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ABSTRACT

This note works through an example of switching between many coordinate systems using a
modern matrix language that lends itself to describing arenas with multiple entities such as
found in many Defence scenarios. To this end, it describes an example in planetary orbital
theory, whose various Sun- and Earth-centred coordinate systems makes that theory a good
test-bed for such an exposition of changing coordinates. In particular, we predict the look
direction to Jupiter from a given place on Earth at a given time, highlighting the careful book-
keeping that is required along the way. To avoid much of the rather antiquated jargon and
notation that pervades orbital theory, we explain the first principles of 2-body orbital motion
(Kepler’s theory), beginning with Newton’s laws and proving all the necessary expressions.
The systematic and modern approach to changing coordinates described here can also be
applied just as readily in contexts such as a Defence aerospace engagement, which follows the
interaction of multiple entities that each carry their own coordinate system.
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Changing Coordinates in the Context of Orbital

Mechanics

Executive Summary

Real-world defence scenarios might be described or managed by any of their participants, and
a core element of this description is the ability to transform between the many coordinate
systems that typically quantify the entities involved. Switching between coordinates is often
seen as a classical yet difficult problem. This report attempts to show that the task can be
made easier and more transparent by using unambiguous notation that carefully describes all
relationships of the relevant entities.

A worked example in planetary orbital theory is a useful test-bed for such an exposition.
The various Sun- and Earth-centred coordinate systems involved in predicting, say, the look
direction to Jupiter from a given place on Earth at a given time require careful book-keeping
of the plethora of numbers involved in the calculation.

With that worked example in our sights, and to avoid much of the rather antiquated jargon
and notation that pervades orbital theory, we cover the first principles of 2-body orbital motion
by beginning with Newton’s laws and proving all the necessary expressions. The main focus
here is to show how to interrelate the various coordinate systems that are necessary to the
worked example.

We are content to consider the 2-body problem (Kepler’s theory)—which can be solved
analytically, unlike the many-body problem—because the relevant concepts of changing co-
ordinates are sufficiently illustrated in a 2-body scenario. We thus decouple the Solar System
into two 2-body systems that are gravitationally independent: Sun–Earth, and Sun–Jupiter.
The resulting high accuracy in the prediction of Jupiter’s look direction from Earth supports
the validity of this decoupling.

The exposition begins with the relevant classical mechanics and time concepts, proves
Kepler’s three laws, then establishes and describes how to relate the different coordinate
systems involved with the Earth-centred and Sun-centred inertial frames, the Earth-centred
Earth-fixed frame, and the observer’s local “flat Earth” frame. It describes the necessary
celestial geometry and orbital elements, and finishes with the worked example of locating
Jupiter at a given time.

The explanations in the pages that follow are written in an expansive style that describes
related concepts, such as what equinoxes and solstices are and when they occur, how julian
days are defined, and how orbital calculations can be extended to more complex motion, such
as that of the Moon. In particular, the theory of how to change coordinates more generally
in an elegant but also powerful way is explained in detail.

Although predicting where Jupiter can be found is not of any great utility in a Defence
context, anyone who understands the procedure described in this note will have no problem
attempting the simpler task of working, for example, in the area of research into satellite
positioning systems such as GPS.
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1 Introduction

This note serves two purposes. First, it gives a worked example in modern mathematical
language of the subject of coordinate transforms, a subject that is the acknowledged bane of
many a researcher in Defence, where knowledge is sought of the interaction of many entities
with each using its own coordinate system to communicate its view of a scenario. Second,
this report describes orbital theory in a streamlined way that is perhaps more in line with a
modern physicist’s way of viewing the subject than is traditional in the subject, while at the
same time avoiding extraneous concepts such as the theory of interplanetary trajectories.

The world’s increasing reliance on satellite technology for timing and positioning suggests
a need for more awareness of the dynamics of Earth satellites. For example, in the study
of global positioning systems such knowledge enables a researcher to construct and explore
an orbit in an informed way, and to understand the relations between equivalent choices of
parameters that describe the orbit.

The sections that follow cover the relevant classical mechanics and time concepts from the
ground up. We establish the necessary frames and coordinates, and describe how to relate
the different coordinate systems that are required to calculate a satellite’s position. We opt
to work through a particularly complicated example: finding the bearing and elevation of the
planet Jupiter in an Adelaide sky at a given time. Although Jupiter is hardly a satellite of
Earth, the method of predicting its position covers more ground than that of forecasting the
position of an Earth satellite, and so serves as a more in-depth study of the general concepts.
The sections that follow also segue into descriptions of related concepts, such as details of
Earth’s orbit and how it relates to the seasons, and the “julian day” approach to measuring
time.

2 Orbits from Newton’s Laws

Orbital mechanics is an old and established subject. Some of its language was first coined
hundreds of years ago, and the subject is generally still presented in ways that reflect its
mediaeval beginnings. Its literature can often use a style that most physicists (myself included)
will probably regard as obscure: for example, aside from sometimes archaic terminology,
even modern books might treat the Sun as orbiting Earth, with the planets orbiting the
Sun [1]. This choice of (non-inertial) frame is useful qualitatively and can be argued for and
against from a philosophical point of view, but it lacks the simplicity of an inertial frame for
calculating, and has something of the mediaeval about it. It is rare to find a book on the
subject that presents succinctly all that is needed to locate a heavenly body without being
merely a “cook book” and also without presenting much extraneous information at the same
time [2]; most books cover a lot of ground over many chapters, without always getting to the
heart of the subject quickly. The treatment of vectors and coordinate systems in many books
can benefit from following the more modern approach used in [3] that is specifically tailored
to cope easily with multiple coordinate systems.

The question we will answer in this report is the following: if you gaze up at the sky tonight
at 8 p.m., where must you look to find a given planet? Making such a prediction at a given
time and place involves a wealth of physics and mathematics, and seeing the calculations come
together is nothing less than doing an experiment in classical mechanics on a grand scale. In
this report I’ll show precisely how to do that calculation, by building the necessary theory
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from first principles and then joining this to a set of published orbital elements describing the
planet’s orbit that have been produced from astronomers’ observations.

Predicting where a planet will be seen at some time and place follows time-honoured
classical mechanics. First use “force equals mass times acceleration” to analyse a situation
governed fully by gravity, to find the planet’s position in its orbit as a function of time,
using appropriate initial conditions. Orientate this orbit (together with the planet) correctly
relative to the Sun, do the same for Earth, and sight the planet from Earth. Finally, express
the resulting vector as a bearing and elevation for the given place of observation on Earth.

Modern fast computers calculate planetary ephemerides (tables of predicted positions over
time) by incrementally solving many differential equations for the n-body problem that com-
bine the many gravitational influences on and due to the planets. We would have no choice
but to calculate this way if we required highly accurate predictions. In contrast, treating the
chosen planet–Sun pair as a 2-body problem in gravity makes it exactly solvable, and the
result is sufficiently simple and accurate to give an appreciation for the physics involved. The
resulting keplerian orbit forms the basis of all orbital theory. We will make the approxim-
ation that for the purpose of predicting Jupiter’s direction from Earth, the Solar System’s
dynamics can be decoupled into two 2-body systems that are gravitationally independent:
Sun–Earth, and Sun–Jupiter. Each of these 2-body problems can then be solved individually.
This approximation works extremely well in practice. Additionally, the 2-body treatment is
completely sufficient to serve as a platform for discussing the necessary coordinate transforms.

In the 2-body problem, the planet is subject to only the gravitational force exerted by
the Sun. It’s an undergraduate task in mechanics to show that the motions of the centres of
mass of these assumed-spherical bodies is identical to the motions calculated by replacing the
planet and Sun with two point masses that are located at the centres of the spheres and have
those spheres’ masses. We’ll assume this result.

Now consider such a “point” planet of mass m interacting with its primary (say, the Sun)
of mass M , and measure the planet’s position r relative to its primary. The “central force”
exerted by the Sun implies that the planet moves in a plane, and so we place the Sun at the
origin of orbit-plane coordinates, a cartesian set xop, yop, zop. (These are more conventionally
called perifocal, or PQW coordinates). Begin by analysing the planet’s motion in the orbit
plane xop yop using polar coordinates r, θ, where r ≡ |r|, as shown in Figure 1.

Every point in the orbit plane has attached to it two unit vectors: the radial unit-length
vector ur points everywhere radially outward from the Sun, and the transverse unit-length
vector uθ is produced by rotating ur by 90◦ in the orbit plane right-handed around zop.
Referring to Figure 1, we apply Newton’s law F = ma to the mass-m planet:

−GMm

r2
ur = m

d2

dt2

 position of m relative
to any point fixed in
any inertial frame

 , (2.1)

where G is Newton’s gravitational constant. A frame is defined to be inertial if a mass released
at rest in that frame remains motionless indefinitely. Any frame moving at constant velocity
relative to an inertial frame will itself be inertial. A convenient choice of inertial frame for
our scenario is the planet–primary centre-of-mass frame (it can be shown that centre-of-mass
frames are inertial), and a convenient point fixed to this frame is the centre of mass itself.
With r the length of the planet’s position vector r = rur extending from its primary, (2.1)

2
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xop

yop

r

θ

M

m

CM

Mr
M+m

ur

uθ

ur
uθ

ur

uθ

Figure 1: Arrangement of vectors and masses for deriving the equation of motion of a satellite
of mass m orbiting a primary body of mass M . “CM” denotes the centre of mass
of M and m: it divides the line joining the masses in the ratio m : M . Unit-length
basis vectors at three representative points are shown.

becomes (see [4] for a side comment)

−GMm

r2
ur = m

d2

dt2
Mr

M +m
=

Mm

M +m
r̈ (2.2)

(where the dots denote two time differentiations), which rearranges to

r̈ =
−G(M +m)

r2
ur ≡

−µ
r2

ur , (2.3)

where µ is conventional shorthand for G(M+m). If the above analysis seems straightforward,
realise that we have derived the basic equation to be solved, (2.3), in a very economical way,
due to our combining the Sun-origin coordinates with the “CM-at-rest” inertial frame.

