?" will find entities which have symbol codes that match the
first 7 characters of the search term. A '?' matches any single character. In MIL-STD-2525B
each of the characters in the symbol code is used to encode something about the entity, so
using this search functionality it is possible to perform a wide variety of searches. For
example, you can find every entity of a specific echelon by specifying only the echelon in
the symbol code and having a '?" in place of all other characters.

If looking for a specific capability, using the symbol code search to find that capability will
be more accurate than using the free text capability search.

7.1.2.5 Current/Latest Search

The search can be configured to search for either the current or latest versions of entities
by specifying GeneralCriteria in the search request. Using Figure 25 as an example, to
search for the latest version of an entity set latest to true in the criteria. In this case
Revision 2 of Version 2 will be returned to the client as this is the head revision of the latest
version of that entity. To search for the current version of an entity the latest variable
must be false. This will return results whose version intersects the current time that the
query was made. In this example revision 3 of version 1 will be returned.

Current Time
1990 * 1991 1992
Jan ; Feb ; Mar Apr May ; Jun Jul ; Aug Sep : Oct ; Nov Dec ; Jan . Feb Mar ; Apr May Jun Jul Aug ; Sep ; Oct Nov Dec Ja
Entity 1 Version 1, Revision 1 Version 2, Revision 1
Version 1, Revision 2 Version 2, Revision:2

Version: 1, Revision:3

Figure 25: A temporal diagram of an entity showing two versions with multiple revisions. The head revisions
are shaded in blue.

UNCLASSIFIED
48

UNCLASSIFIED
DST-Group-TN-1539

7.1.2.6 Association Search

The association search is used to find all ORBATs that are associated with a particular
ORBAT or unit in the service. An entity is associated with another if it has been used in a
larger ORBAT that contains it. The client specifies the entity's unique instance identifier,
iid, for which they want to find all associated entities.

For example, consider the user has a unit, Unit 1, and they wish to find all ORBATSs in the
service which contain that unit. To do this the client performs a unit association search for
all ORBATSs which contain that unit, an example of which can be seen in Figure 26.

Unit 1
fid =1

Figure 26: When performing a unit association search for Unit 1 the result will contain ORBAT 1 and
ORBAT 2

A similar search can be performed to find ORBATs which are associated with another
particular ORBAT.

7.1.2.7 Orphan Search

The orphan search option is used to restrict a search to only return orphan, or unallocated,
units. These are entities which have not been used in any ORBAT. This search option is
useful when creating new data because among the many new units that have been
assigned to an ORBAT, some may still remain unassigned.

The orphan search is specified by setting the orphansOnly boolean in
SearchCriteriaType and can also be combined with other criteria.

7.1.2.8 Temporal Search

The temporal search can be used for more fine-grained searching of entities across time. It
allows clients to find versions of entities which exist either at a particular point in time or
within a period of time. To search for entities which exist at a particular point in time the
client simply provides this time in the temporal criteria of the search request. Any entities
which intersect this point in time will be returned to the client. The temporal criteria can be
combined with other searches and it is recommended to do so as the number of results can
often be quite large.

An example of a point in time search is shown in Figure 27. If the client were to specify the

point in time as being 1st of April, 1991 and combined it with the name criteria "Entity 3"

UNCLASSIFIED
49

UNCLASSIFIED
DST-Group-TN-1539

then version 2 of that entity would be returned. If the name criteria was not specified then
version 1 of Entity 1, version 2 of Entity 2, version 2 of Entity 3 and version 1 of Entity 4
would all be returned.

1990 1991

Jan ' Feb ' Mar ' Apr 'May ' Jun ' Jul 'Aug'Sep ' Oct Nov ! Dec ' Jan ' Feb ' Mar' Apr ' May ' Jun ' Jul 'Aug'Sep ' Oct' Nov' Dec' Jan'
Entity 1 : Versian 17 : ; . ; i V2
Entity 2 Version1 i i Version 2
Entity 3 Version1 ! Version 2
Entity 4 i Version 1 : Versian 2
Entity 5 | | | Version 1 i V2

Fiqure 27: A temporal diagram showing different versions of a number of entities over time

The temporal search also supports period searching. For this search the client specifies the
start time and finish time of the period they are interested in. A modifier can be used to
specify the behaviour of the period search to either return only those entities which start
within the period or to return all entities which exist for any part of the specified period.
For Figure 27, if the user specifies the period of 1st June 1990 to 15th Jan 1991 and selects to
return only entities which start in this period then version 1 of Entity 1, version 2 of Entity
2 and version 2 of Entity 3 will be returned. If the user did not restrict the search to only
those that start in the period then version 1 of Entity 1, version 1 & 2 of Entity 2 and
version 1 & 2 of Entity 3 will be returned.

7.1.3 summariseUnits/summariseORBATSs

Given a list of units or ORBATS, the service will summarise the entities by aggregating all
of the Aide Memoire (AM) objects that they contain such as equipment, supplies and
personnel. If the client is only interested in aggregating a subset of the AM objects they are
able to provide a list of AM identifiers, otherwise if no identifiers are selected then all
items are aggregated. The operation will expand any cardinality of any subordinate units
prior to calculating the summary.

Units which are present more than once in the request will only have their AM objects
counted once in the aggregation. For example, Figure 28 shows three ORBATSs that are to
be passed to the summariseORBATSs operation. In this case the AM objects from all units
in these ORBATSs will be aggregated, but the AM objects of unit D will only be counted
once.

UNCLASSIFIED
50

UNCLASSIFIED
DST-Group-TN-1539

ORBAT 1 ORBAT 2 ORBAT 3
A G D

— 1 1
HI | I K|]| L

L...

h 4 L

E F

Figure 28: Three ORBATSs to be summarised. Unit D is common between two ORBATSs, but its AM objects
will be counted just once

If any of the ORBATs within the request contain cardinality, such as ORBAT 3 in
Figure 29, then it is assumed that all of the units in the request are gerneric capability
bricks and can therefore be counted multiple times. In Figure 28 there was no cardinality
so each of the units was only counted once. In this case, when summarising the Aide
Memoire objects unit D will be counted twice since it appears in ORBAT 1 and ORBAT 3
and cardinality is present in the request. AM objects from units K and L will be counted 3
times each and the other units will be counted once.

The ORBATDS returns to the client the aggregated list of Aide Memoire items.

UNCLASSIFIED
51

UNCLASSIFIED
DST-Group-TN-1539

ORBAT 1 ORBAT 2 ORBAT 3
A G D

¢|¢ J,Il <3} lxs
B C H | K L

1Ol
L..

h 4 Y

E F

Figure 29: Three generic capability bricks to be summarised. ORBAT 3 contains cardinality on its links
meaning that units are counted multiple times.

7.1.4 summariseUnitsExpanded

This summarising operation is used when a summary of a selection of units plus any of
their subordinate units is required. In other words, it computes the total number for each
type of equipment, supplies and personnel that are contained in entire command trees
extending from selected units. A flag is used to determine whether duplicate units existing
across multiple ORBATSs are allowed to be aggregated more than once as the command
trees are traversed.

This method has a few potentially confusing cases and so the following figures describe
the desired behaviour in some of those cases. A simple case is shown in Figure 30 in which
units A and D in ORBAT 1 are selected to be summarised, but they happen to be in the
same ORBAT. In this case each unit including its subordinates are aggregated once.

In Figure 31 Unit D in ORBAT 1 has been selected for summarising. Unit D also happens
to be present in ORBAT 3. As a result of this request units D, E, F, K and L will be
aggregated. If the duplicates flag is true, then unit D will be counted twice.

UNCLASSIFIED
52

UNCLASSIFIED
DST-Group-TN-1539

ORBAT 1

A
|

1o

Figure 30: Two units have been selected to be summarised that happen to be in the same ORBAT. Units A
and D are counted once.

ORBAT 1 ORBAT 2 ORBAT 3

A G D

k4 3

E F

Fiqure 31: A request for aggregation containing three ORBATs with Unit D from ORBAT 1 selected

Figure 32 shows a request identical to that shown in Figure 31 with the exception that
ORBAT 1 is a generic capability brick with cardinality. In this case, Unit D would be
aggregated 4 times regardless of whether the duplicates flag is set or not. Units E & F

UNCLASSIFIED
53

UNCLASSIFIED
DST-Group-TN-1539

would be aggregated 3 times (as they appear 3 times each once the cardinality has been
expanded) and units K and L would be aggregated once.

ORBAT 1 ORBAT 2 ORBAT 3

A G D
| [

— [] []

v
C

= .
D

!

h 4 Y

E F

Figure 32: A request for aggregation containing three ORBATs with Unit D from ORBAT 1 selected.
ORBAT 1 contains cardinality.

Finally, in Figure 33 units B, C from ORBAT 1 and unit G from ORBAT 2 have been
selected for summarising. ORBAT 1 is again a generic capability brick specifying
cardinality on one of its links. In this case units C, D, E and F will each be aggregated 3
times regardless of the duplicates flag and units B, G, H, I and] will each get included in
the summary just once.

The ORBATDS returns to the client the aggregated list of Aide Memoire items including
equipment, supply items and personnel.

UNCLASSIFIED
54

UNCLASSIFIED
DST-Group-TN-1539

ORBAT 1 ORBAT 2

A G

—T ;
B C H |

O
[S

P
E||F

Fiqure 33: A request for aggregation containing two ORBATSs with three units selected. ORBAT 1 contains
cardinality.

7.1.5 getUnitSummary

This operation can be used for two things. It can be used to pull a unit and its subordinates
out of an ORBAT and return the selected sub-hierarchy, which is useful when the client
doesn't require an entire ORBAT. It can also be used to return a summary of a unit and its
children, aggregating all of the Aide Memoire items into a single unit for the client.

This operation takes three parameters. The first is the unique identifier, iid, of the
ORBAT from which the hierarchy is to be taken, the second is the iid of the root unit that
the client is interested in and the third is a boolean flag used to determine whether to
return the sub-hierarchy or to return a summary.

7.1.6 get2525Symbol

This operation is used to leverage the ORBATDS support for MIL-STD-2525B. The client
can provide values for the fields that determine the symbology such as capability, echelon,
battle dimension etc. The service will then return to the client the matching symbol as well
as its 15 character symbol code.

7.1.7 listCapabilities/listPrimaryCapabilities

These operations return to the client a list of all the unique primary capabilities which
have been assigned to the head revision of the specified version (i.e. current or latest) of all
entities in the service. The entities used to build the list can be filtered by military service
(e.g. Army), unit type (e.g. brick or instance), ORBAT type (e.g. capability brick or unit
entitlement) and whether to only include orphan/unallocated units. The capabilities are

UNCLASSIFIED
55

UNCLASSIFIED
DST-Group-TN-1539

returned either as MIL-STD-2525B with Change 2 symbol codes or as capability names
depending on which operation is used.

These methods can be used to build up an explorer hierarchy to enable the client to browse
the data via capabilities.

7.2 Administration Interface

The ORBATDS ORBATadminPort service provides authenticated users with read/write
access to ORBAT data where writes are managed through a three stage data management
process. The service provides put and deprecate operations. The put operations allow
privileged users to create new data entries or to update existing ones. The deprecate
operations mark entities as being no longer required and is similar in function to a deletion
process except that the data is retained for audit and maintenance purposes. Deprecated
data is not visible in search results by default from the ORBATPort service.

To gain access to the administrative operations the client must first authenticate with the
service to gain access. Access is controlled through the web application server such as
Tomcat or WebSphere. In the server, users or groups of users are assigned different roles
and jurisdictions in order to edit data and perform administrative duties. More
information about this can be found in Section 9.

7.2.1 putORBAT /putUnit

These operations are used to store user defined ORBATs/units in the service. The user
first builds up the ORBAT and unit data locally and then uses the put operations to put it
into the service. The data must pass validation rules before the service allows it to be
persisted, as discussed in section 10.4.

These operations are also used to make modifications to existing data. Once data has been
retrieved from the service the user can make changes to the data and push it back to the
service to create a new version or revision of the entity. When making modifications to an
entity it must be a draft in the EDITED state resulting from a fetch using the getDraft
operations. If the start date is changed then a new version of the entity is created. If there
are no changes to the start date then the entity is stored as a new revision of the existing
version.

To make a change to the start date without creating a new version, for example to correct
it, the modifyDateOnly flag can be set on the request. This can only be used to change
the start date on the latest version of an entity.

7.2.2 depORBAT/depUnit

These operations are used to deprecate entities that are no longer used or otherwise useful.
The system does not provide the ability to completely delete an entity to enable other

UNCLASSIFIED
56

UNCLASSIFIED
DST-Group-TN-1539

entities which reference it to continue doing so. This ensures that all existing entities
continue to function while discouraging future use of the deprecated entity.

7.2.3 getDraftORBAT / getDraftUnit

These operations are used to get a draft version of an existing entity, as mentioned above.
These operations will return a draft of the latest revision of the specified version for the
client to edit.

7.2.4 updateState

This operation is used as part of the data management process to transition entities
through the different states of that process. This is used to transfer drafts between
EDITED, AWAITING_VERIFICATION, VERIFIED and APPROVED as explained in
Section 9.

7.2.5 searchORBAT /searchUnits/search

The administrative search offers the same functionality as the general search, but also
enables the client to specify the state of the entity they are searching for rather than just
restricting the search to APPROVED entities. This can also be used to search for
deprecated entities.

7.2.6 getAuthorisedRoles

This operation is used to find the list of roles that the authenticated client has been
assigned. This can then be used by client applications to determine which functionality to
expose to the user.

7.2.7 getUserJurisdiction

This operation is used to find the jurisdiction of the authenticated user. The jurisdiction
affects what entities the client has permission to modify and thus can be used by client
applications to modify functionality accordingly.

7.2.8 getRepositorylD

This operation is used to determine the repository ID of the ORBATDS which the client is
authenticated with.

7.2.9 listCapabilities /listPrimaryCapabilities

These operations offer the same functionality as the operations on the general interface,
except that it also allows the client to specify the state of entities as an additional filter.

UNCLASSIFIED
57

UNCLASSIFIED
DST-Group-TN-1539

7.3 REST Interface

In addition to the SAOP Web Service interface described above, there is also a very limited
set of functionality offered via simple REST interfaces. This is mostly used by the
administrative reports, but can also be used in other applications. Table 5 lists the different
REST resources that are provided by the ORBATDS.

Table 5: Description of the different REST resources that are available

Path Function

Get an ORBAT specified by IID. This interface returns a single
/<context path>/orbat/<| ORBAT in XML format. When requested in a browser an
iid> XML Style Sheet is used to transform the XML into HTML for
viewing.

Get a unit specified by IID. This interface returns a single unit
in XML format. When requested in a browser an XML Style
Sheet is used to transform the XML into HTML for viewing.

/<context path>/unit/<i
id>

Generate a symbol from the 15 character MIL-STD-2525B
symbol code. It also takes width and height query parameters
to specify the size of the symbol you want returned. The
returned symbol is in the PNG format. This is useful for web
pages which wish to use military symbology.