We will solve (2.3) by expressing r̈ in terms of ur and uθ, and then equating compon-
ents of these across the equals sign in (2.3). To begin doing so, we establish a terminology
that will become important later, by distinguishing notationally between a proper vector (an
arrow such as r), and its description in some coordinate system A, being an array of co-
ordinates [r]A known as a coordinate vector [5]. So write r in the orbit plane’s cartesian
coordinates, indicated by [r]op:

[r]op =

[
r cos θ
r sin θ

]
≡
[
rc
rs

]
. (2.4)

Differentiating a vector is easy when using cartesian coordinates: just differentiate its com-
ponents [6]. So twice differentiating each element of (2.4) gives

[r̈]op =

[
(r̈ − rθ̇2)c− (2ṙθ̇ + rθ̈)s

(r̈ − rθ̇2)s+ (2ṙθ̇ + rθ̈)c

]
. (2.5)
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Now realise that

[ur]op =

[
c
s

]
, [uθ]op =

[
−s
c

]
, (2.6)

and combining these with (2.5) enables r̈ to be expressed without using cartesian coordinates:1

r̈ = (r̈ − rθ̇2)ur + (2ṙθ̇ + rθ̈)uθ . (2.7)

Comparing (2.3) with (2.7) produces the two key equations of the planet’s motion [8]:

r̈ − rθ̇2 = −µ/r2 , 2ṙθ̇ + rθ̈ = 0 . (2.8)

The second equation in (2.8) can be rewritten as

1

r

d

dt
(r2θ̇) = 0 , (2.9)

or r2θ̇ = a constant, conventionally called h. Note that for a planet of mass m and velocity v
relative to M , the angular momentum vector per unit mass, relative to M , is

L/m = r × v = r × ṙ . (2.10)

Remember that r = rur, and just as we found r̈ above, we can also differentiate each element
of (2.4) just once, and again use (2.6) to produce

ṙ = ṙur + rθ̇uθ . (2.11)

Substitute these expressions for r and ṙ into (2.10), and apply the distributive law to the
cross product to give

L/m = rur × (ṙur + rθ̇uθ) = r2θ̇uzop = huzop , (2.12)

where uzop is the unit vector normal to the orbit plane. So h is the planet’s orbital angular
momentum per unit mass with respect to its primary. Remember that because the planet is
conventionally chosen to orbit in the direction of increasing θ, the angular momentum L will
be parallel to uzop , making h always positive. We’ll use the fact that h is the zop component
of r × v ahead in (4.3).

Now solve the first equation in (2.8) by a change of variables u = 1/r, eliminating t in favour
of θ. To do this, note that t can be treated as a function of θ alone, in which case the chain rule
of differentiation combines with the definition of h to give d/dt = dθ/dt× d/dθ = hu2 d/dθ.
So we calculate r̈ by applying two time derivatives of hu2 d/dθ to 1/u. The result is

r̈ = −h2u2 d2u/dθ2 . (2.13)

The first equation in (2.8) becomes

d2u

dθ2
+ u =

µ

h2
. (2.14)

This linear differential equation is easily solved to give u = B cos(θ − θ0) + µ/h2 for con-
stants B and θ0, and from this we can write

r =
1

B cos(θ − θ0) + µ/h2
≡ p

1 + e cos(θ − θ0)
, (2.15)

where p ≡ h2/µ is called the orbit’s semi-parameter and e its eccentricity. The angle θ0 merely
specifies some bulk rotation of the orbit, so we will set it to zero without loss of generality.

1See [7] for an alternative way of producing (2.7), that doesn’t rely on cartesian coordinates.
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a

b

X, xop

Y yop

r
θE

Figure 2: Basic angles and axes describing an elliptical orbit. The dotted circles aid in visu-
alising how the eccentric anomaly E is defined on page 7.

3 Kepler’s Three Laws

When 0 6 e < 1, (2.15) with θ0 = 0 describes an ellipse in the xop yop plane symmetrical about
the xop axis, shown in Figure 2. This is the path followed by a planet with insufficient energy
to escape its primary, since values of e > 1 give parabolae and hyperbolae, open conic sections
that describe only unbound objects such as comets.

The orbital ellipse has semi-major and semi-minor axes lengths a and b. Its centre of
symmetry is the origin of the XY axes in Figure 2, so that it satisfies X2/a2 + Y 2/b2 = 1. The
Sun occupies one focus, at the origin of the xop yop axes where X = ae. The semi-parameter p
is the value of r when θ = 90◦, and Pythagoras’s theorem produces p = a(1−e2).

Setting θ0 to zero corresponds to measuring θ from the planet’s perifocus: its point of
closest approach to the focus. (The perifocus is also called perihelion for orbits about the
Sun, and perigee for orbits about Earth.) This setting of θ0 to zero is always done, in which
case θ is called the planet’s true anomaly. Here, the word “anomaly” isn’t meant to imply
that something is wrong; perhaps it originally meant a departure from perifocus. One theory
suggests that the language of orbital mechanics was deliberately obfuscated by early navigators
to prevent widespread knowledge of how to navigate, thus discouraging would-be mutineers [9].

We’ve found that the orbit of a planet is an ellipse with the Sun at one focus: this is
Kepler’s First Law. In general (2.15) describes a conic section—and only a conic section. A
sometimes-found misconception holds that if momentarily perturbed, a planet’s orbit would
collapse and send it spiralling in to the Sun. But this cannot be; a spiral path is not a conic
section, so cannot describe planetary motion. No matter how slowly it moves, a point mass m
that is set to move not purely radially can never fall in to collide with a point mass M ;
all motion of bodies under gravity is a part of an unending orbital motion, unless the non-
pointlike nature of the bodies gets in the way. When you throw a rock, then neglecting air
resistance, from the moment it leaves your hand until it hits the ground, it is orbiting Earth’s
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centre in a tight ellipse. The end of the ellipse along which the rock flies before it hits the
ground is modelled very accurately as a parabola, but the full path is an ellipse. (Of course,
Earth satellites do eventually fall to the ground if they orbit low enough, due to atmospheric
drag that imposes a force which we have not included above.)

Related to this idea of an orbiting rock is the term “orbital speed”; for example, the orbital
speed of a satellite of Earth is generally given as 8 km/s. How does this relate to the rock a
few lines up? Although a thrown rock is in orbit, its elliptical orbit intersects Earth’s surface,
so it will quickly hit the ground. The orbital speed of a rock is something of an idealisation,
being the (constant) speed that the rock needs in order to orbit Earth in the smallest circle
that never touches the ground.

Figure 2 includes a shaded area A that is swept out by the Sun-to-planet vector r beginning
at perihelion. Simple geometry shows that the infinitesimal orbital area dA swept out by this
vector in a time interval dt is dA = r2dθ/2. It follows that

dA/dt = r2θ̇/2 = h/2 , (3.1)

which is a constant. So the planet’s position vector sweeps out area at a constant rate: this
is Kepler’s Second Law. Now integrate (3.1) over one period T of the planet, noting that the
area then swept by the planet is the area πab of its elliptical orbit:

πab =

∫ πab

0
dA =

∫ T

0

dA

dt
dt =

∫ T

0

h

2
dt =

hT

2
. (3.2)

It follows that T = 2πab/h. Squaring this equation and eliminating b and h by using b = a
√

1− e2

and h =
√
µp =

√
µa(1− e2) produces Kepler’s Third Law:

T 2 =
4π2

G(M +m)
a3 . (3.3)

Each planet’s mass is much less than that of the Sun, so (3.3) becomes T 2 ∝ a3 with a constant
of proportionality that is approximately the same for all the planets, as found empirically by
Kepler. We’ve extracted Kepler’s three laws from Newton’s theory of gravity, and indeed
this was the major early success of, and support for, Newton’s work. Kepler is often seen
as having lived in the mediaeval era “BN” (“Before Newton”), but Kepler himself came very
close to deducing the law of gravitation and creating the subject of calculus, and it was
very much partly on his shoulders that Newton stood. In fact, Newton was criticised by his
contemporaries for not giving Kepler his due in this regard [10].

4 Introducing a Time Dependence

Equation (3.1) re-introduced time into the description of the planet’s orbit, after we had
temporarily replaced t by θ just before (2.13). The increase in swept area with time is
traditionally described in more detail by introducing a new angle. Because the ellipse satisfies
X2/a2 + Y 2/b2 = 1, this new angle E can be defined such that

sinE ≡ Y

b
=
r sin θ

b
, cosE ≡ X

a
=
ae+ r cos θ

a
. (4.1)

6
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The parameter E is called the planet’s eccentric anomaly, and is the angle from the X axis to
the red line drawn from theXY origin in Figure 2. A few lines of algebra yield r = a(1− e cosE),
which together with (4.1) means that from E we can extract the planet’s polar coordin-
ates (r, θ). But how does E depend on time? Recall the usual relations xop = r cos θ and
yop = r sin θ; then with E expressed in radians, it follows that

xop = a cosE − ae , yop = b sinE ,

ẋop = −aĖ sinE , ẏop = bĖ cosE . (4.2)

Now remember from (2.12) that h is the zop component of r × v; also, because in the full
three-dimensional OP coordinates we can write

[r × v]op = (xop, yop, 0)× (ẋop, ẏop, 0)

= (0, 0, xopẏop − ẋopyop) , (4.3)

it follows that h = xopẏop − ẋopyop. By substituting from (4.2) into this last expression for h,
we rewrite h in terms of E; then equating with h = 2πab/T from (3.2) produces

Ė (1− e cosE) = 2π/T , (4.4)

which can be written as
(1− e cosE) dE = 2π dt/T . (4.5)

Integrating this equation from t = tperi when the planet is at its perifocus (where θ and E are
both zero), we arrive at the celebrated Kepler’s equation for the time evolution of E:

E − e sinE = 2π(t− tperi)/T . (4.6)

(Remember, E must be expressed in radians when using (4.6), even though we are free to
write it as a number of degrees when not using that equation.) Kepler’s equation tells us how
the planet moves along its orbit. The quantity E − e sinE clearly increases uniformly with
time from 0 to 2π over one period, which gives rise to its name the mean anomaly M :

M ≡ E − e sinE . (4.7)

Kepler’s equation (4.6) can then be written simply as

dM/dt = 2π/T . (4.8)

All three anomalies—true θ, eccentric E, and meanM—start at 0 at the perifocus and reach 2π
one period later; but they advance at different rates, and only M advances uniformly, which
is precisely why M exists and why it’s useful. Unlike θ and E, the mean anomaly M has no
geometric interpretation; being simply shorthand for E − e sinE, it is not “natively” an angle
any more than sinE is an angle. But because M increases uniformly from 0 to 2π over one
period, it can be treated as the angle traced by a point orbiting the Sun (or indeed any other
centre) at constant speed in a circle. So in that sense the mean anomaly fulfills the dream of
the ancients: to reduce a planet’s motion to constant speed in one circle! [11]

As a side note on Kepler’s Second Law, because both the mean anomaly M and the swept
area A increase at constant rates as the planet moves from its perifocus at time zero, the
relative swept area A/(πab) must equal M/(2π).
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As an example of solving Kepler’s equation, we calculate how far advanced a planet is
from perifocus (i.e. the value of θ, the true anomaly) after a quarter period for an orbit of
eccentricity e = 0.1. The answer is not 90◦—that’s the mean anomaly! Instead, begin by
solving (4.6) for t− tperi = T/4, taking care to use radians when solving Kepler’s equation:

E − 0.1 sinE = π/2 . (4.9)

For ellipses (e < 1), Kepler’s equation is always easily solved by writing it, or (4.9) in this
case, as

E = 0.1 sinE + π/2 , (4.10)

which is then iterated from an initial guess of E that suffices always to be zero: that is,
begin by setting E = 0 in the right-hand side of (4.10) and repeatedly recalculating E using
the same equation, inserting the latest value of E into the right-hand side on each iteration.
Remember to work in radians! After just 4 iterations here the value of E converges to 1.6703,
or about 95.7◦. Now (4.1) gives sin θ and cos θ:

sin θ =
a

r

√
1− e2 sinE ' 0.990

a

r
, cos θ =

a

r
(cosE − e) ' −0.199

a

r
. (4.11)

The unknown positive number a/r cancels if we calculate tan θ, and θ is clearly in the second
quadrant. It follows that θ = 101.4◦ [12]. To summarise, for this eccentricity of e = 0.1, after
a quarter period the three anomalies are

M = 90◦, E ' 95.7◦, θ ' 101.4◦. (4.12)

As an aside, we’ve found the planet’s position, but what is its velocity? This velocity v = ṙ
is already known in OP coordinates from (4.2):

[v]op = (ẋop, ẏop, 0) = Ė (−a sinE, b cosE, 0) , (4.13)

so with Ė given by (4.4), the velocity’s OP coordinates are

[v]op =
2π(−a sinE, b cosE, 0)

T (1− e cosE)
. (4.14)

Another useful equation results if we form the dot product of (2.3) with 2ṙ. An integration
and some manipulations lead to the vis-viva equation that relates the planet’s speed v (relative
to the Sun) to its current distance r from the primary:

v2 = µ

(
2

r
− 1

a

)
. (4.15)

The vis-viva equation applies generally to elliptical orbits and doesn’t require M � m. In fact,
with an appropriate definition of a it holds for all conic-section motion. It’s used extensively
in the art of manoeuvring spacecraft because it specifies where a craft should switch from one
orbit to another, even if one or both of these orbits is unbounded. In the case of a circular
orbit and M � m, it reduces to the well-known v2 = GM/r.

8
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4.1 The Use of One Global Time Variable

Knowing how a planet moves, we wish to locate it at some given time; and for this, a single
global time variable t is a necessity. We will use Greenwich Mean Time (GMT) [13], but
instead of using a 24-hour clock that resets to zero each midnight, we measure t in days
(including any fraction) from a date far in the past and never reset it. The number of days
elapsed since this remote starting moment is known as the julian day (JD)—no relation to
the julian date, which is simply a date in the julian calendar. The JD is a single real-number
way of expressing GMT and so, like GMT, defines a global instant [14].

The remote epoch of julian day zero is 12:00 noon GMT on an arbitrary date chosen far in
the past purely so as to render julian days conveniently positive throughout recorded history.
The date chosen in the julian scheme was 1st January 4713 BC in the proleptic julian calendar,
which is an idealised “well-behaved” version of the historical julian calendar—that is, without
the sporadic changes in the decreed lengths of certain months that occurred in the historical
julian calendar in Roman times. This start moment is related to a confluence of astronomical
cycles and the tax/census cycle of ancient Rome, and has no historical significance. In the
gregorian calendar, this start moment was 12:00 noon GMT on 24th November 4714 BC [15].

The JD is a real number, so typically is specified to several decimal places. A standard
algorithm to convert a“year, month, day, hour, minute, second”to a julian day is the following,
in which the “floor” function returns the largest integer less than its argument. Set

a = floor[(14−month)/12] ,

y = year + 4800− a ,
m = month + 12a− 3 . (4.16)

Then with “H,M,S” = hour, minute, second, a date expressed in the (proleptic) julian cal-
endar has a julian day of

JD = day + floor[(153m+ 2)/5] + 365y + floor(y/4)

− 32,083 + (H − 12 +M/60 + S/3600)/24 . (4.17)

A date in the gregorian calendar has a julian day of

JD = day + floor[(153m+ 2)/5] + 365y + floor(y/4)

− floor(y/100) + floor(y/400)− 32,045

+ (H − 12 +M/60 + S/3600)/24 . (4.18)

As an example, apply (4.16) and (4.18) to find the JD for the gregorian date 12:00 noon
GMT, 1st January 2000 (sometimes referred to as 1.5 January); you’ll find the result is ex-
actly 2,451,545. You can verify that number by counting the days from first principles, being
careful to remember that the year after 1 BC is AD 1: so 4713 BC is AD −4712, a leap year.

This well-defined time variable t can now be used with the results of the previous sections
to compute the planet’s motion. An epoch t0 is specified; this is any moment that astronomers
agree to work from, usually not far in the past. The position of the planet at t0 has been
measured by astronomers and is specified as part of the set of parameters that describe the
planet’s orbit. We ask for the planet’s position at time t; the answer will depend wholly
on t− t0. An easy way to compute the time t− t0 elapsed since the epoch is to convert t0
and t to julian days JD(t0) and JD(t). The time difference t− t0 is then just JD(t)− JD(t0)
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xsci

ysci

zsci

Sun

Ecliptic plane

xeci

yeci

zeci

τ
Earth

North Pole

25,770 years

Figure 3: Relative positioning of Sun-Centred Inertial coordinates SCI and Earth-Centred In-
ertial coordinates. The two directions marked with the short single lines are the
same, as are the pair marked with the short double lines. Both xsci and xeci point
to the First Point of Aries “ ”, defined in Figure 4 and in the text. Earth tilts away
from zsci by its “polar tilt” τ ' 23.439◦. The small blue circle next to zeci shows the
direction of Earth’s precession about the direction of zsci.

“civilian days”, where by a civilian day we mean normally exactly 24 hours; but if we require
one-second accuracy, all leap seconds need to be taken into account too. We’ll ignore leap
seconds in this report.

Our constantly changing galaxy makes it impossible to predict arbitrarily far into the future
and past, of course. You can think of the prediction of a planet’s position at time t as a zeroth-
or sometimes first-order Taylor expansion about its measured position at t0. We will assume
that most parameters don’t change with time, and will only use their first derivatives when
necessary.

5 The Earth-Centred and Sun-Centred

Inertial Frames

Describing planetary motion on the scale of the Solar System requires a choice of frames and
coordinates [16]. Two useful inertial frames quantified by cartesian coordinates are shown in
Figure 3. To a high precision their coordinate axes are unchanging, pointing to almost fixed
points on the celestial sphere. The axes of the Sun-Centred Inertial (SCI) frame xsci, ysci, zsci
originate at the Sun. Earth’s orbit defines the xsciysci plane (the ecliptic plane), and Earth
orbits right handed about the zsci axis.

The coordinate axes of the Earth-Centred Inertial (ECI) frame xeci, yeci, zeci originate at
Earth’s centre. The zeci axis is Earth’s spin axis pointing out of our North Pole. The xeci axis
is parallel to the xsci axis, and the yeci axis completes the right-handed set. Note that Figure 3
deliberately shows Earth with no detail, to emphasise that the ECI axes bear no relation to
Earth’s surface features such as its countries.

The axes of the Sun-Centred Inertial frame are shown in more detail in Figure 4. The red–

10
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xsci

ysci

zsci

September equinox

December solstice

March equinox

June solstice

Perihelion

Figure 4: Earth’s orbit about the Sun, showing how all axes are defined. Earth carries its ECI
axes almost without changing their orientation relative to the stars, apart from the
slow change due to Earth’s precession and nutation.

green–blue axes in Figures 3 and 4 are the same set: ECI.

Earth’s polar axis zeci can be treated as a vector with a projection onto the ecliptic plane.
This projection is drawn as the long dashed arrow in Figure 4; its length has been increased
for clarity, but is otherwise irrelevant. Throughout the year this projection vector makes
an angle with the Sun-to-Earth vector that varies from 0◦ to 360◦. The angle is 0◦ in late
December at a precise moment called the December solstice, when southern daylight is at its
longest [17]. At the precise moment of the March equinox, again by definition, the angle has
increased to 90◦. At the June solstice it is 180◦, and at the September equinox it is 270◦.
These key moments of time in Earth’s orbit are defined by Earth’s tilt, and so have nothing
to do with the orbit’s major and minor axes. Earth reaches perihelion in early January, when
the Sun is 5 million km closer to us than it is in early July. The Sun’s closeness in January
makes its apparent area 7% bigger then, than in July.

These four instants in the year, two solstices and two equinoxes, are separated by 90◦ of
true anomaly θ; they are not separated by 90◦ of mean anomaly M , and so are not spaced
exactly 3 months apart. But the eccentricity of Earth’s orbit is low enough that they are
spaced almost 3 months apart.

The xsci (equivalently, xeci) axis is defined to lie along the Sun-to-Earth vector at the
moment of the September equinox. This axis has a “vanishing point” in the sky which lies, by
construction, on the celestial equator, being the projection of Earth’s equatorial plane into the
sky. This vanishing point is called the First Point of Aries, denoted , the most important
celestial measurement reference used by astronomers [18]. Why Aries? The vanishing point
is almost fixed in the sky, but precession rotates Earth’s spin axis zeci left handed about zsci
once every 25,770 years, making the direction of xsci (and xeci) change by 360◦ over this
period [19]. The First Point thus moves slowly westward through the zodiacal constellations
when viewed from Earth. In around 2000 BC the First Point moved from Taurus into Aries,
and its name presumably derives from astrology. Precession has since carried it into Pisces,
but it has kept its old name. Over the next few centuries the First Point will move into
Aquarius, an event of astrological significance that spawned the catchy 1960s pop song “The
[Dawning of the] Age of Aquarius”.