/<context path>/symbol/
<symbol code>

7.4 ORBAT Administration Client

The ORBATDS shipped with an associated ORBAT Administration Client (ORBATAC) to
administer the data in the service. This web-based client uses the ORBATDS
Administration interface to create and modify entities and implements the data
management workflow described in Section 9. It is implemented as a Java EE Web
Application and uses JavaScript to implement the interface behaviour. Figures 34 and 35
show the ORBATAC. The left most pane is the ORBAT explorer. This is used to search and
browse through the entities stored in the ORBATDS. The right-most pane is the Aide
Memoire Explorer. This allows users to search and browse for containers, equipment and
persons stored in the AMDS that can be used when constructing units. The centre pane is
the main editor. It enables all aspects of the entity to be edited. Along the top are buttons
used to move the entity though the data management workflow, and also to create new
entities.

A number of shortcomings have been identified with this administration client that are
described in Section 11.6.

UNCLASSIFIED
58

UNCLASSIFIED
DST-Group-TN-1539

'v ORBAT Ad atio e @
New Clone Reports Log out

| search U | welcome = MCB CER sum | search |

[container

EirEy || Neme Formal Name wa "
= Army ‘ = equipmen
RBG | |Ready Battalion Group J =
Harmour person
Lartillery Effective Date Effective End
Caviation |wed, 04 Jul 2012 00:30:00 GMT | [|
e o
= ARG |Approved | | cB (of Force Elements) |
2 RBG

General Force Elements MSCUUELEIRIEEIEE MetaData

Parents

Capabilities

[JACR Components
ARG Components
HBG
[IRBG Components
(S combat Teams

£ (2 RBG HQ (Bde Tac)
E 5= Ready Bn (1)
= RBG Fd Bty (1)
/= RBG CE Sqn [(1)
= RBG PMV Tp (1)
= RBG CSST (1)
= RBG Cs Tp [(1)

“dCommand and Control
faEngineers

‘UHealth

infantry

"ntelligence
FaLogistics
{ZMulti-Role Combat
Brigade
2 MCB
ZMCB Components
[MCB ACR sum
*] MCB Arty Regt sum
" MCB CER sum
[MCB CE Sqn (27|
[MCB CE Sgn (3 7T
[MCB CE Spt Sqn
m MCB CER HQ sun
[MCB CER OSS s
. MCB CSR sum
[=] MCB CSSB sum
E MCB HQ sum
1 MCB SIB sum
[AMCB ACR
Components
[IMCB Arty
Components
[IMCB CER
Components
[IMCB CSR
Components.
[IMCB CSSB
Components
LAMCB HQ

Figurem 34: A screenshot of the ORBATDS Administration Client (ORBATAC) showing the command
hierarchy editor which is used to configure the command links in an ORBAT

UNCLASSIFIED
59

UNCLASSIFIED
NN SBAT A .
v 7 V. : - : 7-) - r : .- = @

New Clone Reports Log out
Search Tl welcome H = RBG ‘ = MCB CER sum ™ Tp) sum Search
3 Na = A #- 4 container
vy Name Formal Name EH .
EHEZ Army = equipment
e MCB CE Sqgn (3 Tp) sum Multi-Role Combat Brigade Combat Engineer Squadron (Thre Claircraft
Armour
= artillery Effective Date Effective End [Jelectronic
B3 Aviation Wed, 23 Oct 2013 00:30:00 GMT ge"g"‘ze”"g oo .
ground support equipmen
| h
Bat;':::m“ps State Type (aircraft)
. =HFland
#-5 ARG Approved CB Sub-Element j and weapon
Jair defence
“1 RBG 1
= General ” Capabilities AM References MetaData Parents [danti tank
LJACR Components =-dfield artillery
JARG Components dmortar
= 1BG Components povps = Elrsmall arms
ype ~
JRBG Components Quantity AM Object B Cagrenade launcher
[dcombat Teams 105 Person PERSOM & Cmachine gun
#{ dcommand and Control 18 Pistol 9mm Mk3™ EQUIPMENT B dmachine gun, heavy
= dEngineers 105 FBBSAZ Steyr* EQUIPMENT B dmachine gun, light
H{dHealth 20 F80 Minimi* EQUIPMENT B[pistol/revolver
E- JInfantry 3 7.62mm Mag 58 GSMG* EQUIPMENT ElZrifle
Fldmntelligence 18 | M203PI1~ EQUIFMENT 7 eFsa @
B dLogistics 3 | 84mm Anti-Tank M2 Tripod® EQUIPMENT A 7.62mm HEK 417
E]"B'B"r"i:;d'?'e ErmlE 23 Wildcat sight” EQUIPMENT ~ 9 7.62mm SR25 &
i MCB 4 cCallegari Inflatable 3 Man® EQUIPMENT ~ 3 7.62mm AWMP-F S
= ref onl 5.45mm
BZMCB Components 4 25HP OBM Mercury* EQUIPMENT ;rf « v)
- [# MCB ACR sum 5 | (nil MDS) Boat, Assault EQUIPMENT (ref only) 5.45mm
A+ MCB Arty Regt sum 5 | 40 HP OBM Mercury™ EQUIPMENT - ;rf -338in Blaser &
£ % MCB CER sum 2 4x4 LR 110 FFR EQUIPMENT N x Sl bl E‘
7.62i SR98
1 MCB CE Sgn (2 T 3 | 4x4 /R 110 FFR wiwinch® EQUIPMENT > mm
12.7mm AMR Barre
[MCB CE Sgn (3 T 4 4xd /R 110 Utility~ EQUIPMENT o 12y AMR Ba
Amm rre
1 MCB CE Spt Sgn 1 4x4 L/R 110 Utility wiwinch® EQUIPMENT 127 P —
[MCB CER HQ sun 1 6x6 L/R 110 GMV* EQUIPMENT 2 FBSSA1L Steyr Line
[Il EER e = 10 | TIr 500 kgt EQUIPMENT e p—
¥ <1 MCB CSR sum 1 | Unimog* EQUIPMENT
= MCB CSSB sum 71 F88SALC Steyr &
3 Unimog Dump w/Winch” EQUIPMENT - ;‘ FB8SA2 Steyr [@
o3
[DG 3 | Unimog w/Winch & Twist Locks™ EQUIFMENT < 2 F88C Steyr @
- 5 MCB SIB sum 5
E R S 7 F88 sSteyr @
Components - dshotgun
[]'DECB Arty " #_dsubmachine gun
omponents ! _
& CIMCB CER [dmiscellaneous
Components B dnaval weapon
B 4MCB CSR # drailcar
Components =Ea N
#IMCB CSSB TRz
Components = dvessel
EH-CaIMCB HQ B person
s £3 =
v v

Figure 35: A screenshot of the ORBATAC showing the Aide Memoire References editor. This is used to configure the containers, equipment and persons a unit
holds. Aide Memoire items can be dragged from the explorer on the right and dropped into the unit’s holdings.

UNCLASSIFIED

60

UNCLASSIFIED
DST-Group-TN-1539

8. Design

8.1 Design Patterns

The ORBATDS makes use of several software design patterns as described by the "Gang of
Four" [21]. The use of design patterns enhances the development process by providing
tested, proven coding paradigms with improved code readability and speeds up the
development process. The main design patterns used in the ORBATDS are:

e Composite: Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and compositions of
objects uniformly.

e Factory: Deals with the problem of creating objects without specifying the exact
class of object that will be created. Achieved by defining an interface for creating an
object, but letting the subclasses decide which class to instantiate.

e Singleton: A design template that allows only one object of a class to be created,
and provide a global point of access to it. Used where ownership of the single
instance cannot be reasonably assigned, lazy initialization is desirable, and global
access is not otherwise provided for.

e [terator: Provide a way to sequentially access the elements of an aggregate object
without exposing its underlying representation.

8.2 Technology
This section outlines some of the technologies used by the ORBATDS.

The ORBATDS is a Web Service application for managing of Order of Battle (ORBAT)
information that is required by planning and logistics tools such as ViPA. The service is
implemented as a Java Enterprise Edition 5 (Java EE 5) [1] Web Service using JAX-WS
technology that implements the JSR-224 Standard [2]. Java EE 5 was chosen specifically
because it was supported by our targeted deployment server, IBM Websphere Application
Server Version 7 [3]. Java EE application servers provide a framework within which
security, data access and inter-application communication channels can be configured. The
specific JAX-WS implementation used by ORBATDS is that found at the official JAX-WS
website [4] and is also included in the official Java runtime and development
environments.

Client applications can access the service using Simple Object Access Protocol (SOAP)
interfaces and the REpresentational State Transfer (REST) interface for some basic
functions. The SOAP interfaces described in Section 7.1 and 7.2 are defined using Web
Service Definition Language (WSDL) version 1.1 and will simplify interoperability with
other systems which also implement that SOAP standard. The REST interface merely
exposes a subset of functionality in the primary SOAP interface that are beneficial for
users, as described in Section 7.3. For example, it provides a light weight means to access

UNCLASSIFIED
61

UNCLASSIFIED
DST-Group-TN-1539

an entity via a HTTP request without the overhead of SOAP message compliance. The
REST interface only returns data in XML format and uses an Extensible Stylesheet
Language Transformation (XSLT) to transform that data into HTML for display in a web
browser.

The ORBATDS was developed using a 'WSDL first' approach, meaning that the WSDL
describing the service interface as well as the corresponding XML schema defined data
model were created before developing the software. The 'WSDL first' approach postulates
that the public data model, that is the model exposed though the public interfaces of the
ORBATDS, is the most important. Therefore, these interfaces should be designed first and
free of implementation considerations, rather than generating them from other models or
straight from the application code, as is often the case with other development approaches.

Consequently, once the interface was designed, it was then possible to begin developing
the client and service implementations in parallel. The implementation of the data model
in the programming language (Java) was generated automatically from the WSDL service
definition and XML Schema using JAX-WS with the Java Architecture for XML Binding
(JAXB) [6] for XML to Java binding. The XML schema which defines the ORBAT data
model can be found in Appendix A.

The JAX-WS framework consumes the WSDL ORBATDS definition (including the
referenced schemas) to produce the interfaces required. Through this process, the JAXB
framework creates several Java class libraries that completely represent the ORBAT data
model. The complex types defined in the ORBAT.xsd XML schema file (Appendix A)
therefore have corresponding Java classes. The process by which data model artefacts are
generated is described by Ort (2003) [6]. Once the XML schema and WSDL binding
process is complete, the resultant Java libraries are used as the basis for the ORBATDS
implementation and are also used by a number of clients and utilities.

Data persistence is implemented using the Hibernate Object/Relational Mapping (ORM)
[9] framework which implements the JSR-220 [10] Java Persistence API (JPA) specification.
This allows the data model Java objects generated from XML schemas to be mapped into a
relational database structure. The mapping allows data model object instances to be saved
and retrieved from a database supported by the Hibernate ORM framework. The
ORBATDS has been designed to use the Oracle 10g database, however other databases are
automatically supported.

In addition, data model validation is performed using the JSR 303 [7] Hibernate Validator
reference implementation [8]. The validation framework defines a set of validation rules
(constraints) in a single place which can be applied across multiple system layers from the
user interface through to persistent data stores. This minimises duplication of human
effort and maximises consistency. The validation framework is used to prevent erroneous
data from entering the system and for providing feedback to users on the data in the
system.

IBM WebSphere Application Server and Oracle 10g database software is used on national
fixed networks. An alternative lightweight installation using the Jetty Servlet Container

UNCLASSIFIED
62

UNCLASSIFIED
DST-Group-TN-1539

[36] and HyperSQL DataBase (HSQLDB) [37] is also supported for use on deployed
laptops and networks. This enables the service to run self-contained on a single machine,
which is not possible using the WebSphere and Oracle options due to their large hardware
requirements.

9. Data Management Framework

High quality data is absolutely essential for users to trust in the accuracy of calculations
generated by applications such as the ViPA workbench [34]. Therefore the objective of the
data management framework is to ensure that the collection, input, verification, validation
and management of ORBATDS data is adequate to support operational planning. The
ORBATDS has a multi-stage data management process which provides release control
mechanisms for ORBAT data on a per entity basis. It also guarantees that only suitably
authorised users can participate in the process to minimise the chances of unsuitable data
being made available to the broad Defence user base. The ORBAT data management
process is complementary to the ORBAT entity versioning scheme outlined above in
Section 5.

The data management framework recognises various user roles that determine how a user
interacts with the data and what they are allowed to do to it. The four roles defined are:
EDITOR, VERIFIER, APPROVER and REPORTER. These roles grant rights to perform
different stages of the data management process as described below. Entities which have
been rejected in any of the steps need to be revisited by the EDITOR.

It is important to note that the framework has been designed such that a draft entity
cannot be consumed by general users, it is only when the data has been approved that it is
published and then made accessible to users through the general service interface.

Figure 36 shows an overview of the ORBATDS data management process. The black
circles at the top indicate the state of the entity as it transitions through the process along
the valid transition paths. The blue boxes indicate the different stages of the process where
a box with a dashed border indicates that only a super administrator can perform that
stage. The green boxes show the software involved in each stage along with the actors
which perform them.

9.1 Data Management Stages

There are a number of stages in the data management framework; this section outlines
each of them.

9.1.1 Manage
This stage is actually outside of the ORBATDS and so is beyond the scope of the data

management process. However, it is included for the sake of completeness since it is

UNCLASSIFIED
63

UNCLASSIFIED
DST-Group-TN-1539

necessary to support that workflow. This stage requires the ADF owners of various data
sets (e.g. data about vessels would be owned by the Navy) to determine what data sets
they should own and who needs what permissions to manage those data sets in the
ORBATDS. External systems such as Active Directory would be used to manage user
credentials and so this is where ORBATDS user roles would also be managed. See
Section 10.1.

9.1.2 Capture

This stage finds the relevant data and retrieves it if possible. Experience has shown this is
not a trivial matter as such data can be commercially sensitive, operationally sensitive
(thus classified) and even organisationally sensitive. Metadata about the author of the
data, where it was sourced from, the modification date of the data, etc. also need to be
collected and entered along with each entity into the ORBATDS. There is also a need for
reporting on the progress of data entry, particularly when contractors are being used for
that purpose. This stage requires a user with editing rights given by the EDITOR group
membership (see Section 10.1).

This stage begins with the creation of a draft version of either a new or existing entity.
This is done when an editor calls the getDraft operation on the ORBAT administrator
interface. The draft entity's state variable is set to 'EDITED'. There is no limit on the
number of changes that a draft can undergo and each change is recorded as a metadata
entry since the draft is not published, therefore there is no need for a new revision.
However, once the editor is satisfied that the data meets the quality criteria as defined in
the ViPA Data Services Management Framework (VDSMEF) [35] they can complete editing
and mark the entity as ready for verification. This changes the state of the entity to
'AWAITING_VERIFICATION'.

9.1.3 Verity

This stage verifies the data entered or modified during the Capture stage to check that it
was obtained from the appropriate sources, that it is correct, that it is still current (i.e. not
out of date) and that it has the necessary metadata. The verification stage of the process
requires a user with verification rights given by VERIFIER group membership. The data to
be verified is retrieved from the service using the getDraft administrator operation. At this
stage the entity can be verified as correct or rejected for further editing, which is
performed by invoking the updateState operation on the administration interface with
either "'VERIFIED' or REJECTED' state values, respectively.