UNCLASSIFIED
11



DST-Group–TN–1594

UNCLASSIFIED

xecef

yecef

zecef = zeci

xeci

zecef = zeci

xecef

Greenwich sidereal angle

Figure 5: Left: axes of the Earth-Centred Earth-Fixed frame are rigidly fixed to Earth’s body
in precisely the positions drawn. The xecef axis is located at the longitude of Green-
wich. Right: at any moment, the amount by which Greenwich has turned past the
First Point of Aries (xeci) is the “Greenwich sidereal angle”.

6 The ECEF and Sidereal Angle

The xsci and ysci axes slowly rotate as Earth precesses, but we can freeze the positions of
those axes at some epoch and retain those positions for all future times of interest. When we
run time forward or backward from that epoch to some requested moment of viewing the sky,
these epoch SCI axes remain fixed by definition. Like these axes, the Earth-Centred Inertial
axes xeci, yeci, zeci remain almost fixed in space over time spans much less than 25,770 years.
But we will certainly include the effect of precession by rotating Earth through the required
angle within the “frozen” SCI frame.

Another frame of use—this one non-inertial—is the Earth-Centred Earth-Fixed (ECEF)
frame, with cartesian coordinates shown in Figure 5. The ECEF’s axes are fixed to Earth; the
xecef axis points from Earth’s centre through 0◦ latitude/0◦ longitude, the zecef axis coincides
with the zeci axis (Earth’s spin axis), and yecef completes the set. Earth’s spin within the
Earth-Centred Inertial frame manifests as the ever-increasing angle between the “fixed” xeci
axis (pointing to ) and “rotating” xecef axis (at the longitude of Greenwich). This angle in
Earth’s equatorial plane is the Greenwich sidereal angle, and increases by 360◦ in the time it
takes Earth to rotate once with respect to the distant stars, being one sidereal day, a period
of 23 hours, 56 minutes, 4.09890 seconds [20].

Similar to the Greenwich sidereal angle, at any given moment the local sidereal angle of, say,
Adelaide is the angle in Earth’s equatorial plane from the xeci axis to Adelaide’s meridian (its
great circle of longitude): this is just the Greenwich sidereal angle plus Adelaide’s longitude.
Knowing the current local sidereal angle equates to knowing our current orientation relative
to the fixed stars, which allows us to determine where planets and stars will be seen in our
sky right now.

To find the current local sidereal angle we need a start point; this is always the Green-
wich sidereal angle at some epoch for which that angle has been measured to high preci-
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sion. A standard epoch used here is “J2000.0” which uses the date mentioned in Section 4.1:
12:00 GMT 1st January 2000, at which moment the Greenwich sidereal angle—the angle in
Earth’s equatorial plane through which Earth’s zero meridian had turned past the direction
to the First Point of Aries—happened to be 280.46062◦. (Remember that the Greenwich
sidereal angle at time t is a unique number independent of epoch; but to calculate it we must
start somewhere: we must surely begin with an epoch for which we know the angle’s value
accurately.)

As an example, what is the sidereal angle of Adelaide at local (daylight savings) time
9:00 p.m. on 22nd March 2014? We simply add three angles modulo 360◦. Begin at the J2000.0
epoch when the Greenwich angle was 280.46◦, rotate Earth (and hence Greenwich) from
the epoch to the current time through the second angle, and then add Adelaide’s longitude
of 138.60◦. The time through which we must rotate Earth is the requested time minus the
epoch. Work in GMT: convert Adelaide’s time to 10:30 a.m. GMT 22nd March 2014, then
use (4.16) and (4.18) to find that this is JD 2,456,738.9375. The time elapsed since the
J2000.0 epoch is this JD minus 2,451,545, or 5193.9375 days. The angle turned through by
Earth relative to the First Point (modulo 360◦) since the epoch is then its hourly rate times
the number of hours elapsed:

360◦

23 h 56 m 4.09890 s
× 5193.9375× 24 h ' 56.71◦. (6.1)

So the sidereal angle of Adelaide at local time 9:00 p.m. on 22nd March 2014 is

280.46◦

angle at epoch

+ 56.71◦

Earth turned

Greenwich sidereal angle

+ 138.60◦

Adelaide’s longitude

= 115.77◦ (modulo 360◦ of course). (6.2)

At this time the First Point of Aries lies 115.77◦ west of the Adelaide meridian, measured along
the celestial equator. Similarly, at any time and place on Earth the local sidereal angle is really
just a measure of where we see the stars to be. As the stars wheel about the celestial poles,
any one of them can be visualised as being at the end of a giant clock hand that turns through
360◦ in the above 23-56-4.09890 hours. This is probably what has prompted astronomers to
call the sidereal angle the sidereal time. With this name, the angle is usually specified in
hours/minutes/seconds, where 24 such angular hours are defined to be exactly 360◦; that
is, 24 sidereal hours of angle are turned through by Earth relative to the inertial stars in
the above 23-56-4.09890 civil time hours. My view is that the name “sidereal time” is an
unfortunate choice for something that is simply an angle and is always used geometrically;
the fact that the spinning Earth acts like a giant clock does not call for a new unit of time.
Also, the use of a time unit to measure this angle is unfortunate because a sidereal hour has
no useful relation to a civil hour of 3600 seconds, and even when “sidereal time” is quoted
in hours/minutes/seconds, it still denotes an angle, not a real time. In this report, “time”
denotes real time and “angle” denotes angle, and all hours are the only sort that I maintain
should exist: civil time hours, the sort that clocks and wrist watches measure [21].

On a related note, if you prefer using degrees instead of radians, do write your angles as one
decimal number of degrees. Just like pounds–shillings–pence, expressing angles in base 60 as
degrees–minutes–seconds is an old but clunky practice, one that only obfuscates calculations.
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Figure 6: The elements describing an orbit’s orientation relative to a reference plane such as
the ecliptic

7 Orbital Elements

Having located a planet within its orbit at some requested time, we must now place the orbit
in its correct orientation within the Solar System. The orbit is typically described by three
angles shown in Figure 6 that refer it to some convenient plane such as the ecliptic. The
point where the planet crosses the ecliptic plane in the direction of increasing zsci is called
its ascending node, denoted . Two angles, the orbital inclination i and the longitude of
the ascending node Ω locate the orbit plane relative to the ecliptic, and a third angle, the
argument of the perifocus ω, locates the perifocus. A fourth angle (one of the “anomalies”,
usually M) specifies the planet’s position in its orbit at some epoch t0, which need not be the
same as the epoch used above for calculating sidereal angle. Together with the semi-major
axis length a and eccentricity e, these angles i,Ω, ω, and M0 = M(t0) comprise a set of six
parameters that fully describe an orbit and where the planet is located in it at the epoch t0.
They are determined from observations by astronomers, and we’ll take them as given. Their
first derivatives are also available, so that whereas we’ll obtain enough precision by taking
e.g. Ω to be constant for each planet, we could also use Ω(t) ' Ω(t0) + Ω̇(t0)(t− t0) for higher
precision. Remember that the longitude Ω for planets orbiting the Sun is an angle in the
ecliptic plane xsci ysci, measured east of the First Point of Aries—as opposed to the everyday
terrestrial longitude of world cities, which is measured east of the Greenwich meridian in
Earth’s equatorial plane xecef yecef.

Note the three words that all denote an angle here: longitude, argument, anomaly. Perhaps
these words date back to those maritime practices of old referred to earlier. And perhaps
it’s those same die-hard practices that have caused ω and M0 to be sometimes scrambled
mathematically, and pointlessly. A “longitude of perifocus” is defined as Ω + ω, which makes
no mathematical sense because Ω and ω lie in different planes. (It is meaningless to add angles
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in different planes because the sum retains no information on the contribution from each plane,
and so can’t distinguish between different geometrical situations. That is, an orbit described
by Ω = 50◦ and ω = 20◦ is quite different to an orbit described by Ω = 40◦ and ω = 30◦.)
Also a “mean longitude” is defined as Ω + ω +M0, a doubly meaningless quantity because it
adds a mean anomaly, which is not even an angle that relates directly to the planet’s position!
Despite their names, neither of these two bizarre sums are angles, and they are only ever used
as a kind of secret code requiring decoding with a “key” Ω, which is always given and is used
to extract ω along with M0:

ω = long. of perifocus− Ω ,

M0 = mean longitude− long. of perifocus. (7.1)

I won’t dignify the longitude of perifocus and mean longitude with mathematical symbols,
and I wish celestial navigators would stop using these mis-defined and mis-named quantities.
These two parameters have no use other than to require decrypting to produce the actual
parameters needed, ω and M0 via (7.1). Aside from their lack of mathematical meaning, they
simplify nothing, neither in computation nor in understanding the subject. The longitude of
perifocus and mean longitude are sometimes argued for on a supposed non-definition of ω for
circular orbits (which have no perifocus) or Ω for equatorial orbits (which have no ascending
node). But the line of mathematical reasoning that constructs an orbit does so by starting
with a conic section and referring it to xop, yop, zop axes—which can certainly be done even
for a circular orbit with its absence of perifocus. These axes then define ω. Also, whilst an
equatorial orbit has no ascending node, it can still be given a value of Ω, in fact any value,
since Ω serves only to describe how the orbit is orientated. In such a case the sum Ω + ω is
well defined because Ω and ω are in the same plane, and increasing the choice of Ω by, say,
1◦ must be offset by decreasing the choice of ω by 1◦. So only in that case of an equatorial
orbit does Ω + ω have any meaning—but it is not needed there.

Whether the longitude of perifocus and mean longitude have ever prevented a ship’s mutiny
might never be known. But those days are long gone, and I think the two quantities should
now be relegated to the history of orbital mechanics [22].

8 Relating Coordinate Systems

We will need various cartesian coordinate systems to locate a planet in our night sky. Al-
though the following calculations can easily be combined in a way that enables some of these
coordinates to be omitted, it’s advantageous to employ more coordinate systems than are
strictly necessary, as a way of separating the calculations into manageable steps.

First, orbit-plane coordinates centred on the Sun describe the planet’s motion most simply:
the planet moves right handed about zop in the xop yop plane with polar coordinates r, θ. The
perifocus lies on the positive xop axis. Take careful note that orbit-plane coordinates are
planet dependent, so we write e.g. xopj for Jupiter and xope for Earth.

Next, Sun-Centred Inertial coordinates SCI describe the unchanging “global” Solar System
frame, also centred on the Sun, discussed in Section 5. Local coordinates such as “east–north–
up” (ENU) are centered on the Earth observer, and are easily converted to local bearing
and elevation. We could use just these coordinate sets, but will also employ ECI and ECEF
coordinates as intermediate steps.