UNCLASSIFIED
64

UNCLASSIFIED

EDITED /
REJECTED

AWAITING

VERIFICATION g DEPRECATED

— . 'y

o

==> | Capture | ==> | Verify ‘.:D Publish | ==> |Consume | =="> Validate|

ORBATDS| — |ORBATDS| — |ORBATDS| —» ViPA

I ! I l

g _ . g - - g - . g - .
Cleanse Editor Verifier Approver User
Y {E:umisr.tnec[i::'ljocg__m A i
] perts, Capabi ___/
o= S VIPA
Super Plan
Admin
{ pata -
. Migration
_ —~
J;ﬁﬂ;mmaml
- et D
e e A
Figure 36: An overview of the ORBATDS data management process

UNCLASSIFIED
65

UNCLASSIFIED
DST-Group-TN-1539

9.1.4 Publish

The data is retrieved from the service using the getDraft operation. This user performs a
final check of the entity and inokes the updateState operation on the administration
interface with either 'APPROVED' or 'REJECTED' state values. On approval, the entity will
be published and a new revision will be created. This new revision will now be visible to
all users of the ORBATDS.

9.1.5 Consume

In this stage various applications such as ViPA use the General Interface to obtain the
ORBAT data they require.

9.1.6 Validate

Data requirements are complex and continually changing, particularly during the conduct
of operations. Therefore, it is not possible when performing Verify and Publish to ensure
that the ORBAT data will continue to be fit for all purposes. User feedback is essential to
identify where and when the data is no longer suitable for use and should trigger the
Capture stage to conduct further data collection, possibly from the field.

9.1.7 Cleanse

In the event of a security spill, there is a requirement to be able to cleanse the ORBATDS
data to remove and potentially replace the offending entries. This action should be carried
out by a Super Administrator who has direct read /write access to the database. Cleansing
will necessarily circumvent the ORBATDS audit records.

9.1.8 Data Migration

There is a need to migrate data between multiple ORBATDS instances deployed on
different classification networks. The general rule is, manage data on a network that is
classified (ideally) at the same level as that data or at the nearest available classification
above that of the data. Then migrate that data upwards to more classified networks as
required.

9.1.9 Deprecate

A user with approval rights given by APPROVER group membership is able to deprecate
entities that should no longer be used. As previously mentioned, deprecation does not
delete the entity, rather it hides it from the general user unless the user has an existing
reference to it, for example, as part of an existing ORBAT. This ensures that deprecation
can be carried out safely without impact on other current uses of the data, thus only
preventing future use of the data.

UNCLASSIFIED
66

UNCLASSIFIED
DST-Group-TN-1539

9.2 Entity States

Four states have been described so far to identify where entities are in the data
management process. However, an additional two states are needed to provide fine
grained control over the data management process. First, it is important to make a
distinction about whether an entity is being edited or the editing process has been
completed. In the latter case the state of "awaiting verification" means that the editor(s)
have completed updating the information of that entity. Second, it is useful to differentiate
between entities that are being edited and those where the editing process has previously
been completed, but the data was later rejected and so requires fixing.

Entities are transitioned through the sates described below, states cannot be skipped:

e EDITED: The entity is a draft and is not visible to general users.

e AWAITING_VERIFICATION: The entity is ready for a verifier to check for
correctness.

e VERIFIED: The entity was verified and is ready for an approver to decide if it is fit
for purpose.

e APPROVED: The entity was approved for publication to make it available to all
users.

e REJECTED: The entity was rejected during the verification or approval stages and
so needs to be revisited by an editor. This state has the same valid transitions as the
EDITED state.

e DEPRECATED: The entity should no longer be used. These entities are still
accessible via other existing entity references in order to maintain data integrity.

Entities which are in the EDITED, AWAITING_VERIFICATION, VERIFIED or REJECTED
states are considered to be drafts and so are not exposed through the ORBATDS General
Interface. Each version of an entity can only have at most one draft at any time. Drafts exist
outside of the normal revision history of an entity and internally are represented with a
revision value of -1. When accessing a draft of a particular entity, the version of that entity
must be specified. If a draft for that version already exists then it will be returned,
otherwise a new draft based on the head of that version will be created. Figure 37
illustrates an entity which has a single version with three revisions in the ORBATDS. It
also has two drafts indicated by the dashed outlines. The first draft is for the existing
version which, if published, will become the fourth revision. The second draft is for a new
version of the entity.

UNCLASSIFIED
67

UNCLASSIFIED
DST-Group-TN-1539

[ET S YR S— T iid = A
[LEREN S SRR s SR iid=8
=1 (] Vi = 1 fe—1 rev = 3 id=C

(=== ——— ———== (===1

:.d1,—pJv.d11—...lrav-|| :lld DI

NS L .____I |

|———-. r———-. == ="

|ld 1 ,—--Jvld 21—-—|re\r— l :iid=E :

SN S .____I [E—

Fiqure 37: A diagram showing an entity with two drafts

9.3 Linking to Draft Entities

When creating ORBAT data in the service there will often be a mixture of draft entities and
published entities used to build up the structure. In order to support this an ORBAT which
contains links to draft entities cannot be published since draft entities are not able to be
consumed via the general interface. Those draft entities must first be individually
published before the ORBAT can be published. An ORBAT uses static links to reference its
draft entities, as a dynamic link to any of those entities would get resolved to their
published version. These static links can be changed to dynamic links once the draft is
published, thus enabling those updates to be reflected in the ORBAT.

9.4 Use Cases

There are a number of use cases for editing an ORBAT which require special business
rules to work with the data management process. These use cases are described in more
detail below.

9.4.1 Creating an ORBAT from Scratch

There are two variations of this use case, firstly creating a new ORBAT that only references
new units which are created at the same time and secondly, creating an ORBAT that
references existing units as well as possibly creating new units.

To create a new ORBAT containing new units, which are created at the same time, the
client first constructs the ORBAT locally and then puts it into the ORBATDS using the
putORBAT operation. This ORBAT will not be immediately available via the general
interface, instead the ORBAT and all of its units are put into the EDITED state and so will
require verification and approval before being published. To retrieve a draft ORBAT saved
in this way the client must call the getDraft operation with the vid of that entity.

UNCLASSIFIED
68

UNCLASSIFIED
DST-Group-TN-1539

Alternatively, it is possible to create a new ORBAT which references existing units. In this
case the client constructs the ORBAT locally again, but for any existing units that it is
using it must fetch these from the service. If the client makes any changes to the existing
units it must first call the getDraftUnit operation to get a draft of the unit which changes
can be made to.

9.4.2 Editing an ORBAT Without Editing its Units

This is the simple editing case where no units are being changed so they don't need to
enter the data management process. This use case requires the client to get a draft of the
ORBAT for editing by using the getDraftORBAT operation on the administrative interface.
A draft based on the latest revision of the ORBAT will be returned to the client. The client
can then make the appropriate changes to the ORBAT and store them back in the
ORBATDS using the putORBAT operation. This will save the draft version of the ORBAT
in the EDITED state, adding a metadata entry for the change to that ORBAT. The ORBAT
can then be progressed through the data management process.

9.4.3 Editing an ORBAT and its Units

This use case is slightly more complicated as the units being edited also need to enter the
data management process. Firstly, the client needs to fetch a draft of the ORBAT to be
edited using the getDraftORBAT operation. If the ORBAT contains any draft units, these
will also be returned as drafts. When the user wants to edit a unit in the ORBAT, the client
must call getDraftUnit to get a draft version of that unit, which should replace any
previous instance of it in the client's local data model. Any relationships to the unit should
also be changed to static links. Once changes have been made, the entire ORBAT is stored
using the putORBAT operation. Any draft units within the ORBAT are put in the EDITED
state and have new metadata entries added to the list. Any draft ORBATs will also be put
in the EDITED state and have a new metadata entry added. Links to drafts are validated to
ensure they are static links to the draft instance.

9.4.4 Veritying and Approving an ORBAT

All draft entities are required to go through the different stages of the data management
process and eventually be approved for publishing before they become available on the
general service interface. In order for an ORBAT to transition into the APPROVED state,
all entities referenced by the ORBAT must also be in the APPROVED state. If the entity
being approved is the head of the version timeline, in other words it is the latest version,
and a change has been made to the start date of the version then the end date of the
previous version must be updated to the start date of the new version being published.
This is performed by the service.

UNCLASSIFIED
69

UNCLASSIFIED
DST-Group-TN-1539

9.5 Jurisdiction Based Edit Restrictions

In addition to the data management process, the ORBATDS also supports the partitioning
of data according to the owner. Each entity can be assigned a jurisdiction, by default there
are four: Army, Navy, Airforce and Joint. These jurisdictions allow data administration to
be partitioned in addition to the role(s) a user may have. The implementation restricts
editing rights on an entity labelled with a jurisdiction to only those users who belong to
that same jurisdiction.

The available jurisdictions can be extended through service configuration. Jurisdictions are
simply labels applied to entities and users. These labels can be of any value created by an
application administrator of the system when the data service application is deployed. In
this way the service supports restricting administration operations on an entity (or group
of entities) to a user (or a group of users) based on a shared jurisdiction label.

Entities with no jurisdiction can be edited by any administrative user. Assignment of
jurisdiction is done by way of setting the jurisdiction as part of the entity ownership
information. Once assigned to an entity, the jurisdiction can only be changed by users who
are part of that jurisdiction. Therefore, changing the jurisdiction can only be performed by
the same users, by way of removing jurisdiction protection from that entity.

9.6 Data Synchronisation and Multi-Repository Deployment

Multiple instances of the ORBATDS can be deployed on a single network or on multiple
networks. Since each data service is supposed to provide a centralised repository of data,
multiple instances on the same network need to be managed carefully. In such cases data
might need to be synchronised between the various instances. Ideally, each instance is
managed so it holds independent data and no data overlap exists. However, there are
valid cases where data replication needs to take place. For example, a data service used for
deliberate planning could include both contemporary data plus hypothetical data about
future forces and their capabilities. In another example, data is best managed on a network
that matches the classification of that data (i.e. not on a higher classified network) and so it
may be necessary to replicate that data up into data service instances on higher classified
networks where it is used.

The ORBATDS supports data synchronisation and multiple repository deployment. Data
synchronisation is the process by which data is directly copied from one data repository
(origin) and written to another data repository (destination) to ensure that both data sets
are kept identical. If data from the origin already exists in the destination repository, this
data will be completely removed and overwritten by an updated copy from the origin
repository. The main problem created by multiple repository deployments is the potential
for data redundancy where a real world entity is managed in multiple repositories, thus
creating multiple independent copies of that same entity. This can lead to synchronisation
issues, where the entity record is modified inconsistently across the different repositories.
Resolving such a conflict automatically is not possible due to the fact that any part of the

UNCLASSIFIED
70

UNCLASSIFIED
DST-Group-TN-1539

conflicting versions across multiple repositories could be right. For example, an entity is
updated on service instance A to change its description field while on service instance B its
description and weight are changed. It is not possible to automatically determine whether
instance A or B or both hold the correct information.

This problem is avoided in the ORBATDS by including a "repositoryld" field on each data
entity. This unique identifier represents the "owning" service instance, meaning that only
that data service instance is permitted to manage and therefore issue updates of that
particular entity. The value of this field is set for the data service by a Super Administrator
using an agreed naming convention as part of the configuration of the service at
deployment time. The repositoryId is different to the unique entity identifier "id" as all
entities created or updated by a service instance will share the same repositoryId
value. When merging with another service instance, this value can be used to determine
which entities are managed locally within an instance (and therefore are not to be
updated) and which are remotely managed (and therefore could be updated). To prevent
inconsistent modification across instances, only local entities (i.e. those that have the same
repositoryId value as that of the service instance) can be updated by that service. If an
administration client tries to modify an entity with a repository id that doesn't match the
service, an I1legalAccessFault will be thrown.

This approach ensures that no data collisions can occur. Some different deployment
examples will now be presented to further demonstrate how the repositoryID is used
to assist with handling multiple repositories. Figure 38 shows a deployment in a single
network environment, the DRN. The majority of data for both the AMDS and ORBATDS
will be managed and configured on those DRN data service instances. This DRN
production environment is regarded as the source of authoritative data. Any other
deployed repositories that need a copy of the entities in that auhoritative repository must
have those entities replicated in its repository and are not able to create their own
indepenent copy of that data.

The second example, depicted in Figure 39, shows the case of a multiple network
environment formed by the DRN and DSN. In this example, the majority of ORBAT and
AM data is still being managed on the DRN, while periodically that data is migrated up on
to the DSN and merged with the DSN repository. This ensures that the latest DRN
managed data is provided to users for planning operations at a higher classification. The
DSN repositoryId needs to be configured with a unique value so as to partition the
data it manages from that it receives from the DRN.

There are two use cases which this setup has to support:

* Use Case 1: Users on a higher classified network require data about entities such as
the Ready Combat Team that are managed at a lower classification.

* Use Case 2: Users on a higher classified network need to modify an entity that
exists on a lower classified network with highly classified details pertaining to
certain Security Protected Assets (SPA) which cannot exist on the lower network.

UNCLASSIFIED
71

DST-Group-TN-1539

UNCLASSIFIED

DRN Data Services

WebSphere Configuration
AMDS repositoryld: AMDS _DRN_1
ORBATDS repositoryld: ORBATDS_DRN_1

repositoryld:
AMDS_DRN_1

AMDS DRN Data

ORBATDS DRN Data
repositoryld.:
ORBATDS DRN_1

Figure 38: A diagram of a single network environment such as the DRN. The green box indicates the
WebSphere service container settings for each service instance. The blue boxes display the
repositoryld which each of the entities created in the data repository are assigned.

DRN Data Services

WebSphere Configuration
AMDS repositoryld: AMDS_DRN_1
ORBATDS repositoryld: ORBATDS_DRN_1

AMDS DRN Data
repositoryld:
AMDS_DRN_1

ORBATDS DRN Data
repositoryld:
ORBATDS DRN_1

DSN Data Services

WebSphere Configuration
AMDS repositoryld: AMDS_DSN_1
ORBATDS repositoryld: ORBATDS_DSN_1

AMDS DSN Data
repositoryld:
AMDS_DSN_1

ORBATDS DSN Data
repositoryld:
ORBATDS_DSN_1

AMDS DRN Data
repositoryld:
AMDS_DRN_1

ORBATDS DRN Data
repositoryld:
ORBATDS_DRN_1

Fiqure 39: A diagram of a multiple networked environment showing how data is paritioned using repositoryld

Use Case 2 requires an ORBATDS data manager on the DSN to clone such entities after
they have been updated with a merge from the DRN. The clones can then be updated in
the DSN repository. On the DSN the original entities can't be modified as they have the
DRN repositoryId. However, each cloned entity will be given the repositoryId of
the service which cloned it, in this case the DSN.

A more complex case is depicted in Figure 40 which involves multiple standalone laptops,
each with its own deployed instances of the data services. Each laptop has its own unique
repositoryId thatis applied to any data created or modified on that laptop and the data

72

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

repositories on each laptop are initialised with snapshots from an appropriate centrally
managed common service instance on a Defence network.

In addition, each Service headquarters (HQ) may require their own data service instances
for managing specific raise, train, sustain (RTS) data that is used in exercises etc. In this
case each Service HQ manages its own data, but may draw on common authoritative data
from that DRN centrally managed instance.

The laptops are easily deployed into theatre and can be used to potentially bring back
valuable operational data. Experience has shown that such data needs to be examined and
possibly cleansed before it is suitable to merge back into the common data service instance
on the appropriate network by virtue of the repositoryId.

Navy HQ Army HQ
WebSphere Configuration WebSphere Configuration
P AMDS repositoryid: AMDS_DSN_NHQ_1 AMDS repositoryld: AMDS_DSN_AHQ_1
| Periodic 'Data (ORBATDS repositoryid: ORBATDS_DSN_NHQ_1 ORBATDS repositoryld: ORBATDS. DS AHO_1
7 Synchronisation' process
'ORBATDS DSN Data
AMDS DSN Data A= AMDS DSN Data ORBATDS DSN Data
d- repositoryld: > >
(EEizleyjid ORBATDS DSN_NHQ | repositoryld: repositoryld:
AMDS_DSN_NHQ_1 5 AMDS _DSN_AHQ 1 | |ORBATDS_DSN_AHQ |
Standalone Laptop 1 1
DS JeltyCurglgumhuzm AMDS DRN ORBATDS DRN AMDS DRN Data | | ORBATDS DRN Data
repositoryld: AMDS. : . i repositoryld: repositoryld:
ORBATDS repositoryid: ORBATDS, Laﬂvp ') ﬁ;’g};ﬁ q ong?g?ggm q AMDS_DRN_1 ORBATDS DRN_1
AMDS Laptop Data DRBAL'T;"‘M g
repositoryld: itaryld: -
SRS |l ~ [L 0
. 4 4 7
~ /
~
AMDS e [3a|a CHHATDS DRE‘ et . S~ DRN Common Data Services DSN Common Data Services
AMDS_DRN 1 ORBATDS DRN 1 . [N
> DRN_ > DRIV . ~ WebSphere Configuration WebSphere Conﬂguratlon
AMDS repositoryld: AMDS_DRN_1 AMDS repositoryld: AMDS_DS
1 ' ORBATDS repositoryld: ORBATDS_DRN_1 ORBATDS repositoryld: ORBATDS _ DSN 1
AMDS DSN ORBATDS DSN
. Data Data
‘epositoryld: epositoryid:
AMDS DRN Data | |ORBATDS DRN Data CoRERSL ClIRi T
€D yld: €D yid:
N . AMDS_DRN_1 ORBATDS_DRN_1 AMDS DRN ORBATDS DRN
. pe Data Data
' yd epositoryld: epositoryld:
Standalone Laptop ‘N S N AMDS DRN_1 ORBATDS DRN 1
Jetty Configuration e
AMDS repositoryld: AMDS_L apiop_N e
(ORBATDS repositoryld: ORBATDS_Laptop_N e
7 |
AMDS Laptop Data | | ORBATDS Laptop | 4~ 7 P
repositoryld: B
AMDS _Laptop N repositoryld:
(ORBATDS_Lapiop N
Air Command
AMDS DRN ORBATDS DRN
Data Data WebSphere Configuration WebSphere Configuration
repositoryld: repositoryld: AMDS repositoryld: AMDS_DSN_HQAC_1 AMDS repositoryld: AMDS_DSN_SF 1
AMDS_DRN_1 ORBATDS_DRN_1 IORBATDS repositoryld: ORBATDS_DSN_HQAC 1 (ORBATDS repositoryld: ORBATDS_DSN_SF_1
AMDS DSN Data ORBATDS DSN Data 14 AMDS DSN Data | | ORBATDS DSN Data
repositoryld: repositoryld: sitoryld: repositoryld:
AMDS_DSN_HQAC_1 | [ORBATDS DSN_HQAC Aunsmnsm SE 1 | |ORBATDS DSN_SF_
— = 1 Ll 1
AMDS DRN Data ORBATDS DRN Data AMDS DRN Data | |ORBATDS DRN Data
epositoryld: epositoryld: repositoryld: repositoryld:
AMDS_DRN_1 ORBATDS_DRN_1 AMDS_DRN_1 ORBATDS_DRN_1

Fiqure 40: A diagram of a multiple network environment supporting standalone laptops and data service
instances for RTS by the services

UNCLASSIFIED
73

UNCLASSIFIED
DST-Group-TN-1539

10. Model Management

10.1 Security

The Java Enterprise Edition (Java EE) web application security architecture is leveraged to
implement security in the ORBATDS. Section 3 of the Java EE platform specification
document [38] defines the security mechanisms provided. The 'Container Based Security'
approach is used whereby the application security requirements are defined as part of its
deployment descriptor. When deployed, the enterprise application server hosting the Java
EE application, in this case the ORBATDS, provides the security implementation and
ensures that the security requirements are met. This approach ensures that a tested and
accredited security implementation is furnishing the security needs of the administration
client. This is preferred to implementing a custom security model as it guarantees a well-
known level of security and provides the benefits of broad industry standard support and
interoperability. Thus, authentication, authorisation, confidentiality and integrity are all
handled by the enterprise application server upon which the ORBATDS is deployed and
can all be configured at deployment time.

At the ORBATDS level there are several user roles requiring different security measures.
The ORBATDS has two security domains; a read-only general data access area and a
secured area allowing various administrative privileges. The primary purpose of the
ORBATDS is to enable client applications (e.g. ViPA) to find and retrieve ORBAT data.
This functionality is provided via the General Interface, which allows unrestricted access
to all authenticated users of the network on which the ORBATDS is deployed. The
classification level of the host network defines the maximum classification of data which
can be managed by a given ORBATDS installation. Since all users of that network are
assumed to meet the security level requirements, no further access restrictions are
necessary. However, since the service is a Java EE application, other security
configurations are also supported. This means that the default open read-only access to
ORBAT data can be restricted on the basis of specific user groups, if desired.

Write access to ORBAT data via the Administration Interface requires the user to be
authenticated beforehand, and depends on their authentication level and security group
membership. The user's group memberships determine what functionality is available to
that particular user. In order to achieve this with Java EE, the service defines 'security
constraints' as part of its deployment descriptor stored in the file web.xml. These security
constraints define the different types of user roles, for example 'editor', and specify the
resources requiring protection (e.g. the Administration Interface). Together this definition
describes what kind of users can gain access to which resources. This is enforced by the
application container, as mentioned above. The user details are stored and they are
associated with every write on the ORBAT data, thus forming an audit trail. Enough
information is stored about the user such that the audit trail persists even in the event that
the external user store is no longer available.

UNCLASSIFIED
74

UNCLASSIFIED
DST-Group-TN-1539

The ORBATDS makes use of HTTP basic authentication to securely transport artefacts
between the client and the service. JAX-WS supports more robust security schemes,
however it was decided not to configure these. HTTP basic authentication does not
provide message confidentiality nor integrity checks, which were deemed non-critical
since the ORBATDS operates on secure and reliable networks. Transition to a more robust
Web Service security mechanism is straight forward as the Java EE environment provides
the same language constructs regardless of the mechanism by which the client provides
their credentials. Therefore the current HTTP basic authentication mechanism can be
substituted for a different mechanism through configuration changes on the client and
server.

The above approach defines security constraints independently of individual users or any
particular user repository or management scheme. The Java EE application server
provides multiple industry standard methods to connect to a user repository.
Furthermore, the administration client specific roles can be mapped to a set of users, a user
group, a domain etc. The process of defining which users have access is ultimately
controlled by the deployment configuration and the external user repository (such as
Active Directory).

At the data persistence store level, the security requirement is relatively simple and is
provided by the Relational Database Management System (RDBMS) itself. Since the
ORBATDS implementation is in effect the only client to the database, only a single system
user account with administrative privileges is required. This system user exists entirely
within the RDBMS scope and is created specifically for the purpose of maintaining ORBAT
data. In the case of a standard ORBATDS deployment, it is an Oracle user with access
privileges to the table spaces and schema which store the ORBATDS data. The credentials
of this system user are specified in the service configuration and passed to the RDBMS
whenever persistent data needs to be accessed. Since Hibernate uses the Java Database
Connectivity (JDBC) API, the database connection can be configured with confidentiality
and integrity checking through encryption, however the default setup requires only that
authentication and authorisation be performed. This is done by verifying that the
ORBATDS component provides the correct username and password of the RDBMS system
user created for ORBAT persistence.

For more information about the ORBATDS administrative user roles and their privileges
please see Section 9.

10.2 Performance

The current implementation of the ORBATDS does not suffer from any known
performance issues and appears to be sufficient for current and future needs. However,
there are known sources of potential performance problems which may need to be
addressed in the future.

UNCLASSIFIED
75

UNCLASSIFIED
DST-Group-TN-1539

The Hibernate object relational mapping framework does incur a performance penalty
when processing queries. The framework provides multiple strategies to minimise this
overhead, should performance improvements become necessary. Since the ORBATDS data
set is relatively static in nature, the caching functionality available in Hibernate could be
used to good effect by reducing the response time to return query results. Furthermore,
any time-critical queries can be optimised by creating them manually and thus avoiding
the framework overhead.

Performance of the ORBATDS is also directly affected by the data store instance used for
data persistence, which in the current deployment is mainly Oracle 10g. Techniques for
improving Oracle RDBMS performance are well documented by the vendor and many
specialised publications [39,40].

The ORBATDS performance can also be improved by simply increasing the memory and
processing resources of the machine running the ORBATDS and database, although it's
more difficult to address network issues that can slow communication between the
ORBATDS and its client applications.

Another source of potential performance problems are poorly specified queries that return
far more results than are required by the client. The ORBATDS uses SOAP based web
interfaces which require processing time to serialise and de-serialise data objects to and
from XML and they also incur network delays when communicating large SOAP
messages. Search and get operations that return large numbers of results will necessarily
take longer to handle. For these reasons the ORBATDS interfaces provide the ability to
limit the number of results returned by a query. Client application developers should take
care to safeguard against users specifying poorly constrained queries that can return too
much data.

10.3 Concurrency

The business logic in the data service is implemented so that each request and response
transaction is executed separately to one another. In this way the data service does not
maintain a session and does not need to maintain a state, so it's stateless. However, the
HTTP protocol which is used to send and receive SOAP messages does maintain an
internal authentication state between a series of requests from the same client. This is an
embedded feature of that technology and is hidden from the business logic of the
ORBATDS.

In the event that multiple clients try to save the same entity at the same time, the data
service implements an optimistic object locking strategy which throws a
StaleObjectException to prevent the data from being saved by all except the first client to
make this attempt. There is no facility to notify clients when they are concurrently editing
the same data because the ORBATDS is stateless and when it returns data to each client, it
has no way of knowing if any of those clients will in the future want to save changes to
that data. This strategy is sufficient because the data management process partitions the

UNCLASSIFIED
76

UNCLASSIFIED
DST-Group-TN-1539

management of ORBAT entities across a number of jurisdictions such as the military
services and joint command, and ORBATSs tend not to change that often.

10.4 Data Validation

Data validation is a popular strategy for preventing erroneous data from entering an
information system. It is critical to ensure that the data stored in the service data models is
valid. Data can be invalid in many ways ranging from syntax errors to fitness for purpose.
Identifying low level syntax and data requirements is relatively straight forward.

However, since the data stored in the ORBATDS can be used for many different purposes
by many different users, it is difficult to quantify fitness for purpose for all potential
applications. Validation can be applied to data in the user-interface (UI), at interfaces with
external systems, and between each layer (tier) of the systems architecture. To minimise
duplication of human effort and maximise consistency, a validation framework that allows
a single defined set of validation rules (constraints) to be applied across multiple system
layers is used.

The Hibernate Validator is an implementation of the JSR 303 standard for capturing data
object validation rules [7]. This 'Bean Validation' framework effectively provides a means
of defining validation rules for Java classes (referred to as 'Beans') which can be expressed
in XML files and shared across multiple layers. Figures 41 and 42, taken from the
Hibernate Validation documentation [41], show validation being duplicated across
multiple layers in contrast to using Hibernate Validator where constraints are defined once
in the domain model and shared with each layer. This sharing allows rules to be
consistently applied across all layers and eliminates the need for custom implementations
of those rules in each layer.

Java
A 4 h A F Y
Databage / Disk
Custom Yalidation Custom Validarion Custom Validation Custom Validation Custom Yalidation

Figure 41: lllustration showing the custom implementation of validation rules across multiple layers

UNCLASSIFIED
77

UNCLASSIFIED

DST-Group-TN-1539

The base layer of validation is provided by the XML Schema definition of the ORBATDS
data model. This identifies the bare minimum data validity rules for syntax, data types,
value ranges as well as relationship cardinality where appropriate. These rules are applied
whenever the data service receives a SOAP-based request from the client.

The validation rules for the ORBATDS are published in an ORBAT-Validation software
artefact, which can be used by other applications that have a requirement to validate
ORBATDS data. The rules check that the ORBAT entities are constructed correctly
according to rules imposed by their structure types. An eXtensible Stylesheet Language
Transformation (XSLT) is used to generate a human-readable form of the validation rules
and can be found in Appendix B.

Java

] |
~L N |

Domain

Model

Figure 42: Illustration showing a single set of validation rules defined in the domain model and consistently

applied across all layers

Definitions for the various types of checks listed in Appendix B are:

78

Linked Unit Containment check: Ensures all the units referenced by links in an
ORBAT are contained within the ORBAT's units list.

Multiple Command check: Ensures that no entity within the link graph has multiple
commanding parents.

Multiple Command Root check: Ensures an ORBAT does not have multiple
command roots.

Cyclic Link check: Ensures the link graph does not contain a cycle.

Units Have Association Links check: Ensures units in an ORBAT of structure type
OPO have association links.

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

e Field Value Combination check: Ensures that a valid field combination has been
supplied based on the type of ORBAT. This checks that RelType objects have been
constructed correctly based on the type of ORBAT they are being defined for.

10.5 Data Auditing

Data auditing is used to analyse the quality of the ORBATDS data and also to find what
changes were made and by whom. The data auditing functionality in the ORBATDS is
achieved through the combination of version management, security design and third party
tools. Since there is no concept of data deletion in the ORBATDS, only deprecation, data
will never be lost. The one exception to this is the deletion of draft objects which haven't
been published and so can be deleted. However, data loss due to database failure is still
possible, and so a suitable disaster recovery plan must be implemented. Versioning of all
data ensures that each and every change made can be reviewed and compared to all prior
versions. Furthermore, since the author of each change is recorded with the data, all
changes can be reviewed in terms of date, time and person (or system) making those
changes.

Data auditing and maintenance tasks can be performed in a number of ways. Any user
with access to an ORBATDS can use get operations to perform history retrieval and thus
conduct rudimentary auditing tasks on a per data item basis. The ORBATDS
Administration Client (ORBATAC) functionality can be used to traverse the version
information for any entity, however the ORBATAC does not provide tools to visualise
changes between versions. Other tools can be developed to meet specific auditing or
maintenance needs.