UNCLASSIFIED
15



DST-Group–TN–1594

UNCLASSIFIED

Here is a very useful way to keep track and make sense of the various vectors and their
coordinates within these systems. First, remember that a position is always specified relative
to some point. To sight Jupiter J from Adelaide A, we require the position vector rJA of
Jupiter relative to Adelaide. The orbital parameters for Jupiter will give us the position of
Jupiter rJS relative to the Sun S, and the position rES of Earth’s centre E relative to the Sun.
Although it isn’t necessary for a calculation involving Jupiter, we will carefully distinguish
Earth’s centre from the location of Adelaide, so will require the position of Adelaide rAE
relative to Earth’s centre. This last vector is really quite negligible, but we include it to
show how the various pieces of the jigsaw fit together. (For sighting Jupiter from Adelaide,
the angular error caused by omitting rAE is quickly estimated as Earth’s radius divided
by Jupiter’s distance from the Sun, or approximately 6400 km/(780 million km), or about
0.0005◦.)

The above vectors are related via

rJA = rJS + rSE + rEA

= rJS − rES − rAE . (8.1)

Notice that no numbers are present in (8.1): it holds independently of any coordinate choice.
rJA is a proper vector, an arrow, but it has coordinates in any coordinate system C that
we choose. These numbers form a 3-element coordinate vector [rJE ]C , which we write as a
column of numbers, useful later for multiplying it by a matrix. This notation was introduced
in Section 2.

Our central task is to relate the coordinates of rJE in any two different cartesian coordinate
systems C and C ′. That is, given the C-coordinates [v]C of some vector v, what are its C ′-
coordinates [v]C′? The following analysis is a standard technique of linear algebra, but is
included here for completeness. The use of just two dimensions here saves space, but the
same results apply in three dimensions.

Write the unit basis vectors of C as ux,uy and the unit basis vectors of C ′ as ux′ ,uy′ . The
following procedure demands each set of basis vectors to be orthonormal, meaning its vectors
have unit length and are mutually orthogonal. Starting with

v = vxux + vyuy = vx′ux′ + vy′uy′ , (8.2)

the relevant coordinate vectors of v are

[v]C =

[
vx
vy

]
=

[
v ·ux
v ·uy

]
, [v]C′ =

[
vx′
vy′

]
=

[
v ·ux′
v ·uy′

]
. (8.3)

Now consider

[v]C′ =

[
v ·ux′
v ·uy′

]
=

[(
vxux + vyuy

)
·ux′(

vxux + vyuy
)
·uy′

]

=

[
ux ·ux′ uy ·ux′
ux ·uy′ uy ·uy′

] [
vx
vy

]
≡ µCC′ [v]C . (8.4)

That is, the matrix µC
C′

transforms coordinates from C to C ′:

[v]C′ = µCC′ [v]C , (8.5)

16
UNCLASSIFIED



UNCLASSIFIED
DST-Group–TN–1594

where (8.4) shows that the columns of µC
C′

are the basis vectors of C expressed in C ′ coordin-
ates:

µCC′ ≡
[

[ux]C′ [uy]C′
]
. (8.6)

We will use the idea of (8.6) to construct the necessary µ matrices ahead [23]. Equivalently,
(8.4) shows that the rows of µC

C′
are the basis vectors of C ′ expressed in C coordinates. From

this, it’s not hard to see that µC
′

C is both the transpose and the inverse of µC
C′

:

µC
′

C =
(
µCC′
)t

=
(
µCC′
)−1

. (8.7)

So a µ matrix is inverted by transposing it. These matrices allow a switch between any
coordinates that we prefer to use. They can be “chained” together; for example, with three
coordinate systems:

[v]A = µBA [v]B = µBA µ
C
B [v]C ≡ µCA [v]C , (8.8)

showing that µCA = µBA µ
C
B. The extension to more coordinate systems is immediate, so that

for coordinate systems A,B, . . . , Y, Z,

µZA = µBA µ
C
B µ

D
C . . . µZY . (8.9)

Calculating a µ matrix presents a slight complication: the approach that might be con-
sidered as intuitive requires more calculation than is needed by a particular less intuitive
approach. Fortunately we can always convert each of these approaches to the other, depend-
ing on whether we seek more intuition or more mathematical simplicity (which equates to
computational speed here). As an example, use (8.6) as a guide to calculate µopsci, which
converts orbit-plane coordinates to Sun-Centred Inertial coordinates:

µopsci =
[

[uxop ]sci [uyop ]sci [uzop ]sci

]
. (8.10)

Before we describe the rotations, it helps the visualisation to realise that a proper vector
connecting two well-defined points is not tied to the origin of any set of coordinates; you can
translate that vector anywhere at all if that helps you to visualise what we are doing. So to
picture a rotation through some angle, imagine the vectors as moving over the surface of a
sphere through that angle, all the while being rigidly embedded in the local tangent plane to
the sphere’s surface; this is richer than simply imagining them to be rotating with their tails
anchored to some point on the rotation axis. When the rotations involve latitude/longitude,
you can also picture the vectors moving over Earth’s surface along small or great circles, while
being rigidly embedded in the surface’s tangent plane; although Earth isn’t quite spherical,
the commonly used definition of latitude, geodetic, ensures that moving a vector in this way
along a meridian between two latitudes will rotate it correctly through the angular difference
of the latitudes; for example, this is why equation (8.26) ahead is exact.

Referring to Figure 6, imagine taking copies of the SCI basis vectors uxsci ,uysci ,uzsci and
rotating these copies through the angles i,Ω, ω to become the orbit-plane set uxop ,uyop ,uzop .
(Remember that all rotations are right handed unless otherwise stated.) Take care to get
the rotation order right, because two rotations cannot generally be swapped. Picture the
sequence carefully [24]: first rotate each copy of uxsci ,uysci ,uzsci around zsci by Ω, then rotate
the results around the rotated version of uxsci by i, and finally rotate the results around the
doubly rotated version of uzsci by ω, producing uxop ,uyop ,uzop . Write this procedure as

{uxsci ,uysci ,uzsci} → RΩ
zsci
→ Ri〈xsci〉→ Rω〈zsci〉

→ {uxop ,uyop ,uzop} , (8.11)
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where RΩ
zsci

means “rotate about zsci (or uzsci) by Ω”, and 〈xsci〉 denotes the latest-rotated
copy of the xsci basis vector.

This procedure is easy to visualise, but requires the carried-along axes to be calculated
because we are to rotate around them. That’s not difficult to do, but much easier and much
faster computationally is to realise that the rotations can be done around the original SCI
axes/basis vectors only: first rotate the copies of uxsci ,uysci ,uzsci around zsci by ω, then rotate
the results around xsci by i, and finally rotate the results around zsci by Ω:

{uxsci ,uysci ,uzsci} → Rωzsci → Rixsci → RΩ
zsci

→ {uxop ,uyop ,uzop} . (8.12)

This last description is perhaps not so intuitively obvious as the first one in (8.11). Compare
(8.11) and (8.12): equation (8.12) reverses the order of the angles rotated through in (8.11)
while changing the sense of its rotation axes from “copies carried along” to “fixed originals”.
It’s quite easy to show that this reversal can always be done for any number of rotations,
even if the rotation axes are not mutually perpendicular. This apparently nameless theorem
simplifies many calculations in orientational analysis but, surprisingly, is not well known.
Reference [25] discusses it in detail.

Rotating a proper vector about an x axis though angle θ is accomplished by multiplying
its coordinate vector by the Euler matrix Eθ1 , and similarly for rotations about the y and
z axes [26]:

Eθ1 =

[
1 0 0
0 cos θ −sin θ
0 sin θ cos θ

]
, Eθ2 =

[
cos θ 0 sin θ

0 1 0
−sin θ 0 cos θ

]
, Eθ3 =

[
cos θ −sin θ 0
sin θ cos θ 0

0 0 1

]
. (8.13)

Recall that we are calculating µopsci as an example of the method of constructing these µmatrices.
Refer now to (8.10) and realise that each column of µopsci is one of the OP basis vectors ex-
pressed in SCI coordinates. So follow the procedure of (8.12) to construct the OP basis
vectors, all the while working in SCI coordinates. Three rotations are required, carried out
by three matrix multiplications (note the correct order!):

[uxop ]sci = EΩ
3 E

i
1E

ω
3

[
1
0
0

]
, [uyop ]sci = EΩ

3 E
i
1E

ω
3

[
0
1
0

]
,

[uzop ]sci = EΩ
3 E

i
1E

ω
3

[
0
0
1

]
, (8.14)

from which matrix block multiplication makes it apparent that

µopsci =
[

[uxop ]sci [uyop ]sci [uzop ]sci

]
= EΩ

3 E
i
1E

ω
3

[
1 0 0
0 1 0
0 0 1

]
= EΩ

3 E
i
1E

ω
3 . (8.15)

8.1 Combining the Various Coordinate Systems

The bearing and elevation of Jupiter in Adelaide’s sky [27] can easily be derived from the
ENU coordinates of the position vector of Jupiter relative to Adelaide, so we require to
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calculate [rJA]enu by using (8.1):

[rJA]enu = [rJS − rES − rAE ]enu

= µopjenu [rJS ]opj − µopeenu [rES ]ope − µecefenu [rAE ]ecef , (8.16)

where opj denotes the orbit-plane coordinate system of Jupiter and ope is likewise for Earth.
Equation (4.2) gives [rJS ]opj and [rES ]ope, where each of these are the transpose of (xop, yop, 0)
in that equation, with xop, yop calculated in each instance from the orbital parameters of
Jupiter and Earth respectively. The latitude/longitude of Adelaide suffice to give [rAE ]ecef.