In addition, the service provides a REST interface which can be used to perform per entity
data auditing by traversing its version/revision history. Since the service provides a REST
interface, a known entity can be visualised in a web browser. Its history can be traversed
giving the user an opportunity to see what changes were made over time, by whom and
when. This is a very basic way of performing auditing functions.

The ORBATDS also provides various data management reports that check the data stored
in the service. These reports enable data managers to find where the data is inadequate
and thus focus their remediation efforts. Using these reports it is also possible to identify
data entities which do not meet the data ‘validity” rules specified by the Hibernate
Validator. These reports provide an overview of the quality of data stored in the service
with regard to business rules that are defined to support ViPA workbench requirements.
A screenshot of the reporting interface can be seen in Figure 43.

UNCLASSIFIED
79

UNCLASSIFIED
DST-Group-TN-1539

N4) ORBATDS Validation and Reporting @)

— Common Report Constraints

ORBAT constraint: Al -

Entity Type constraint: Capabihty Bricks -

Service constraint: Al -

Author constraint:

Owner constraint:

OO0

Confidence Level constraint: Al -

Produce Excel format autput: B o

Clear constraint options:
Missing Owner report: o
Confidence Statistics report: o

— ORBATDS Data Validation Report

p ORBATDS Minimum Validation Requirements
ORBATDS Minimum Validation Requiremen @ This report checks the same data rules used by the

ORBATDS when saving new entities and it is not
Validation report:
P possible to create new data entities that will fail this
rule set.

Data Requirements to check:

— Data Quality Reports

NOTE: The following reports are stand alone and do not take settings above into consideration.
Aide Memoire References: report configuration o

ORBAT "Goodness” report configuration aQ

Figure 43: The user interface to the various ORBATDS data management reports

10.6 Data Persistence

The persistence layer must provide responsive retrieval performance and fine grained data
access. It should also be possible to search through subcomponents of an ORBAT object
graph used by client applications and retrieve only the information required. The
requirement for a responsive fine grained search and retrieval system strongly influenced
the choice of a commercial relational database. The availability of an enterprise license
agreement for Oracle on Defence networks meant it was the logical choice of RDBMS for
the ORBATDS. Since ORBATDS data changes slowly over time there are no special
strategies required to facilitate transactional performance in the persistence layer. It is
expected that after the initial loading of data into an empty database the resultant
repository will undergo relatively few changes and updates.

Since a relational database was selected for the data store and the service implementation
is object-oriented, an object-relational translation layer was vital. Hibernate ORM [9] was
chosen as the persistence framework due to its extensive functionality and support for
multiple database platforms. It is also a certified implementation of the JSR-220 [10] JPA
specification. The ORBATDS uses Hibernate-specific database mapping files and so does
not fully align with the JPA specification.

UNCLASSIFIED
80

UNCLASSIFIED
DST-Group-TN-1539

The Hibernate persistence layer enables the storage and retrieval of Plain Old Java Objects
(POJO) instances in a relational database. The Hibernate framework uses a configuration
file that specifies the database driver, instance location, references to mapping files and
other general configuration settings. The service source code contains two sets of settings,
one compatible with standalone deployment and another for Java EE Application server
deployment scenarios. Java objects generated by binding the XML schemas are used for
data persistence as they provide all the required detail and are POJOs in nature.

The Hibernate configuration file specifies a Java Naming and Directory Interface (JNDI)
name for an org.hibernate.SessionFactory instance. This SessionFactory instance
is retrieved by ORBATDS code when accessing the persistence store. Each Web Service call
is in effect an atomic transaction from the service user perspective, and multiple users can
call the service simultaneously, each call is isolated to its own org.hibernate.Session
instance within which a new transaction is created and interaction with the persistent data
store is performed via Hibernate APIs.

10.7 Data Mapping

The object-oriented data model used by the ORBATDS is mapped to a relational schema
using a fine-grained mapping approach. This results in most objects and relationships of
the object model having a corresponding relational schema table. This strategy is favoured
over a coarse-grained mapping or direct binary storage due to storage efficiency and fine
grain query support. To illustrate, the fine-grained persistence model prevents duplicate
data from being stored as data relationships are stored by reference rather than data
instance, which ensures data consistency. Furthermore, as each object is mapped to its own
table any part of the data model can be queried without the need to traverse parent
objects.

Several strategies have been employed to simplify the resultant relational model. For
instance, child objects which have a 0..1 cardinality with their parent and do not have
children of their own are represented as part of the parent object's table. In the Hibernate
mappings this is represented using a component construct which has 2..n property elements.

Hibernate supports the object-oriented concept of inheritance and provides three methods
for mapping to a relational model. These are the single table per class hierarchy strategy,
the table per subclass strategy and the table per concrete class strategy. The ORBATDS
uses the table per subclass strategy, the result of which is that DataType is mapped onto
the datatype table and a Hibernate joined-subclass construct is used to create tables for units
and ORBATs. The resultant relational data model is efficient in terms of searching for
DataTypes and prevents definition duplication for each of the data types.

UNCLASSIFIED
81

UNCLASSIFIED
DST-Group-TN-1539

11. Future Work

This section overviews the main ideas for future enhancements to the ORBATDS that were
identified during its development and through its operational use on the DRN, DSN and
in theatre.

11.1 Phase Out the Data Management Framework

The data management framework has not been used as originally intended and has in fact
degraded the usability of the ORBATAC. The intent was to enable distributed editing of
data across jurisdictions, whilst ensuring that only a few subject matter experts could
approve data entities for publication and subsequent use by ViPA and other tools.

However, despite a persistent effort over several years to achieve this ideal, it appears that
for the foreseeable future the role of managing all the data will continue to rest with a
single data administrator, who closely liaises with subject matter experts across the Army,
Navy, Air Force, Joint commands and other Defence agencies. Therefore, the data
management framework poorly matches the way the data is actually being managed and
thus leads to inefficiency, as the single data administrator is forced to act out all the
process steps without any tangible benefits to data quality. Unless the kind of distributed
data management process originally envisioned through data service requirements is put
in place, the software should be modified to better support how the data is actually being
managed.

This inefficiency could be alleviated by making a streamlined administration client, which
has already been prototyped by DST Group. This customised client allows the top-down
creation of ORBATS, so new units can be created at the same time as an ORBAT and
moved through the data management process along with that ORBAT. When moving
through the states a report is generated for the administrator identifying all the changes
made to the ORBAT and its related units since the last save.

Furthermore, since the ORBATDS keeps a log of all changes made to each entity with each
change creating a new revision, it is possible to roll back changes to previous
versions/revisions to undo incorrect changes. Thus reducing the need for a strict data
management framework which could be simplified to a two-phase process, edit and
approve. Retaining the draft state of entities is important since editing an entity can span
multiple user sessions. Having two steps also enables a second person to independently
vet the data entered prior to publication, if desired.

11.2 Data Model Improvements

The ORBATDS has a rather complicated data model with many business rules
determining how it is used. This is a consequence of the way that the service was
prototyped to demonstrate concepts to users in order to solicit their feedback, identify user

UNCLASSIFIED
82

UNCLASSIFIED
DST-Group-TN-1539

requirements, and gradually consolidating and validating those requirements. The
ORBATDS is due for re-factoring of its design to more directly support the use cases in
Section 9.4. Furthermore, other improvements have been noted which should improve the
usability of the data model and simplify the service and client.

The main issue with the current data model is that the containment of units in ORBATs
and ORBATs in ORBATs is represented in different ways. This requires two different
methods for dealing with dependencies on the client side. The model and the processing of
the model could be greatly simplified by unifying these containment representations.

Further enhancements which should be considered:

e OPO/DPR representation suffers as it tries to reuse existing ORBAT structures, but
it's a fundamentally different ORBAT in that it does not contain any structural
relationships between entities. An OPO/DPR is simply a flat list of entities with a
quantity associated with each. It currently does this by misusing Re1Type objects
as described in Section 4.1.4. This could be improved by creating a new subclass of
DataType for OPOs that is designed to specifically capture the OPO use case and
would avoid the overloading of Re1Type. This makes correct usage and validation

easier.
e The current data model suffers from some typographic errors which should be
corrected.
11.3 Container ORBATSs

Some capability bricks can have different configurations of the same ORBAT. For example,
there could be a light, medium and heavy configuration for the different equipment load
outs. It could be convenient to group those different configurations together to indicate
that they are the same capability brick. It could also be useful when assigning a capability
brick to a list of capability options that all three configurations are available so the
appropriate one can be chosen according to the situation.

This may be implemented by using the CONTAINER ORBAT type to allow the grouping of
like capability bricks. However, the requirement for the ORBAT to have a command
hierarchy would need to be dropped for this ORBAT type.

11.4 Improved Reporting

At present, the structure of the ORBAT data is oriented around the containment relation
which is well suited to answer questions about ORBAT composition. However, this is not
well suited to answering the kinds of questions a data manager might ask. A data manager
needs to sort the data by its various qualities such as: last edit age, designated data
manager (in the event that there were multiple), data quality, frequency of use by external
tools etc. It is possible to measure some of these data qualities with the current service, but
this functionality is not exposed through explicit interfaces.

UNCLASSIFIED
83

UNCLASSIFIED
DST-Group-TN-1539

This kind of functionality would enable more useful data management reports to be
generated that identify which data in the ORBATDS fails to meet fit for purpose criteria.
This in turn would allow more focussed data remediation efforts to address data gaps,

identify poorly performing data owners and identify data entities of very high value to the
ADF.

The kind of metadata required to implement the above features would also support the
production of data quality trends, which is not currently possible. Trend analysis would
help determine if data remediation efforts are on track (e.g. to update key data prior to
planning an operation), or whether corrective action is needed.

11.5 Capability Hierarchy

Entities stored in the service can be assigned capabilities from MIL-STD-2525B [31]. The
capabilities in that standard are arranged in a hierarchy where there are nodes with the
same name at different positions within the hierarchy. Just looking at the capability name
doesn't fully describe what it means without also knowing the context provided by its
ancestor nodes. For example, there are two capability descriptions with the value
"CARGO". It is not until you look at the hierarchy that you see that one refers to a fixed-
wing cargo drone aircraft and the other refers to a non-military merchant cargo ship. More
of the capability hierarchy should be included in each entity to avoid this confusion.

11.6 Graphical ORBAT Administration Client

The ORBAT Administration Client (ORBATAC) which was initially released with the
ORBATDS was found to be sub-optimal in a number of areas. The key shortcomings
identified were in 2525 symbol support and editing speed.

The ORBATAC has built in support for core 2525B symbols, but does not support
customisation of the core symbols which limits the assignment of icons in the Australian
context. The current implementation covers approximately 75% of symbol requirements.
By allowing for the customisation of symbols, such as by adding text to them, the
implementation would align closer with Australian use. In addition, adopting a later
standard such as MIL-STD-2525D [42] would further improve the alignment.

The ORBATAC was designed for use on the outdated Microsoft Internet Explorer 7 web
browser. As such, editing features and JavaScript library choice was motivated by browser
compatibility and runtime performance, rather than ease of use or to adopt familiar
modern web user interface trends. This led the ORBATAC UI to being 'form' driven,
where users interact with data predominately using form-based inputs such as text boxes,
drop down lists and buttons. This style of input is less intuitive than it could be and limits
the kinds of visual presentation and interaction that would significantly aid users'
understanding of the data structures they are constructing.

UNCLASSIFIED
84

UNCLASSIFIED
DST-Group-TN-1539

DST Group has prototyped a client which addresses these shortcomings. This ORBAT
Builder has the potential to become the premiére ORBAT Building tool in Defence and can
be reused to update the existing ViPA ORBATAC to provide a modern, graphical web-
based client to administer the ORBAT data service. It aims to be easy-to-use and to
provide artefacts which can feed into the planning process, such as exporting to a ViPA
plan. Figure 44 shows a screenshot of the prototype ORBAT Builder which is a significant
improvement over the original ORBATAC.

UNCLASSIFIED
85

Fi ORBAT Builder Prototype

‘ORBAT Editor

UNCLASSIFIED

ORBATCB | am <
Q] % Containment —
- Commana = FEG o ‘ Link: Fyil comman ~ g OoP Admin command Support Coordination & Lialson ‘ Q
w [7]Force Elements w % Workbench 1 - o
v [Amy ~ = RCT Q
» [Armour ~ = HQRCT = @
—. Fa 234
> [Artillery « RCTHQ B etz
> [Auiation © OCTS9L nteract visually to serea o
» [Battle Groups :+ RCTBCF customise force 5 N
v [7) Combat Teams - RCT PMV elements
> [F1ARE ABT =« RCTCSE . '
> [JARE CbtLog Em « = RCT IntCoy i oohm oftm oo
¥ [Amphibious Ready E » = RCTInfCoy HQ = = 2
» [T Amphibious Ready E » = Rifle PILtInf
¥ [7] Amphibious Ready E » = Rifle Coy Sptelms e
¥ [T Amphibious Ready E » = RCT Bde Spt elms _ GEamn O RCTBe Spteims
B v e .
» [7] Amphibious Ready E » RCT Spt BOS B e
¥ [7]Amphibious Ready E « RCT Tpt Sect e oo
% [T Headquarters Read) B RCT Resus/Tmt Sect m
¥ [FRCT Inf Coy HQ = RCT MP Det
~ [T Ready Combat Tean ~ RCT Cbt Engr Sect
« RCT « RCT PMV Sect
» [T Sub Elements RCT PMV Spt elm F T T T J
I RCTPMVEstem ACTFMVSed RCTCHEnsSest ACT RCTTwzes RCTMROs:)
» [7]Ready Combat Tean e = =] o] =S =] [=] e
¥ [T]Ready Col n [} .
EENNER
> @Rm Access to ADF 1;Fi|-es+|'ﬂd|- I Development |
> [ORM Capability yFiles HTML Development License License
» [comm Bricks -
> [Engine Details Hierarchy/Capability 2525 Symbol Editor AM References MetaData
» [J)Heatth
> Einfantry Symbol Set Land Units HQTF Dummy Unknown <
» [7]Logistics
> [Multi-Role Combat Brig Entity Sustainment Amplifier Group Echelen at brigade and belo ™
> [signals Entity Type Medical Amplifier Section (US Squad) < g
Survelllance and Target =
>|j = & Entity Sub-Type Standard Identity Friend - E
> Navy a
View and modif 2
¥ [Air Force Sector 1 Modifier Unspecified force elementy Context Reality v 3
Joint il Z
>3 Sector 2 Modifler Unspecified details and > 003100012161 2000000 Status Present =]
> [Other symbology ! z

» []Unassigned Sub-Elements

4 o [

» | Staff Comments

Additional Info

Tvoe

Snecial C2 HQs

| Leave Feedback

Figure 44: A screenshot of the DST Group developed ORBAT Builder. The leftmost pane contains the explorer which allows the user to find
elements in the AMDS and ORBATDS. Next to it is the ORBAT Editor pane which shows the hierarcy of entities in ORBAT that is
currently being built. The large pane allows the user to graphically view and edit the ORBAT.

UNCLASSIFIED

86

10.

11.

12.

13.

14.

15.

UNCLASSIFIED
DST-Group-TN-1539

12. References

Shannon, B. (2006) Java Platform, Enterprise Edition (Java EE) Specification, v5.
[Accessed 29 February 2016]; Available from:
http:/ /www.oracle.com /technetwork/java/javaee/tech /javaee5-jsp-135162.html

Kotamraju, J. (2001) JSR 224 — Java API for XML-Based Web Services (JAX-WS) 2.0.
[Accessed 29 Februrary 2016]; Available from: http:/ /jcp.org/en/jsr/detail?id=224

IBM. Software — WebSphere Application Server Overview. [Accessed 29 February 2016];
Available from: http://www-03.ibm.com/software/products/en/was-overview

JAX-WS Reference Implementation—Project Kenai. [Accessed 29 February 2016];
Available from: https://jax-ws java.net/

Hibernate. [Accessed 29 February 2016]; Available from:
http:/ /www.hibernate.org/

Ort, E. and Mehta, B. (2003) Java Architecture for XML Binding (JAXB). [Accessed 29
February 2016]; Available from:
http:/ /www.oracle.com /technetwork/articles /javase/index-140168.html

Bernard, E. (2009) JSR-303 — Bean Validation. [Accessed 29 February 2016]; Available
from: https:/ /jcp.org/en/jsr/detail?id=303

Hibernate Validator. [Accessed 29 February 2016]; Available from:
http:/ /hibernate.org/validator/

Hibernate ORM. [Accessed 29 February 2016]; Available from:
http:/ /hibernate.org/orm/

Demichiel, L. and Keith, M. [SR-220 — Enterprise JavaBeans 3.0. [Accessed 29
February 2016]; Available from: https://jcp.org/en/jsr/detail?id=220

Coomber, G.A. et al. (2005) ORBAT Services Design Version 1.0. DSTO-TR-1727,
Edinburgh, S.A., Defence Science and Technology Organisation (Australia)

Rochkind, M. (1975) The Source Code Control System. IEEE transactions on Software
Engineering, Vol. SE-1, No. 4, pp. 364-370

O’Sullivan B. (2009) Mercurial: The Definitive Guide. O'Reilly Media, pp. 11-12.

Neumann, P. (2004) Attaining robust open source software. Perspectives on Free and
Open Source Software, pp. 123-126

Surowiecki, K. (2004) The wisdom of crowds. Doubleday

UNCLASSIFIED
87

https://jcp.org/en/jsr/detail?id=220
http://hibernate.org/orm/
http://hibernate.org/validator/
https://jcp.org/en/jsr/detail?id=303
http://www.oracle.com/technetwork/articles/javase/index-140168.html
http://www.hibernate.org/
https://jax-ws.java.net/
http://www-03.ibm.com/software/products/en/was-overview
http://jcp.org/en/jsr/detail?id=224
http://www.oracle.com/technetwork/java/javaee/tech/javaee5-jsp-135162.html

UNCLASSIFIED

DST-Group-TN-1539

88

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Collins-Sussman, B. et al (2008) Version Control with Subversion. [Accessed 29
February 2016]; Available from: http://svnbook.red-bean.com/en/1.5/svn-

book.pdf

Wattenberg, M. and Fernanda, V. (2003) History flow: results. [Accessed August
2011]; Available from:
http: / /www.research.ibm.com /visual /projects /history flow /results.htm

Commandant Australian Defence Force Warfare Centre (2009) ADFP 5.0.1: Joint
Military Appreciation Process. Canberra, A.C.T., Defence Publishing Service
(Australia). Available from:
http://intranet.defence.gov.au/home/documents/data/ADFPUBS /[SPADFP /A
DFP5 0 1/FRONT.PDFE

Director Strategic Logistics Policy, Strategic Logistics Branch, Joint Logistics Group
(2006) Distribution Planning. ADFP 4.2.2: Distribution Support To Operations.
Canberra, A.C.T., Defence Publishing Service (Australia). Available from:

http:/ /intranet.defence.gov.au/home/documents/data/ADFPUBS/JSPADFP /A
DFP4 2 2/03A.pdf

Bartel, D (CSC Australia) (2014) ViPA 2.0 System Specification (SS), Release 4.0.

Gamma, E. et al. (1995) Design Patterns: Elements of Reusable Object-Oriented Software.
Reading, Massachusetts, United States of America, Addison-Wesley

Australian Defence Glossary. [Accessed 9 February 2015]; Available from:
http:/ /adg.eas.defence.mil.au/

Chambers, S. and Freeman, J. (2014) Cloud Terrain Generation and Visualization Using
Open Geospatial Standards. In: Interservice/Industry Training, Simulation, and
Education Conference (I/ITSEC), [Accessed 29 February 2016]; Available from:
http:/ /external.opengeospatial.org/twiki public/pub/CommonDataBaseSWG/W
ebHome /14308 final CAE |7 paper.pdf

United States Joint Forces Command (USJFCOM) (2010) Joint Live Virtual and
Constructive (JLVC) Federation Integration Guide. Norfolk, Virginia, U.S. [Accessed 29
February 2016]; Available from:

http:/ /www.dtic.mil /dtic/tr/fulltext/u2 /a521311.pdf

AVM C. Hingston et. al. (2003) An Evaluation of ADF Logistics Support to Operations
in the Middle East With a View to Informing Future Logistic Capability Development.

Thuve, H. (2002) TOPFAS (Tool for Operational Planning, Force Activation and
Simulation). In: 6th International Command and Control Research and Technology
Symposium

Tamai, S. (2009) TOPFAS Tools for Operational Planning Functional Area Service: what
is this? NRDC-ITA Magazine, Issue 14, pp 20-22

UNCLASSIFIED

http://www.dtic.mil/dtic/tr/fulltext/u2/a521311.pdf
http://external.opengeospatial.org/twiki_public/pub/CommonDataBaseSWG/WebHome/14308_final_CAE_J7_paper.pdf
http://external.opengeospatial.org/twiki_public/pub/CommonDataBaseSWG/WebHome/14308_final_CAE_J7_paper.pdf
http://adg.eas.defence.mil.au/results.asp
http://intranet.defence.gov.au/home/documents/data/ADFPUBS/JSPADFP/ADFP4_2_2/03A.pdf
http://intranet.defence.gov.au/home/documents/data/ADFPUBS/JSPADFP/ADFP4_2_2/03A.pdf
http://intranet.defence.gov.au/home/documents/data/ADFPUBS/JSPADFP/ADFP5_0_1/FRONT.PDF
http://intranet.defence.gov.au/home/documents/data/ADFPUBS/JSPADFP/ADFP5_0_1/FRONT.PDF
http://www.research.ibm.com/visual/projects/history_flow/results.htm
http://svnbook.red-bean.com/en/1.5/svn-book.pdf
http://svnbook.red-bean.com/en/1.5/svn-book.pdf

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

UNCLASSIFIED
DST-Group-TN-1539

Department of Defence (2010) Single Information Environment (SIE) Architectural
Intent.

TOPFAS Web Flyer (2010) [Accessed 29 February 2016]; Available from:
https:/ /www.eiseverywhere.com/file uploads/9391b19efc1518a9ac4e685ce9420£3
a TOPFAS Web Flyer Aug 2010.pdf

VCDF Directive 02/2003 (2003) to MAJGEN P.F.Haddad

U.S. Department of Defence (2007) Department of Defence Interface Standard —
Common Warfighting Symbology, MIL-STD-2525B with CHANGE 2

W3C. SOAP Version 1.2 Part 1: Messaging Framework (Second Edition). [Accessed 14
July 2015]; Available from: http://www.w3.org/TR/soap12/

W3C. Web Services Description Language (WSDL) 1.1. [Accessed 14 July 2015];
Available from: http://www.w3.org/TR/wsdl

Management of Logistics Data to Support the Planning of Australian Defence Force
Operations, DEFLOGMAN, Part 2, Volume 8. [Accessed 22 February 2016];
Available from:

http:/ /intranet.defence.gov.au/home/documents/data/DEFPUBS /DEPTMAN/
DEFLOGMAN/VOLUMES8/10.pdf

JPG Partners (2012). ViPA Data Services Management Framework (VDSMF), version
5.0.

Jetty — Servlet Engine and HTTP Server. [Accessed 29 February 2016]; Available from:
http:/ /www.eclipse.org/jetty /

HyperSQL DataBase. [Accessed 29 February 2016]; Available from:
http:/ /hsqldb.org/

Shannon, B. (2006) Java Platform, Enterprise Edition (Java EE) Specification v5, Sun
Microsystems

Chan, L. (2008) Database Performance Tuning Guide. [Accessed 29 February 2016];
Available from:
http:/ /docs.oracle.com/cd /B19306 01/server.102/b14211/toc.htm

Niemiec, R. (2007) Oracle Database 10g Performance Tuning Tips & Techniques.
McGraw-Hill Eduction

Hibernate Validation Preface. [Accessed 7 February 2016]; Available from:
http://docs.jboss.org /hibernate /validator/4.3 /reference /en-
US/html/preface.html

U.S. Department of Defence (2014) Department of Defence Interface Standard —
Common Warfighting Symbology. MIL-STD-2525D

UNCLASSIFIED
89

http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html/preface.html
http://docs.jboss.org/hibernate/validator/4.3/reference/en-US/html/preface.html
http://docs.oracle.com/cd/B19306_01/server.102/b14211/toc.htm
http://hsqldb.org/
http://www.eclipse.org/jetty/
http://intranet.defence.gov.au/home/documents/data/DEFPUBS/DEPTMAN/DEFLOGMAN/VOLUME8/10.pdf
http://intranet.defence.gov.au/home/documents/data/DEFPUBS/DEPTMAN/DEFLOGMAN/VOLUME8/10.pdf
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/soap12/
https://www.eiseverywhere.com/file_uploads/9391b19efc1518a9ac4e685ce9420f3a_TOPFAS_Web_Flyer_Aug_2010.pdf
https://www.eiseverywhere.com/file_uploads/9391b19efc1518a9ac4e685ce9420f3a_TOPFAS_Web_Flyer_Aug_2010.pdf

UNCLASSIFIED

DST-Group-TN-1539

90

43.

44.

45.

46.

47.

48.

Schaffner, B. (2010) World Climates. [Accessed 22 March 2016]; Available from:
http:/ /www.blueplanetbiomes.org/climate.htm

Command of the Defence Council (1986) APP-6 Military Symbols for Land Based
Systems. NATO Military Standardization and Terminology

Director Doctrine, Australian Defence Force Warfare Centre (1992) Australian
Defence Force Publication, Staff Duties Series, ADFP 103, Abbreviations and Military
Symbols. Defence Centre, Canberra

Object Managment Group (2005) UML Infrastructure Specification, v2.0. [Accessed 1
April 2016]; Available from: http://www.omg.org/spec/UML/2.0/

National Geospatial-Intelligence Agency (2010) Geopolitical Entities and Codes
(Formerly Federal Information Processing Standards Publication 10-4: Countries,
Dependencies, Areas of Special Sovereignty, and Their Principal Administrative
Divisions). Available From:

http://geonames.nga.mil/gns /html/PDFDocs/GEOPOLITICAL CODES.pdf

Fallside, D. and Walmsley, P. (2004) XML Schema Part 0: Primer Second Edition.
[Accessed 11 April 2016]; Available from https://www.w3.org/TR/xmlschema-0/

UNCLASSIFIED

https://www.w3.org/TR/xmlschema-0/
http://geonames.nga.mil/gns/html/PDFDocs/GEOPOLITICAL_CODES.pdf
http://www.omg.org/spec/UML/2.0/
http://www.blueplanetbiomes.org/climate.htm

UNCLASSIFIED
DST-Group-TN-1539

13. Appendix A: ORBAT Data Model Schema

This is an W3C XML Schema version 1.0 [48] which defines the ORBAT Data Model.

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema

xmlns="http://orbat.vipa.dsto"
xmlns:orb="http://orbat.vipa.dsto"
xmlns:am="http://am.dsto"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xjc="http://Java.sun.com/xml/ns/jaxb/xjc"
xmlns:geo="http://geo.vipa.dsto"
xmlns:com="http://commons.vipa.dsto"
targetNamespace="http://orbat.vipa.dsto"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="0.1"

jaxb:version="2.1"
jaxb:extensionBindingPrefixes="xjc">

<xs:import namespace="http://am.dsto" schemalocation="./AM.xsd"/>
<xs:import namespace="http://commons.vipa.dsto"

schemaLocation="./VIPAcommons.xsd"/>
<xs:import namespace="http://geo.vipa.dsto"

schemalLocation="./VIPAgeo.xsd"/>
<xs:complexType name="DataType">
<xs:annotation>
<xs:documentation>An object representation which captures
common elements between ORBATs and Units</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="name" type="xs:string">
<xs:annotation>
<xs:documentation>Name of this Entity which the users
have developed</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="formalName" type="xs:string">
<xs:annotation>
<xs:documentation>The 2525B Symbol Name
description.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="description" type="xs:string"
minOccurs="0">
<xs:annotation>
<xs:documentation>Description given to the
ORBAT</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="timeType" type="com:QTimeType"/>

UNCLASSIFIED
91

UNCLASSIFIED
DST-Group-TN-1539

<xs:element name="primaryCapability" type="xs:string">
<xs:annotation>
<xs:documentation>Defines the capability of the ORBAT.
What the ORBAT 1is capable of providing and delivering. The
capabilities are tied to the battle dimension. </xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="secondaryCapability" type="CapabilityType"
minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Defines the secondary capabilities of
the ORBAT. What the ORBAT is capable of providing and delivering.
The capabilities are tied to the battle dimension. Currently, only
ground capability i1s supported.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="battleDimension"
type="com:battleDimensionEnum">
<xs:annotation>
<xs:documentation>The Battle dimension defines the
primary mission area for the war-fighting entity within the battle-
space. If the battle dimension cannot be or has not been
determined, it is considered to be unknown. If the battle dimension
is known, an object can have a mission area above the earth's
surface (i.e., in the air or outer space), on the earth's surface,
or below the earth's surface. If the mission area of an object is
on the earth's surface, it can be either on land or sea. The ground
dimension includes those mission areas on the land surface and is
divided into units, equipment, and installations. The sea surface
dimension includes those objects whose mission area is on the sea
surface, whereas the subsurface dimension includes objects whose
mission area 1s below the sea surface. More information can be seen
in the MIL-STD-2525B standard.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="echelon" type="com:forceSizeEnum">
<xs:annotation>
<xs:documentation>The echelon the commanding level of the
entity. i.e. Squad, Section, Platoon, etc.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="affiliation" type="com:affiliationEnum">
<xs:annotation>
<xs:documentation>Affiliation refers to the threat posed
by the warfighting object being represented. The basic affiliation
categories are unknown, friend, neutral, and hostile. Using the
APP-6A NATO specification.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="environmental" type="am:climateEnum"
minOccurs="0">