Here are the details of calculating the three coordinate vectors in (8.16). Jupiter’s orbital
elements are a, e, i,Ω, ω,M0 at some epoch t0. Calculate the semi-minor axis length b from a
and e using the expression in the text just after (3.2). Calculate Jupiter’s period T from (3.3).
Convert the epoch time t0 to a JD, and do likewise for the requested time t to find t− t0.
Then evolve the mean anomaly using Kepler’s equation (4.6), written as

M = M0 + 2π(t− t0)/T , (8.17)

remembering to replace the 2π by 360◦ if you are working in degrees. Produce E by solving
E − e sinE = M (being careful to use radians here). Now invoke (4.2) to write

[rJS ]opj =

xopjyopj
0

 =

 a(cosE − e)
b sinE

0

 . (8.18)

The same calculation using Earth’s orbital elements produces [rES ]ope. A reasonably ac-
curate version of the position vector of a city (say, Adelaide) relative to Earth’s centre in
ECEF coordinates is given by

[rAE ]ecef = R

 cosλ cosφ
cosλ sinφ

sinλ

 , (8.19)

where that city has latitude λ and longitude φ, and Earth is assumed spherical with radius R.
This is sufficient for producing Jupiter’s sight direction from Adelaide, but a more accurate
expression is needed for working with satellites that orbit Earth. This more accurate version
models Earth as an oblate spheroid using the WGS-84 set of Earth dimensions. Write Earth’s
spheroidal radii as

equatorial: a = 6,378,137 m , polar: b = 6,356,752.3142 m. (8.20)

Location A lies at latitude λ, longitude φ, and height h above the WGS-84 spheroid (that is,
h is approximate height above mean sea level). Write

k ≡
√
a2 cos2 λ+ b2 sin2 λ . (8.21)

Then A has a position relative to Earth’s centre of

[rAE ]ecef =

(a2/k + h) cosλ cosφ
(a2/k + h) cosλ sinφ
(b2/k + h) sinλ

 . (8.22)
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xecef

yecef

zecef

xenu= east

yenu= north

zenu= up

Figure 7: Relative orientations of the ecef and enu axes. The colours of the ecef axes here
match those in Figure 5.

The transformation matrices in (8.16), µopjenu, µ
ope
enu, and µecefenu , can each be calculated with

one sequence of rotations, but for clarity and to avoid duplication of effort, we will break the
calculation of µopjenu and µopeenu into several steps. These two matrices are just the two neces-
sary instances of the generic matrix µopxenu that converts orbit-plane coordinates for planet X
(meaning Jupiter or Earth) to enu. Write

µopxenu = µecefenu µeciecef µ
sci
eci µ

opx
sci , (8.23)

and calculate each of the transformation matrices on the right-hand side of (8.23). Taken as a
group, these calculations convert the coordinate systems step-by-step in the following chain:

op −→ sci −→ eci −→ ecef −→ enu

Figure 6

Figure 3

Figure 5

Figure 7

Calculate µecefenu :

µecefenu =
[

[uxecef ]enu [uyecef ]enu [uzecef ]enu

]
. (8.24)

We’ll find it easier to calculate the transpose of µecefenu , which is µenuecef:

µenuecef =
[

[uxenu ]ecef [uyenu ]ecef [uzenu ]ecef

]
. (8.25)

Relative orientations of the ecef and enu axes are shown in Figure 7. The ENU coordinates
have their origin at Adelaide, at latitude λ, longitude φ. The sequence of rotations that takes
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copies of the ENU basis vectors and rotates them to becomes ECEF basis vectors is (noting
carefully the initial order)

{uyecef ,uzecef ,uxecef} → R−λyecef → Rφzecef → {uxenu ,uyenu ,uzenu} . (8.26)

(Or imagine rotating with Rφzecef then R−λ〈yecef〉
, then apply the pseudo-reversing theorem.)

Recall the earlier comment that even though Earth isn’t quite spherical, the fact that we are
using geodetic latitude ensures that (8.26) is exact.

Working in ECEF coordinates, (8.25) becomes

µenuecef = Rφzecef R
−λ
yecef

[
0 0 1
1 0 0
0 1 0

]
= Eφ3 E

−λ
2

[
0 0 1
1 0 0
0 1 0

]
, (8.27)

and it follows that the sought-after transformation matrix is

µecefenu =
[

0 1 0
0 0 1
1 0 0

]
Eλ2 E

−φ
3 . (8.28)

Calculate µeciecef: Again work with the transpose. The ECEF axes are rotated from the
ECI axes by the Greenwich sidereal angle γ around the z axis shared by ECEF and ECI
coordinates, so

µecefeci =
[

[uxecef ]eci [uyecef ]eci [uzecef ]eci

]
= Rγzeci

[
1 0 0
0 1 0
0 0 1

]
= Eγ3 , (8.29)

and the required transformation matrix is

µeciecef = E−γ3 . (8.30)

Calculate µscieci: Again, calculate µecisci first:

µecisci =
[

[uxeci ]sci [uyeci ]sci [uzeci ]sci

]
. (8.31)

Referring to Figure 3, tilt Earth by rotating copies of the SCI basis vectors left-handed
around xsci by Earth’s tilt τ (i.e. right-handed by −τ), then rotate the resulting vectors left-
handed around the original zsci through the precession angle p = 360◦(t− t0)/25,770 years
(i.e. right handed by −p). The rotations are

{uxsci ,uysci ,uzsci} → R−τxsci → R−pzsci → {uxeci ,uyeci ,uzeci} , (8.32)

(or consider precession followed by tilt, and apply the pseudo-reversing theorem), so that

µecisci = R−pzsci R
−τ
xsci

[
1 0 0
0 1 0
0 0 1

]
= E−p3 E−τ1 . (8.33)

Now transpose to produce the required matrix:

µscieci = Eτ1 E
p
3 . (8.34)

Calculate µopxsci : This was obtained earlier in (8.15), where the Ω, i, ω in that equation are
those for planet X.
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We can avoid some duplication of effort by writing (8.23) as

µopxenu = µscienu

independent
of planet

µopxsci , (8.35)

and so use (8.28), (8.30), and (8.34) to write

µscienu = µecefenu µeciecef µ
sci
eci

=
[

0 1 0
0 0 1
1 0 0

]
Eλ2 E

−φ
3 E−γ3 Eτ1 E

p
3 . (8.36)

Also, from (8.15) (with subscripts J and E for Jupiter and Earth),

µopjsci = E
ΩJ
3 E

iJ
1 E

ωJ
3 , µopesci = E

ΩE
3 E

iE
1 E

ωE
3 . (8.37)

The sought-after coordinate vector of Jupiter relative to Adelaide in ENU coordinates [rJA]enu
can now be calculated from (8.16). Next, write the components of [rJA]enu as xenu, yenu, zenu,
and from these extract Jupiter’s bearing β (ground angle from north to east) and elevation ε
via

sinβ = xenu/D , cosβ = yenu/D , tan ε = zenu/D , (8.38)

where D ≡
√
xenu

2 + yenu
2 .

9 So Where is Jupiter?

We now combine everything with an example: in which direction must one look from an
Adelaide back yard to find Jupiter at 9:00 p.m. local (daylight savings) time on 22nd March
2014?

Begin by collecting the orbital elements for Jupiter and Earth; these can be found on the
Internet [28]. The elements used here apply to the J2000.0 epoch, and I have quoted a set
that uses the “longitude of perihelion” and “mean longitude” just to show how to deal with
these two strange and unnecessary parameters. Also, aside from the elements themselves, to
save space I will write most numbers below to two significant decimal places, but will use
more decimal places in the calculations.

Convert the requested date to GMT and then to a julian day, do the same for the epoch,
and you’ll find that the time elapsed since the epoch is 5193.9375 days: this is t− t0 in (8.17),
the duration for which we require to evolve the planet’s position from its initial position that
was given in its orbital elements. Do this by applying Kepler’s equation to Jupiter and Earth
in turn, as follows.

The Calculation for Jupiter

Referring to (8.16), calculate µopjenu from (8.35) and [rJS ]opj from Kepler’ theory, (8.18).
Jupiter’s mass and orbital elements are

mass = 1.8986× 1027 kg,

a = 5.203 363 01 AU, e = 0.048 392 66,

i = 1.305 30◦, Ω = 100.556 15◦,
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“long. of perihelion” = 14.753 85◦,

“mean longitude” = 34.404 38◦.
(9.1)

(The semi-major axis a is given in “astronomical units”, where 1 AU is Earth’s mean distance
from the sun, or 1.495 978 707× 1011 metres.) Without hesitation, apply (7.1) to decrypt and
delete the last two quantities in (9.1), replacing them with the meaningful parameters

ω = −85.80◦, M0 = 19.65◦. (9.2)

We use a value for the gravitational constant of G = 6.67384× 10−11 SI units. Convert the
semi-major axis length a to metres, then calculate the semi-minor axis length b = a

√
1− e2 .

Calculate Jupiter’s period T from (3.3), using a solar mass of M = 1.989× 1030 kg and
Jupiter’s mass m in (9.1): the result is T = 4332.8 days.

Apply (8.17) to evolve Jupiter’s mean anomaly at epoch, M0, to its value at the requested
time, M . (Don’t confuse this M with the Sun’s mass.) The result is M = 91.20◦. Solve
E − e sinE = M for Jupiter’s eccentric anomaly E at the requested time: E = 93.97◦ (use
radians in the calculation!). Apply (8.18) to find Jupiter’s position relative to the Sun in
Jupiter’s orbit-plane coordinates:

[rJS ]opj =

−0.91
7.76
0

× 1011 m. (9.3)

Now use (8.35)–(8.37) to calculate µopjenu. We need:

λ = −34.9◦ [Adelaide’s latitude], φ = 138.60◦ [Adelaide’s longitude],

γ = 280.46◦+ 56.71◦ [Greenwich sidereal angle (6.2)], τ = 23.439◦ [Earth’s tilt],

p =
360◦ × 5193.9375 days

25,770 years× 365.25 days/year
= 0.20◦ [Earth’s precession]. (9.4)

These give

µscienu
(8.36)
===

−0.90 −0.40 0.17
−0.25 0.80 0.55
−0.35 0.45 −0.82

 , µopjsci
(8.37)
===

 0.97 −0.25 0.022
0.25 0.97 0.0042

−0.023 0.0017 1.00

 . (9.5)

While not necessary to the main calculation, the position of Jupiter relative to the Sun in SCI
coordinates is

[rJS ]sci = µopjsci [rJS ]opj =

−2.86
7.27

0.034

× 1011 m. (9.6)

This coordinate vector suggests two short checks. First, the relative smallness of the third
element agrees with the fact that Jupiter’s orbit plane nearly coincides with that of Earth,
since Earth’s orbit plane defines SCI coordinates. Second, the length of [rJS ]sci is 5.2 AU,
which is approximately equal to the value of a in (9.1)—as expected, since Jupiter’s orbit has
a small eccentricity.

What we do need is the matrix µopjenu in (8.16): this is simply the product of the matrices
in (9.5) in the order listed. We’ve finished with Jupiter, and are halfway through the main
calculation.
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The Calculation for Earth

Repeat the above steps for Earth, using its mass and orbital elements

mass = 5.9736× 1024 kg,

a = 1.000 000 11 AU, e = 0.016 710 22,

i = 0.000 05◦, Ω = −11.260 64◦,

“long. of perihelion” = 102.947 19◦,

“mean longitude” = 100.464 35◦.
(9.7)

Note that Earth’s orbital inclination i is not exactly zero here owing to astronomers using a
mean plane in their measurements of Earth’s orbit; this is a higher-order correction to our
calculation that won’t concern us. Astronomers give Ω a value for the same reason. The
calculations in this report would ordinarily be insensitive to a value of Ω for Earth, but the
one tabulated in (9.7) must be used to decrypt the “longitude of perihelion”, using (7.1).

By following the same steps as for Jupiter, we arrive at the position of Earth relative to
the Sun in Earth’s orbit-plane coordinates:

[rES ]ope =

 0.28
1.46

0

× 1011 m. (9.8)

The calculation of µopeenu proceeds in the same way as for Jupiter, producing

µopeenu =

−0.18 0.97 0.17
0.83 0.060 0.55
0.52 0.24 −0.82

 . (9.9)

The calculation for Earth is finished. Next, (8.16) specifies µecefenu and [rAE ]ecef to be calcu-
lated.

Adelaide’s Position Relative to Earth’s Centre

Converting between ECEF coordinates and the east–north–up coordinates centred on Adelaide
is enabled via µecefenu , given by (8.28):

µecefenu =

−0.66 −0.75 0
−0.43 0.38 0.82
−0.62 0.54 −0.57

 . (9.10)

The final term necessary in (8.16) is the position of Adelaide relative to Earth’s centre, in
ECEF coordinates. Equation (8.22) gives

[rAE ]ecef =

−3.93
3.46
−3.63

× 106 m. (9.11)
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Combining the Matrices and Coordinate Vectors

We now insert all necessary matrices and coordinate vectors into (8.16) to arrive at

[rJA]enu =

−1.66
6.21
3.76

× 1011 m ≡

xenuyenu
zenu

 . (9.12)

Apply (8.38) to xenu, yenu, zenu to extract the direction of Jupiter in Adelaide’s sky:

bearing β = 345.1◦, elevation ε = 30.34◦. (9.13)

Jupiter appears fairly low down, just west of north. Our result assumes no atmosphere, but
it turns out that atmospheric refraction increases this particular elevation by only 0.03◦.

We have assumed the orbital elements to be constant: Ω(t) = Ω(t0) etc. They can be
evolved linearly over t− t0 using their small tabulated rates of increase, which I have not
included in this report. But this refinement turns out to be negligible for the short period of
time over which we are evolving the orbit’s parameters from the J2000.0 epoch.

The direction we have calculated differs by 0.15◦ from that returned by the excellent
Stellarium software, which gives a bearing/elevation of 344.9◦/30.31◦ for the case of no atmo-
sphere. Stellarium adds empirical refinements to its calculations: it applies standard formulae
to calculate parameters that do change slowly over long time scales, such as the length of the
sidereal day. For simplicity, we have treated this length as constant.

For extra precision and to predict farther into the future, several other factors can be in-
corporated. The easiest is atmospheric refraction [29]. The travel time of light from Jupiter
to Earth can also be considered—although this turns out to be negligible for the calculation
above. (That Earth turns appreciably during the light-transit time is not relevant; the im-
portant point is that Jupiter doesn’t move far along its orbit in that time.) Then there is
Earth’s changing orientation due to its non-trivial nutation, and the fact that its day is slowly
lengthening due to the Moon’s tidal drag. We could also include the ecliptic plane’s small
non-inertiality in the definition of the Sun-Centred Inertial frame SCI, and add various other
terms of ever-decreasing size that relate to the way the Solar System evolves over time.

One can use the above theory to build a complex visual picture of our Solar System, by
predicting the positions of planets as seen from any other planet: the calculation simply
replaces Earth with the new home planet. From here it’s only a short step to predicting the
direction of, say, Jupiter’s moon Io as seen in the sky at some specified point on Neptune’s
moon Nereid.

10 The Sun and Moon

The Sun’s position as seen from, say, Adelaide can easily be predicted. The relevant vector
is just the reverse of Adelaide’s position with respect to the Sun: rSA = −rAS , and it can
be coordinatised in whatever coordinate system is useful. In particular, calculating [rSA]enu
results in times of sunrise and sunset when you test trial times for when the Sun’s elevation
is zero—although atmospheric refraction is more significant then and should be included in
the calculation.
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What about predicting the Moon’s position? Earth, Moon, and Sun form a genuine 3-body
system [30], but this only really affects calculations of the Moon’s position. Pinpointing that
position accurately requires adding several empirical terms to the scheme described above.
These terms are not described here but, even so, we can predict the position to an accur-
acy of a degree or so by treating the Moon and Earth as a 2-body system using the above
analysis. (Unfortunately, because the Moon is half a degree wide, the result isn’t accurate
enough to predict eclipses.) The calculation is similar to that for Jupiter, but the 3-body
nature of the Moon’s orbit obliges us to use a measured value of its period rather than
use (3.3) to calculate the period. The period is of course roughly one month, but several
types of month are defined, and to use the above calculation of anomalies you must use the
anomalistic month, the time between successive perigees, of 27.554550 days. Also, the two
orbital elements Ω and ω are now no longer even remotely constant. The Moon’s ascending
node regresses within the ecliptic plane (i.e. moves left handed about zsci) through 360◦ every
18.61 years, so that dΩ/dt = −360◦/(18.61 years). If you stand on this moving node and
watch the Moon’s orbit plane, you’ll notice that the Moon’s perigee rotates within that orbit
plane through 360◦ every 6.00 years in the same direction that the Moon orbits, resulting in
dω/dt = 360◦/(6.00 years) [31]. These two rates of increase are easily used to evolve Ω and ω
from the epoch to the requested time. Then just apply (8.15) as usual, using Ω(t) and ω(t)
instead of Ω(t0) and ω(t0).

11 Finding Stars and Nebulae

Finally, it becomes a simple matter to use a subset of the above analysis to calculate the
bearing and elevation of any “fixed” celestial object seen from any place and time on Earth.
Stellar positions are tabulated as the celestial longitude and latitude of their directions from
Earth with reference to Earth-Centred Inertial coordinates: that is, the sight direction’s angle
east of the First Point of Aries in Earth’s equatorial plane xeci yeci, and its angle north of
Earth’s equatorial plane. (The extension of Earth’s equatorial plane out to a great circle in
the sky produces the celestial equator, and the vanishing points of Earth’s rotation axis in the
sky are the celestial poles.) Astronomers call an object’s celestial longitude its right ascension,
and the celestial latitude its declination. We can also calculate right ascension and declination
of the planets using the analysis above, and so plot their positions in a star atlas.

12 How Far Ahead Can We Predict?

If we use the above numbers and 2-body calculation to predict Jupiter’s position for some
date in AD 3000, our result will differ from that of Stellarium by a dozen degrees. Clearly
we need more knowledge of the various changing parameters to predict 1000 years into the
future. Evolving the orbital elements using their first time derivatives reduces this error to
about 7◦. In fact, these orbital elements and their rates of increase are determined partly
from observation, and partly from running computer simulations of planets’ orbits and least-
squares fitting the elements and their rates of increase to the output; so from our point of
view the exercise of increasing our precision becomes a little artificial.

At the end of the day, the hunt for more precision is not a question of requiring more
physics. We have all the physics we need, but modelling an n-body system by pairs of 2-body
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solutions will only ever be an approximation. We cannot hope to predict arbitrarily far ahead
with such a model, unless we’re prepared to add an arbitrarily large number of empirical terms
that modify those 2-body solutions to fit the true n-body solution And this n-body solution
is only the result of solving Newton’s gravity numerically in some approximation to that most
elusive of constructs: the long-lived inertial frame.

13 Concluding Remarks

If you have followed the calculations in this report, you’ll have gained more than you might
realise. You will have a better understanding of Earth’s place in our Solar System. You’ll be
able to tackle the mostly arcane books on orbital theory, which tend to derive much of the
above theory—when they derive it at all—in more convoluted ways than I have done here.
The µ matrices of Section 8 form the absolute core of orientational analysis, so you will have
a better understanding of literature such as used in modern 3D movie making and aerospace
6 degree-of-freedom modelling [32]. With some computer graphics skills you could write your
own planetarium software. And you’ll gain an appreciation for the efforts of early astronomers,
who helped create our modern world without the benefit of our modern mathematical and
computational tools.
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What is u̇r in terms of ur and uθ? Write the derivative using infinitesimal notation as

u̇r =
ur(t+ dt) − ur(t)

dt
. (14.2)

Now consider ur “pinned” to the planet, and ask how it evolves as the planet moves from time t to t+ dt.
Changing r has no effect on ur, so consider in the following figure only what happens to ur as θ changes:

ur(t)

ur(t+ dt)

dθ

dθuθ

In a time dt, θ increases by dθ, causing ur to turn through dθ. Thus the increment ur(t+ dt) − ur(t) has
length dθ and, in this limit of infinitesimal rotation, is rotated 90◦ from ur; so this increment vector is
just dθuθ. Hence (14.2) becomes u̇r = dθuθ/dt = θ̇uθ, so that (14.1) is ṙ = ṙur + rθ̇uθ. Now repeat this
idea: differentiate this last equation with respect to time, and now calculate u̇θ similarly to (14.2) to give
u̇θ = −θ̇ur. We arrive at the sought-after expression for r̈ in terms of ur and uθ, which is equation (2.7)
once again:

r̈ = (r̈ − rθ̇2)ur + (2ṙθ̇ + rθ̈)uθ . (14.3)

[8] For an alternative to this vector-calculus approach of producing (2.8), try the approach of writing Lag-
range’s equations in the variables r and θ, as Lagrange’s approach doesn’t rely on vectors.

[9] F. van Diggelen (2009) A-GPS: Assisted GPS, GNSS, and SBAS, Artech House. See Chapter 8, Ephemeris
Extension, Long-Term Orbits.

[10] J. Connor (2005), Kepler’s Witch, HarperOne. Page 5 cites an essay by eminent science historian I. Bern-
ard Cohen.