UNCLASSIFIED
92

UNCLASSIFIED
DST-Group-TN-1539

<xs:annotation>
<xs:documentation>Describes the climatic conditions where
the entity is physically located. Enumeration of climate types (use
Keoppen's climate classification
http://www.blueplanetbiomes.org/climate.htm?) .</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="owner" type="am:AuthorType" minOccurs="0"/>
<xs:element name="symbol2525B" type="xs:string">
<xs:annotation>
<xs:documentation>A symbol ID code is a 1l5-character
alphanumeric identifier that provides the information necessary to
display or transmit a tactical symbol Dbetween MIL-STD-2525
compliant systems. Position 1, coding scheme, indicates which
overall symbology set a symbol belongs to. Position 2, affiliation,
indicates the symbol's affiliation. Position 3, battle dimension,
indicates the symbol's Dbattle dimension. Position 4, status,
indicates the symbol's planned or present status. Positions 5
through 10, function ID, identifies a symbol's function. Each
position indicates an increasing level of detail and
specialisation. Positions 11 and 12, symbol modifier indicator,
identify indicators present on the symbol such as echelon,
feint/dummy, installation, task force, headquarters staff, and
equipment mobility. Positions 13 and 14, country code, identifies
the country with which a symbol 1is associated. Country code
identifiers are 1listed in the Federal Information Processing
Standard (FIPS) Pub 10 series. Position 15, order of Dbattle,
provides additional information about the role of a symbol
in the battlespace. More information can be seen in the MIL-STD-
2525B standard.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="attributes" type="am:AttributeType"
minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>List of attributes of this orbat
represented using tripple, rather than name-value pair notation to
allow for proper specification of name context.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element ref="am:metaData" minOccurs="0"
maxOccurs="unbounded" />
<xs:element name="role" type="xs:string" minOccurs="0">
<xs:annotation>
<xs:documentation>Role is something that is tied to the
specific force elements (based on ASJETS 'proficiencies') and 1is
used when constructing OPOs where the prep desk officer might seek
to search for FEs that meet the requirements to fulfil a specific
role.</xs:documentation>
</xs:annotation>
</xs:element>

UNCLASSIFIED
93

UNCLASSIFIED
DST-Group-TN-1539

<xs:element name="service" type="com:serviceEnum"
minOccurs="0">
<xs:annotation>
<xs:documentation>Defines the service which the entity is
associated, i.e. Army, Navy, Air Force.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="sourceData" type="am:SourceDataType"
minOccurs="0"/>
</xs:sequence>
<xs:attribute name="id" type="xs:string">
<xs:annotation>
<xs:documentation>An identifier for the entity object
represented. Used in conjunction with wvid and rev attributes to
identify a unique instance of an entity object. Each unique
instance (combination of id, wvid and rev wvalues) will also have a
unique iid value to simplify data management.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="iid" type="xs:ID" use="required">
<xs:annotation>
<xs:documentation>This is the instance identifier which
uniquely defines each individual entity instance and is also the
parameter used as the primary key for storing the entity objects
inside the database.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="vid" type="xs:string">
<xs:annotation>
<xs:documentation>Version id for this entity. Each version
of a entitymay have 0-n revisions identified by rev attribute. A
new version 1is created to represent substantial changes in the
entity which the entity identified by 1id attribute represents.
Since an entity exists on the temporal scale, versions represent
valid points/periods on the timeline. vid values must uniquely
identify a particular version history of an entity, i.e. must not
be reused with instances that have a different id
value.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="rev" type="xs:int">
<xs:annotation>
<xs:documentation>Represents a revision sequence number for
the version history identified by vid attribute. Revisions are used
to manage records of changes which do not constitute a new version
of an entity, for instance when fixing a typo in an entity which is
otherwise valid.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="isHead" type="xs:boolean">
<xs:annotation>

UNCLASSIFIED
94

UNCLASSIFIED
DST-Group-TN-1539

<xs:documentation>Identifies whether this instance of the
entity is the most recent revision of a particular
version.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="security" type="xs:string">
<xs:annotation>
<xs:documentation>Describes the security 1level of the
entity described.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="prevId" type="xs:string">
<xs:annotation>
<xs:documentation>Version Id of previous entity
object.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="nextId">
<xs:annotation>
<xs:documentation>Version Id of next entity
object.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="state" type="am:state">
<xs:annotation>
<xs:documentation>The current state of the
object.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="lockVersion" type="xs:int">
<xs:annotation>
<xs:documentation>Used for optimistic locking when editing
draft versions of the objects.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="repositoryId" type="xs:string">
<xs:annotation>
<xs:documentation>This identifies the repository in which
this object was created. It can be used for merging and data
management. Clients should not set or change this property when
creating or updating the object, if they do the changes will be
ignored by an AMDS service which will set the repositoryId to it's
own id wvalue. An ORBAT service should not allow updates to object
with repositoryIds which are different to it's
id.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="lazy" type="xs:boolean">
<xs:annotation>

UNCLASSIFIED
95

UNCLASSIFIED
DST-Group-TN-1539

<xs:documentation>Specifies whether the entity is a cut
down version of the full entity definition, i.e. a lazy/stub
representation</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:complexType name="ORBATDataType">
<xs:annotation>
<xs:documentation>An object representation which defines
ORBAT specific elements</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="DataType">
<xs:sequence>
<xs:element name="nationality" type="com:nationalityEnum"
minOccurs="0">
<xs:annotation>
<xs:documentation>Defines the nationality of the
ORBAT. NATO standard two letter County Codes. This nationality code
is used inside the MIL-STD-2525B standard and inside
_DataType.symbol2525B parameter representation.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="noUnits" type="xs:int" minOccurs="0">
<xs:annotation>
<xs:documentation>Defines the number of units
associated with the ORBAT</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="noLinks" type="xs:int" minOccurs="0">
<xs:annotation>
<xs:documentation>Defines the number of links
associated with the ORBAT</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="structureType"
type="StructureTypeEnum">
<xs:annotation>
<xs:documentation>Defines the overall strcture and
purpose of the entity defines, i.e. Operational Planning Objective
(OPO), Unit Entitlement (UE).</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ORBATType">
<xs:annotation>
<xs:documentation>An ORBAT definition comprising of a list of
unit nodes and relationships. Multiple relationship structures can

UNCLASSIFIED
96

UNCLASSIFIED
DST-Group-TN-1539

exist by vertue of typing each relationship map. Relationship
structures are not restricted.</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="ORBATDataType">
<xs:sequence>
<xs:element name="units" type="UnitType" minOccurs="0"
maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Stores a list of unit
entities.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="links" type="RelType" minOccurs="0"
maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Stores a list of relationship
entities.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="ORBATTypeStub">
<xs:annotation>
<xs:documentation>An ORBAT which defines a cut down version
of the full ORBAT without the associated units or
links</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="ORBATDataType"/>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="UnitDataType">
<xs:annotation>
<xs:documentation>An object representation which defines Unit
specific elements</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="DataType">
<xs:sequence>
<xs:element name="noAmObjRef" type="xs:int"
minOccurs="0">
<xs:annotation>
<xs:documentation>Specifies the number of Aide
Memoire Object references associated with the
Unit</xs:documentation>
</xs:annotation>
</xs:element>

UNCLASSIFIED
97

UNCLASSIFIED
DST-Group-TN-1539

<xs:element name="position" type="geo:PositionType"
minOccurs="0">
<xs:annotation>
<xs:documentation>Represents a unique geospatial
position where the entity is located.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="type" type="TypeEnum">
<xs:annotation>
<xs:documentation>Defines the type of entity, i.e.
Capability Brick (type) or Instance.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="maintenanceType"
type="MaintenanceTypeEnum" minOccurs="0"/>
<xs:element name="wuc" type="am:weaponUserCategoryEnum"
minOccurs="0"/>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="UnitType">
<xs:annotation>
<xs:documentation>A structural representation of the
functional ORBAT node</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="UnitDataType">
<xs:sequence>
<xs:element name="amObjRefs" type="UnitTypeAmObjRef"
minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Stores a list of Aide Memoire
references, Equipment, Supply Items, etc.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="UnitTypeStub">
<xs:annotation>
<xs:documentation>A Unit which defines a cut down version of
the full Unit without the associated Aide Memoire objects
attached</xs:documentation>
</xs:annotation>
<xs:complexContent>
<xs:extension base="UnitDataType"/>
</xs:complexContent>
</xs:complexType>
<xs:complexType name="RelType">

UNCLASSIFIED
98

UNCLASSIFIED
DST-Group-TN-1539

<xs:annotation>
<xs:documentation>A parent child relationship between either
two ORBAT or Unit entities.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="attributes" type="am:AttributeType"
minOccurs="0" maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>List of attributes of this 1link
represented using tripple, rather than name-value pair notation to
allow for proper specification of name context.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:ID">
<xs:annotation>
<xs:documentation>Relationship GUID</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="name" type="xs:string">
<xs:annotation>
<xs:documentation>Relationship name/label that may be shown
to the user.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="type" type="com:relationshipType"
use="required">
<xs:annotation>
<xs:documentation>Relationship type, i.e. Command, Support,
etc</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="parentOrbatvid" type="xs:string"
use="optional">
<xs:annotation>
<xs:documentation>Parent ORBAT object version ID. Use this
identifier to specify a soft link to an orbat
version.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="parentOrbatIid" type="xs:string"
use="optional">
<xs:annotation>
<xs:documentation>The ORBAT instance which this
Relationship was intended. Effectively creates a hard link to a
particular instance.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="childOrbatvid" type="xs:string"
use="optional">
<xs:annotation>

UNCLASSIFIED
99

UNCLASSIFIED
DST-Group-TN-1539

<xs:documentation>Child ORBAT object wversion ID. Use this
identifier to specify a soft link to an orbat
version.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="childOrbatIid" type="xs:string"
use="optional">
<xs:annotation>
<xs:documentation>The ORBATs version which this
Relationship was intended. Effectively creates a hard link to a
particular instance.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="parentUnitvid" type="xs:string"
use="optional">
<xs:annotation>
<xs:documentation>Parent unit version
Id.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="parentUnitIid" type="xs:IDREF"
use="optional">
<xs:annotation>
<xs:documentation>The Parents iid which this Relationship
was intended.</xs:documentation>
<xs:appinfo>
<jaxb:property>
<jaxb:baseType name="UnitType"/>
</jaxb:property>
</xs:appinfo>
</xs:annotation>
</xs:attribute>
<xs:attribute name="childUnitvid" type="xs:string"
use="optional">
<xs:annotation>
<xs:documentation>Child UnitType object
vid.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="childUnitIid" type="xs:IDREF"
use="optional">
<xs:annotation>
<xs:documentation>The child Unit's iid to form a hard
link.</xs:documentation>
<xs:appinfo>
<jaxb:property>
<jaxb:baseType name="UnitType"/>
</jaxb:property>
</xs:appinfo>
</xs:annotation>
</xs:attribute>

UNCLASSIFIED
100

UNCLASSIFIED
DST-Group-TN-1539

<xs:attribute name="cardMin" type="xs:int" default="0">
<xs:annotation>
<xs:documentation>Minimum cardinality of the relationship.
Default value of 0.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="cardMax" type="xs:int" default="1">
<xs:annotation>
<xs:documentation>Maximum cardinality of the relationship.
Default value of 1.</xs:documentation>
</xs:annotation>
</xs:attribute>
</xs:complexType>
<xs:complexType name="UnitTypeAmObjRef">
<xs:annotation>
<xs:documentation>Represents a List of AM object
references.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="type" type="am:amObjectTypeEnum">
<xs:annotation>
<xs:documentation>The AM object type Dbeing
represented.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="maximum" type="AmObjMRefType">
<xs:annotation>
<xs:documentation>Refers to the Operational Level of
Capability, OLOC. OLOC 1is the task-specific level of capability
required by a force to execute its role in an operation at an
acceptable level of risk.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="minimum" type="AmObjMRefType">
<xs:annotation>
<xs:documentation>Refers to the Minimum Level of
Capability, MLOC. MLOC is the lowest level of capability from which
a Unit can achieve its operational level of capability (OLOC)
within readiness notice (RN), and it encompasses the maintenance of
core skills, safety and professional standards. It 1is a term
employed only within the six OE.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="required" type="AmObjMRefType">
<xs:annotation>
<xs:documentation>Refers to the level of equipment
necessary to enable a unit to conduct routine training and
administrative activities. Know as the Full Time Entitlement,
FTE</xs:documentation>
</xs:annotation>
</xs:element>

UNCLASSIFIED
101

UNCLASSIFIED
DST-Group-TN-1539

<xs:element name="amRef" type="AmObjMRefType" minOccurs="0"
maxOccurs="unbounded">
<xs:annotation>
<xs:documentation>Represents an Unit Entitlement
equipment assignment to the Unit entity. Specifies the Loan
Entitlement (LE), and any additional forms of
capability.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="wuc" type="am:weaponUserCategoryEnum"
minOccurs="0">
<xs:annotation>
<xs:documentation>Specifies the Weapon User Category for
this Aide memoire allocated item.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:string">
<xs:annotation>
<xs:documentation>The persisted class idnetifier (primary
key) </xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="amid" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Aide Memoire reference
identifier.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="name" type="xs:string" use="required">
<xs:annotation>
<xs:documentation>Represents the Name of AM Object when
first assigned. Loosely couples the AMDS and the ORBATDS.
</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="version" type="xs:int" use="required">
<xs:annotation>
<xs:documentation>The version of the AM reference when
first assigned.</xs:documentation>
</xs:annotation>
</xs:attribute>
<xs:attribute name="prescribed" type="xs:boolean">
<xs:annotation>
<xs:documentation>If true, it indicates that the unit has
additional specialist capability for that piece of equipment and
can therefore perform all levels on maintenance on that piece of
equipment, i.e. Close (st Line)/Integral (2nd Line) /General
(3rd/4th Line). If false the Unit can not perform all levels of
maintenance.</xs:documentation>
</xs:annotation>

UNCLASSIFIED
102

UNCLASSIFIED
DST-Group-TN-1539

</xs:attribute>
</xs:complexType>
<xs:complexType name="AmObjMRefType">
<xs:annotation>
<xs:documentation>Defines a form of capability toward the
assigned unit.</xs:documentation>
</xs:annotation>
<xXs:sequence>
<xs:element name="capabilityType" type="xs:string"/>
<xs:element name="multiplicity" type="xs:double"/>
</xs:sequence>
<xs:attribute name="id"/>
</xs:complexType>
<xs:complexType name="CapabilityType">
<xs:annotation>
<xs:documentation>Pairs a capability name with the MIL-STD-
2525 symbol code representing that capability.</xs:documentation>
</xs:annotation>
<xs:sequence>
<xs:element name="capabilityName" type="xs:string">
<xs:annotation>
<xs:documentation>A string describing a
capability.</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="symbolCode" type="xs:string">
<xs:annotation>
<xs:documentation>This is the MIL-STD-2525 symbol code
which encapsulates the capability described in the
capabilityName.</xs:documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
<xs:attribute name="id" type="xs:string" use="optional"/>
</xs:complexType>
<xs:simpleType name="TypeEnum">
<xs:annotation>
<xs:documentation>The type o0f entity which 1is being
defined</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string">
<xs:enumeration value="Brick"/>
<xs:enumeration value="Instance"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="StructureTypeEnum">
<xs:annotation>
<xs:documentation>Describes the purpose of the structure
which the entity is defined, i.e. UE, OPO ORBATs</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string">

UNCLASSIFIED
103

UNCLASSIFIED
DST-Group-TN-1539

<xs:enumeration value="UE"/>
<xs:enumeration value="00"/>
<xs:enumeration value="OPO"/>
<xs:enumeration value="0OO BRICK"/>
<xs:enumeration value="OU BRICK"/>
<xs:enumeration value="CONTAINER"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="MaintenanceTypeEnum">
<xs:annotation>
<xs:documentation>Described the type of maintenance which a
force element is capable of providing.</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string">
<xs:enumeration value="Integral"/>
<xs:enumeration value="Close"/>
<xs:enumeration value="General"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

UNCLASSIFIED
104

UNCLASSIFIED

DST-Group-TN-1539

14. Appendix B: ORBAT Data Model Validation Rules

This appendix lists the validation rules which are defined for the ORBATDS. For each of
the classes in the ORBAT Data Model it lists constraints which apply to a specific field
within that class and constraints which are class-wide and so can involve multiple fields or
cross class boundaries. More information about data validation within the ORBATDS can
be found in Section 10.4.