[11] You’ll sometimes encounter the idea that a sort of fiducial idealised satellite can be envisaged as moving
in a circular orbit at constant speed about the Sun, with an angle from perihelion given at any moment
by the mean anomaly. This picture is just that, but has no physical or mathematical utility.

[12] When using trigonometric functions to specify an angle implicitly, we must always specify two pieces of
information about that angle: say, its sine and cosine, or any one of its sine, cosine, or tangent along
with its quadrant, etc. Most computer languages have a function atan2 that returns θ when given sin θ
and cos θ as arguments (and be sure always to check the order that these arguments must have). In
particular, it’s incorrect to think that (4.11) can be expressed in the form “θ = tan−1 sin θ

cos θ
” for all θ—

a wrong piece of mathematics that you’ll often find in books and journal papers. The inverse tangent
function simply isn’t defined that way; and making such a mistake has the effect of discarding one of the
two required pieces of information. No inverse tangent function can be defined in such a way, because
any function that returns θ requires two pieces of information. The correct expression is “θ = tan−1 sin θ

cos θ

(+ π if θ is in quadrant 2 or 3)”.

[13] I won’t complicate things by saying that the julian day’s GMT differs from “modern GMT” (Coordinated
Universal Time, UTC) by some leap seconds, which need to be carefully accounted for in high-precision
calculations. Several other time scales are also defined in this subject. For more information, see http:

//www.bipm.org/en/bipm-services/timescales.

[14] Bizarrely and deplorably, the terms julian day and julian date have in recent years sometimes been
misappropriated as names for the ordinal date, which is simply a number for the current day of the year,
from 1 to 365 or 366, which resets to 1 at the start of each year.

[15] I emphasise that 12:00 noon GMT on 1st January 4713 BC in the proleptic julian calendar is the same
moment as 12:00 noon GMT on 24th November 4714 BC in the gregorian calendar.
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[16] Frames and coordinates are different things. A frame is physical: a choice of viewpoint visualised as a
lattice within which we view and describe the physics of a situation. Coordinates are mathematical: sets
of numbers that locate events relative to the lattice, and used to perform calculations. A given frame can
be described by any number of different coordinate systems (e.g. cartesian and polar); and conversely, a
given coordinate system can be used in any number of different frames (e.g. cartesian is typically used
for SCI and ECI).

[17] The word solstice means, in essence, “Sun stationary”, denoting the two moments in the year when the
Sun reaches its most northerly and southerly points in the sky. The word equinox means “equal night”,
referring to the fact that around the equinox as the Sun crosses the celestial equator, day and night have
approximately equal durations. These two durations can only be approximately equal because the Sun
doesn’t necessarily cross that equator at a convenient civil time.

[18] The First Point of Aries is often called the vernal equinox or spring equinox, both terms that I see as
misleading and should not be used. A point in the sky and a moment in time are two separate things,
and we need terms for both: the First Point of Aries is unambiguously a point in the sky, so the equinox
(“equal night”) should be reserved for a moment in time (when the Sun crosses the celestial equator).
“Vernal” means green, referring to the season of spring which begins in the northern hemisphere around
March, and this certainly refers to time; however, what astronomers often call the “spring equinox” is
a moment in time that occurs in the southern hemisphere’s autumn. No confusion will ever arise if you
refer to the point in the sky as the First Point of Aries, and the moment in time as the March equinox
(as well as the June solstice, September equinox, and December solstice).

[19] Why does Earth precess? Earth’s equatorial bulge feels unbalanced pulls in the inhomogeneous gravity
fields of both Sun and Moon. The resulting torque causes Earth to precess as it spins. In contrast to
a spinning toy top that is trying to be toppled by the combination of gravity and the contact force of
the table it sits on, Earth is trying to be “righted” by Sun and Moon, so it precesses in the opposite
direction to that of a spinning top. Earth’s bulge, along with displaced water in its tides that drag along
Earth’s surface slightly out of phase with the Moon that causes them, gives Earth a slightly non-radial
gravitational field that applies a tiny sideways force to the Moon, which doesn’t quite orbit in Earth’s
equatorial plane. This tiny force “micro sling-shots” the Moon away from Earth, resulting in the Moon’s
distance from us increasing by several centimetres per year.

[20] US Naval Observatory Circular No. 179 (2005), freely available from their web site.

[21] Besides being used as a measure of angle by astronomers, the sidereal hour is sometimes said to denote a
measure of time relative to the stars instead of the Sun: 24 sidereal hours is said to equal one sidereal day,
or about 23.9345 civil clock hours. Those who insist on this usage now have two kinds of temporal hour
and one angular hour. When the angular hours are subdivided into minutes and seconds, these latter are
not even remotely related to the commonly used minutes and seconds of arc. Forty years on from first
encountering these astronomical concepts, I have yet to find any use for such artificial complexity in what
is really a straightforward subject.

[22] What comes across as a contrariness in the continued usage of these two sums seems to be part of the
culture of modern astronomy. I have already mentioned the name “sidereal time” for angle, along with
its two definitions of “hour” that are often both used in the same sentence. But the list goes on. Some
(not all) planetary specialists define longitude as positive west of a planet’s prime meridian, against all
mathematical and geophysical usage. And astronomers who specialise in measuring radiation routinely
plot a hot emitter’s “power radiated per unit emitter surface area per unit frequency”versus not frequency,
but wavelength—which is not mathematically wrong per se, but which does produce plots that cannot
be interpreted in the intuitive way of true density plots. This practice requires the usual textbook maths
of blackbody radiation to be reformulated (such as Wien’s Law), to incorporate what is really a misuse
of the concept of density.

Witness the field’s widespread and lone use of the “erg”, a unit of energy that equals 10−7 joules,
when it would surely be far more appropriate to use a large unit, such as 10+24 joules, when speaking of
exploding stars. Similarly, instead of measuring distances in light years that everyone understands, some
astronomers insist on using the parsec (short for “parallax-second”), the distance at which a star has a
half-yearly parallax of one arc second when seen from Earth orbiting the Sun. The parsec dates from the
dawn of stellar distance measurement, but its definition has no modern use for anything much farther
than a half dozen of the nearest stars; and given that one parsec equals about 3.26 light years, the unit

UNCLASSIFIED
29



DST-Group–TN–1594

UNCLASSIFIED

doesn’t even introduce any economy of numerical use as compared with the light year. Quoting distances
in parsecs nowadays comes across as an exercise in deliberate obscurity.

[23] The distinction between proper vectors and coordinate vectors, along with equation (8.6) and the pseudo-
reversing theorem discussed after (8.10), form the heart of orientation/rotation theory. If you digest what
I have written, you’ll be able to perform and understand orientational calculations very easily.

[24] Canonical pictures of such rotation sequences sometimes appear in books, but I haven’t provided any
because you are probably better off visualising my description rather than attempting to work out what
is going on in those pictures.

[25] Very few books mention the pseudo-reversing theorem, but try proving it by first twisting your hand,
then rotating your body; now return to the start position and rotate your body, then twist your hand.
Ask yourself precisely which axes these rotations are being done around, and establish that any number
of rotations can be “reversed” in this way when we alter the sense of the rotation axes appropriately.
You can find this method of reversing the rotation order explained in great detail in D. Koks (2012),
A Pseudo-Reversing Theorem for Rotation and its Application to Orientation Theory, DSTO–TR–2675,
Melbourne, Vic., Defence Science and Technology Organisation (Australia).

[26] Some books change the sign of θ in their Euler matrices because they define those matrices with an
opposite sense of rotation to that used in this report. Additionally, notice that e.g. Eθ1 serves to rotate a
vector around any generic x axis. For example, when a vector v is rotated through θ around the xA axis
of coordinate system A, the result is v′, where

[v′]A = Eθ1 [v]A ,

and when v is rotated through θ around the xB axis of coordinate system B, the result is v′′, where

[v′′]B = Eθ1 [v]B .

Hence we don’t write Eθ1 as “Eθx” because there may well be an x axis present, and the action of the
matrix is not confined to rotation about only that axis.

[27] Bearing and elevation are often called “azimuth” and “altitude” respectively in astronomy. Outside that
subject, “azimuth” doesn’t necessarily carry a sense of being referred to north, and of course “altitude”
more usually denotes a height, not an angle.

[28] I have used those at http://www.met.rdg.ac.uk/~ross/Astronomy/Planets.html

[29] J. Meeus (1998), Astronomical Algorithms, 2nd ed., Willmann–Bell. Equation (16.4).

[30] Earth and Moon are actually better regarded as a double planet. Our Moon has exceptional orbital and
physical features that distinguish it over the other satellites in the Solar System, blurring its orbital
character to an extent that means it can’t simply be treated as Earth’s satellite. The Moon really orbits
the Sun in step with Earth, so that calculations of its orbit must take Earth’s motion about the Sun
into consideration. Strictly speaking, a “keplerian orbit” relates only to the 2-body problem; but unlike
other satellites in the Solar System, the Moon’s motion is well and truly that of a 3-body problem, for
which no analytical solutions are known. Incidentally, our Moon probably has more in common with the
major planets than the planet Pluto lacks, which shows the logical inconsistency displayed by the mostly
non-planetary specialists of the International Astronomical Union, when a minority of members decreed
in 2006 that we must all no longer call Pluto a planet.

[31] The value of 6.00 years is well known. Don’t use the figure of 8.85 years found on many web sites. The
8.85 years actually relates an anomalistic month to a “sidereal month”, which we are not using.

[32] For example, differentiate (8.5) with respect to time to produce what is called the rotational derivative
in the reference that follows, a comparatively recent concept in aerospace literature that is actually
the aerospace version of the covariant derivative of vector and tensor calculus. For an introduction to
the rotational derivative, see Zipfel [3]. That reference writes our [v]A = µBA [v]B as [v]A = [T ]AB [v]B .
(Additionally, the use in [3] of“[ds/dt]A”in an arbitrary frame [not necessarily inertial] must be interpreted
in that book’s notation as really d[s]A/dt to be mathematically meaningful [contrast with the comment
in [6], which assumes inertiality]. Also, its theory of the rotational derivative can be simplified notationally,
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but is still accessible.) Note that the µ matrices in this report are partly my own notation; you’ll find
all manner of other notation in aerospace literature. Most of that literature doesn’t distinguish between
proper vectors (arrows) and coordinate vectors (arrays of numbers)—a distinction that I see as crucial
for an in-depth understanding of calculating with vectors in multiple coordinate systems.
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