Some constraints are noted as having a specific validation group. These constraints are
only checked in specific circumstances, such as at persistence, and are not general
constraints on the class.

* C(Class: dsto.vipa.orbat. AmObjMRefType
o Constraints specified per field:

capabilityType

* Must not be null (empty).

¢ Size must have minimum value of 1 and maximum value of 100.
multiplicity

¢ Minimum value is 0.

e C(lass: dsto.am.AttributeType
o Constraints specified per field:

name

* Must not be null (empty).

¢ Size must have minimum value of 1 and maximum value of 100.
value

* Must not be null (empty).

¢ Size must have minimum value of 1 and maximum value of 1000.
vocabulary

¢ Size must have minimum value of 1 and maximum value of 100.

* C(lass: dsto.am.AuthorType
o Constraints specified per field:

* (Class

id

¢ Size must have minimum value of 1 and maximum value of 255.
displayName

¢ Size must have minimum value of 1 and maximum value of 400.
username

¢ Size must have minimum value of 1 and maximum value of 200.
email

* Field must be a valid email address.

¢ Size must have minimum value of 1 and maximum value of 400.
sourceURI

¢ Size must have minimum value of 1 and maximum value of 400.

jurisdiction

¢ Size must have minimum value of 1 and maximum value of 200.

: dsto.vipa.orbat.CapabilityType

UNCLASSIFIED

105

UNCLASSIFIED
DST-Group-TN-1539

o Constraints specified per field:
= capabilityName
¢ Must not be null (empty).
* Size must have minimum value of 1 and maximum value of 160.
= symbolCode
e Size must have minimum value of 0 and maximum value of 15.
* C(Class: dsto.vipa.orbat.DataType
o Constraints specified per field:
= jid
* Must not be null (empty).
* Size must have minimum value of 1 and maximum value of 255.
= vid
¢ Must not be null (empty).
* Size must have minimum value of 1 and maximum value of 255.
= id
* Must not be null (empty). Only when the following validation
group(s) are being checked: dsto.validation.Persistence,
¢ Size must have minimum value of 1 and maximum value of 255.

= nextld

¢ Size must have minimum value of 1 and maximum value of 255.
= prevld

¢ Size must have minimum value of 1 and maximum value of 255.
= security

¢ Size must have minimum value of 1 and maximum value of 255.
= name

* Must not be null (empty).

* Size must have minimum value of 1 and maximum value of 100.
= formalName

* Must not be null (empty).

¢ Size must have minimum value of 1 and maximum value of 255.
= description

¢ Size must have minimum value of 0 and maximum value of 3000.
= timeType

* Must not be null (empty).

* The referenced object must be valid.
= primaryCapability

* Must not be null (empty).

* Size must have minimum value of 1 and maximum value of 100.
= secondaryCapability

* The referenced object must be valid.
= battleDimension

* Must not be null (empty).
= echelon

* Must not be null (empty).

UNCLASSIFIED
106

UNCLASSIFIED
DST-Group-TN-1539

affiliation

¢ Must not be null (empty).

service

¢ Must not be null (empty).

symbol2525B

¢ Size must have minimum value of 1 and maximum value of 255.
role

¢ Size must have minimum value of 1 and maximum value of 1500.
attributes

* The referenced object must be valid.

owner

* The referenced object must be valid.

* C(Class: dsto.vipa.orbat. ORBATDataType
Constraints specified as class wide:

@]

o

role must not be null when ${structureType == "OU_BRICK" ||
structureType == "OO_BRICK"}

Constraints specified per field:

structureType

* Must not be null (empty).

* The referenced object must be valid.

noLinks

* Must not be null (empty). Only when the following validation
group(s) are being checked: dsto.validation.Persistence,

* Minimum value is 0.

noUnits

* Must not be null (empty). Only when the following validation
group(s) are being checked: dsto.validation.Persistence,

* Minimum value is 0.

* C(Class: dsto.vipa.orbat. ORBATType
Constraints specified as class wide:

o

Linked Unit Containment check will be performed.

Multiple Command check will be performed.

Cyclic Link check will be performed.

Multiple Command Root check will be performed.

Units Have Association Links check will be performed.

Field Value Combination check will be performed.

Field Value Combination check will be performed.

linkscardMin must be equal to 0

linkscardMax must be equal to 1

Field Value Combination check will be performed.

linkstype must be equal to ASSOCIATION when structure type is OPO
noUnits must be equal to the number of units Only when the following
validation group(s) are being checked: dsto.validation.Persistence,

UNCLASSIFIED
107

UNCLASSIFIED

DST-Group-TN-1539

noLinks must be equal to the number of links Only when the following
validation group(s) are being checked: dsto.validation.Persistence,
units.amObjRefsmaximum must not be null when ${structureType == "UE"
| I structureType == "OPO"}

units.amObjRefs.maximumcapability Type must be equal to OLOC in a UE

units.amObjRefsminimum must not be null when ${structureType == "UE"}
units.amObjRefs.minimumcapabilityType must be equal to MLOC in a UE
units.amObjRefsrequired must not be null when ${structureType == "UE"}

units.amObjRefs.requiredcapabilityType must be equal to FTE in a UE
units.amObjRefsamRef must have at least one element
units.amObjRefsamRef[0].capabilityType must be equal to LE in a UE
units.amObjRefs OLOC must be greater than or equal to MLOC
linkscardMax must be greater than or equal to 0

units force element must be of type BRICK

units force element must be of type BRICK

units force element must be of type INSTANCE

units must be empty for type OO

units must be empty for type OO_BRICK

units contains a deprecated entity Only when the following validation
group(s) are being checked: dsto.validation.Deprecation,

o Constraints specified per field:

links
* There must be no duplicate entries.
* The referenced object must be valid.

* C(Class: dsto.vipa.geo.PositionType
o Constraints specified per field:

name

¢ Size must have minimum value of 0 and maximum value of 255.
geoid

¢ Size must have minimum value of 0 and maximum value of 255.
locationName

¢ Size must have minimum value of 0 and maximum value of 255.
countryName

¢ Size must have minimum value of 0 and maximum value of 255.
lat

* Value range has minimum value of -90 and maximum value of 90.
lon

* Value range has minimum value of -180 and maximum value of 180.

* C(Class: dsto.vipa.commons.QTimeType
o Constraints specified per field:

start
* Must not be null (empty).

* C(Class: dsto.vipa.orbat.RelType
o Constraints specified as class wide:

108

UNCLASSIFIED

UNCLASSIFIED
DST-Group-TN-1539

= cardMax must be greater than cardMin
o Constraints specified per field:

= type
¢ Must not be null (empty).
= cardMin

* Minimum value is 0.
= cardMax
* Minimum value is 0.
Class: dsto.vipa.orbat.UnitDataType
o Constraints specified as class wide:
= role must not be null when ${type == "BRICK"}
= noAmObjRef Has no Aide Memoire references assigned. Only when the
following validation group(s) are being checked:
dsto.validation. AMReferences,
= amObjRefs OLOC must be greater than or equal to MLOC
o Constraints specified per field:
" type
* Must not be null (empty).
* The referenced object must be valid.
= position
* The referenced object must be valid.
= noAmODbjRef
* Must not be null (empty). Only when the following validation
group(s) are being checked: dsto.validation.Persistence,
* Minimum value is 0.
Class: dsto.vipa.orbat.UnitType
o Constraints specified as class wide:
= noAmODbjRef noAmODbjRef must be equal to the number of amObjRefs
Only when the following validation group(s) are being checked:
dsto.validation.Persistence,
o Constraints specified per field:
= amObjRefs
* The referenced object must be valid.
Class: dsto.vipa.orbat.UnitType AmODbjRef
o Constraints specified per field:
= amid
¢ Must not be null (empty).
* Size must have minimum value of 1 and maximum value of 255.
* name
* Must not be null (empty).
* Size must have minimum value of 1 and maximum value of 100.

= type
* Must not be null (empty).
= version

UNCLASSIFIED
109

UNCLASSIFIED

DST-Group-TN-1539

110

* Minimum value is 0. Only when the following validation group(s) are

being checked:
dsto.validation.AMReferences,
maximum

* The referenced object must be valid.

minimum

* The referenced object must be valid.

required

* The referenced object must be valid.

amRef

* The referenced object must be valid.

UNCLASSIFIED

dsto.validation.Deprecation,

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY GROUP

DOCUMENT CONTROL DATA 1. DLM/CAVEAT (OF DOCUMENT)
2. TITLE 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED
REPORTS THAT ARE LIMITED RELEASE USE (U/L)
NEXT TO DOCUMENT CLASSIFICATION)
e il Mg and sy (D QRTINS | Do v
8 Title L)
Abstract)
4. AUTHOR(S) 5. CORPORATE AUTHOR
Kyran Lange Defence Science and Technology Group
West Avenue
Edinburgh SA 5111
6a. DST Group NUMBER 6b. AR NUMBER 6¢c. TYPE OF REPORT 7. DOCUMENT DATE
DST-Group-TN-1539 AR-016-657 Technical Note July 2016
8. Objective ID 9. TASK NUMBER 10. TASK SPONSOR
AV12780643 07/204 SLB

13. DOWNGRADING/DELIMITING INSTRUCTIONS 14. RELEASE AUTHORITY
Chief, Joint Operations and Analysis Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT
Approved for public release.

16. DELIBERATE ANNOUNCEMENT
Approved for public release.

17. CITATION IN OTHER DOCUMENTS Yes

18. RESEARCH LIBRARY THESAURUS
Order of Battle, Strategic intelligence, Web services, Technology

19. ABSTRACT

The Vital Planning and Analysis (ViPA) workbench is an automated logistics feasibility analysis tool used to support
planning and logistics. ViPA makes use of Order of Battle (ORBAT) data as an input for its calculations. The ORBAT Data
Service is a Web Service for storing force structures to be used by the ADF. The service is composed into what is known as
a Service Oriented Architecture which provides a loose coupling of self-contained services. This architecture helps to
provide a reusable, access controlled and resilient data source. This report describes the design of the ORBAT Data Service
and how it is used to manage and share ORBAT data between tools such as ViPA.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Contents
	Glossary
	1. Introduction
	1.1 Related Work
	1.2 Purpose
	1.3 Intended Audience
	1.4 Document Structure

	2. ViPA
	2.1 Background
	2.2 Support to Planning
	2.3 Architecture

	3. Main Requirements
	4. Data Model
	4.1 Relationships
	4.1.1 Static Link vs Dynamic Link
	4.1.2 Relationships Between ORBATs
	4.1.3 Relationships Between Units
	4.1.4 Relationships in a DPR

	4.2 Type Restrictions
	4.3 Capability Brick Construction
	4.4 Mandatory Fields
	4.5 Symbology

	5. Temporal Modelling and Entity Versioning
	5.1 Temporal Design
	5.2 Temporal Linking

	6. Fetching Strategies
	6.1 Temporal Fetching Strategies
	6.2 Timeline – Version Continuity
	6.3 Fetching Dependencies
	6.4 Lazy Loading
	6.4.1 ORBAT of Units
	6.4.2 ORBAT of ORBATs

	7. Service Interface
	7.1 General Interface
	7.1.1 getORBAT/getUnit
	7.1.2 searchORBAT/searchUnit/search
	7.1.2.1 Entity Name Search
	7.1.2.2 Type/Structure Type Filter
	7.1.2.3 General Field Search
	7.1.2.4 Specific Field Search
	7.1.2.5 Current/Latest Search
	7.1.2.6 Association Search
	7.1.2.7 Orphan Search
	7.1.2.8 Temporal Search

	7.1.3 summariseUnits/summariseORBATs
	7.1.4 summariseUnitsExpanded
	7.1.5 getUnitSummary
	7.1.6 get2525Symbol
	7.1.7 listCapabilities/listPrimaryCapabilities

	7.2 Administration Interface
	7.2.1 putORBAT/putUnit
	7.2.2 depORBAT/depUnit
	7.2.3 getDraftORBAT/getDraftUnit
	7.2.4 updateState
	7.2.5 searchORBAT/searchUnits/search
	7.2.6 getAuthorisedRoles
	7.2.7 getUserJurisdiction
	7.2.8 getRepositoryID
	7.2.9 listCapabilities/listPrimaryCapabilities

	7.3 REST Interface
	7.4 ORBAT Administration Client

	8. Design
	8.1 Design Patterns
	8.2 Technology

	9. Data Management Framework
	9.1 Data Management Stages
	9.1.1 Manage
	9.1.2 Capture
	9.1.3 Verify
	9.1.4 Publish
	9.1.5 Consume
	9.1.6 Validate
	9.1.7 Cleanse
	9.1.8 Data Migration
	9.1.9 Deprecate

	9.2 Entity States
	9.3 Linking to Draft Entities
	9.4 Use Cases
	9.4.1 Creating an ORBAT from Scratch
	9.4.2 Editing an ORBAT Without Editing its Units
	9.4.3 Editing an ORBAT and its Units
	9.4.4 Verifying and Approving an ORBAT

	9.5 Jurisdiction Based Edit Restrictions
	9.6 Data Synchronisation and Multi-Repository Deployment

	10. Model Management
	10.1 Security
	10.2 Performance
	10.3 Concurrency
	10.4 Data Validation
	10.5 Data Auditing
	10.6 Data Persistence
	10.7 Data Mapping

	11. Future Work
	11.1 Phase Out the Data Management Framework
	11.2 Data Model Improvements
	11.3 Container ORBATs
	11.4 Improved Reporting
	11.5 Capability Hierarchy
	11.6 Graphical ORBAT Administration Client

	12. References
	13. Appendix A: ORBAT Data Model Schema
	14. Appendix B: ORBAT Data Model Validation Rules
	DOCUMENT CONTROL DATA

