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ABSTRACT

This technical note considers processes that alternate randomly between ‘working’ and ‘broken’
over an interval of time. Suppose that the process is rewarded whenever it is ‘working’, at a
rate that can vary during the time interval but is known completely. We prove that if the time
interval is long then the accumulated reward is approximately normally distributed and the
approximation becomes perfect as the interval becomes infinitely long. Moreover we calculate
the means and variances of those normal distributions. Formally, consider an alternating
renewal process on the states ‘working’ vs ‘broken’. Suppose that during any interval [0, τ ],
the process is rewarded at rate g(t/τ) if it is working at time t. Let Qτ be the reward that is
accumulated during [0, τ ]. We calculate µQτ and σ2Qτ such that (Qτ − µQτ )/σQτ converges in
distribution to a standard normal distribution as τ →∞.
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Asymptotic Distribution of Rewards Accumulated by
Alternating Renewal Processes

Executive Summary

This technical note documents some research into processes that alternate randomly between
‘working’ and ‘broken’ over an interval of time. It supposes that the process is rewarded
whenever it is ‘working’, at a rate that can vary during the time interval but is known com-
pletely. We study the reward that is accumulated over that time interval. For example,
consider a solar panel that can earn money if it is exposed to the sun, at a rate of 5 dollars
per hour before noon and 10 dollars per hour after noon. What is the amount of money that
it will earn over a given 24 hour period?

The key finding is that if the time interval is long then the accumulated reward is approximately
normally distributed, and the approximation becomes perfect as the interval becomes infinitely
long. The research also calculates the means and variances of those normal distributions. The
values are obtained from the rates at which the process is rewarded when working (the dollars
per hour in the example given above), and statistics about the times to failure and times to
repair (the durations to go from working to broken and from broken to working).

This technical note is the expanded version of an article that was prepared for the journal
Statistics & Probability Letters [Hew 2017]. It provides the details of the proofs that were
abridged for the journal article. The research was motivated by studies of a number of military
operations. When collapsed to their essentials, the operations could be modelled in terms of
a sensor that alternates randomly between working and broken, and is looking for a target
that reluctantly gives away glimpses at random times. Consider in particular the probability
of seeing the k-th glimpse. Intuitively, at any time, the glimpse provides some probability of
being detected if the sensor is working at that time. The probability of seeing the glimpse is
the accumulation of those probabilities over the time interval. Hence by using the results
in this article, we know that the probability of seeing the k-th glimpse is approximately
normally distributed, and we can use that knowledge to make predictions about operational
performance. Full details will be reported separately.
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1. Introduction

Consider a stochastic process Xt that at any given time t is either ‘working’ or ‘broken’,
arising from an alternating renewal process that has working durations {Wk} alternated with
broken durations {Bk} where (W1, B1), (W2, B2), . . . , (Wk, Bk), . . . is a sequence of mutually
independent, identically distributed, non-negative, vector random variables. We suppose that
over an interval of time [0, τ ], the process is rewarded at rate g(t/τ) if it is working at time
t where g is a real-valued function on the interval [0, 1]. Let Qτ =

∫ τ
0 g(t/τ)Xt dt be the

accumulated reward, namely the reward that is accumulated by the process Xt over the time
interval [0, τ ] under the reward rate function g.

This technical note establishes that if the time interval [0, τ ] is long then the accumulated
reward Qτ is approximately normally distributed, and the approximation becomes perfect
as the interval becomes infinitely long. Moreover we calculate the means and variances of
those normal distributions. Formally, let P{·} denote ‘probability of’, E(·) denote ‘expected
value of’, N (µ, σ2) be the normal distribution with mean µ and variance σ2, and ⇒ denote
convergence in distribution. We prove the following:

Theorem. Let Xt be an alternating renewal process on {0, 1} with 0 = ‘broken’, 1= ‘working’,
formed from working durations {Wk} alternated with broken durations {Bk} where {(Wk, Bk)}
is a sequence of mutually independent, identically distributed, non-negative, vector random
variables. Recall (see text below) that there exist functions z1(t) and z0(t) such that

P{Xt = 1|Xs = 1} = p+ (1− p) · z1(t− s)
P{Xt = 0|Xs = 0} = 1− p+ p · z0(t− s)

where p = β
α+β given β = E(Wk), α = E(Bk). Given g : [0, 1] → R, put Qτ =

∫ τ
0 g(t/τ)Xt dt

(reward the process at rate g(t/τ) if it is working at time t), and set

µQτ = ḡµUτ µUτ = pτ

σ2Qτ = γσ2Uτ σ2Uτ = 2p(1− p)τζ

where ḡ =
∫ 1
0 g(x) dx, γ =

∫ 1
0 (g(x))2 dx, ζ =

∫∞
0 z(t) dt, and z(t) = (1− p) · z1(t) + p · z0(t).

Suppose that all of the following conditions are satisfied:

• E(W 2
k ) + E(B2

k) > 0, E(W 3
k ) <∞,E(B3

k) <∞, for all k.

• 0 < ζ < ∞, and there exists ẑ(t) continuous and nonincreasing such that |z(t)| ≤ ẑ(t)
for all t sufficiently large and

∫∞
0 ẑ(t) dt <∞.

• −∞ < ḡ <∞, 0 < γ <∞, and |
∫ 1
0 g(x)g′(x) dx| <∞.

Then (Qτ − µQτ )/σQτ ⇒ N (0, 1) as τ →∞.

Remark. If g(x) = 1 for all x then Qτ equals the uptime Uτ , namely the cumulative duration
in the working state during [0, τ ].
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Remark. If F (x) = g−1(x) is a well-defined cumulative distribution function, and µR and σ2R
are the mean and variance of the distribution defined by F , then ḡ = µR and γ = σ2R+µ2R (see
Appendix for proof).

The finding appears to be novel in studies of alternating renewal processes, in two respects:
First, the process accumulates a reward at rate g. Second, the value obtained for σ2Uτ is new.
Indeed, we see that σ2Uτ is fully determined by p and ζ, where ζ comes from the process
forgetting its initial conditions.

The existence of z1 and z0 is assured, as it is well-known [Trivedi 2002] that Xt becomes
stationary from any starting condition. While it may be difficult to explicitly obtain z1 and
z0, we can harness work by Takács [1959, 1974]: Put σ2α = E(B2

k), σ2β = E(W 2
k ), and suppose

that E(Wk) > 0, E(Bk) > 0, E(W 2
k ) > 0, E(B2

k) > 0. If the mutually-independent, identically
distributed, vector random variables {(Wk, Bk)} belong to the domain of normal attraction of
a two-dimensional normal distribution function of type N

(
[ 00 ],

[
1 ρ
ρ 1

])
then (Uτ − µUτ )/σUτ

converges in distribution to N (0, 1) as τ →∞ where

µUτ =
β

α+ β
τ

σ2Uτ =
α2σ2α + β2σ2β − 2ραβσασβ

(α+ β)3
τ

by [Takács 1974, Example 3]. We note in passing that {(Wk, Bk)} belong to the domain of
normal attraction of a normal distribution if and only if the joint distribution of {(Wk, Bk)} is
non-degenerate and E(B2

k) <∞, E(W 2
k ) <∞ [Encyclopedia of Mathematics 2019]; indeed ρ is

the correlation of Wk with Bk (for all k as {(Wk, Bk)} are identically distributed). Otherwise
if the sequences {Wk} and {Bk} are independent and E(B2

k) <∞, E(W 2
k ) <∞ then the above

equations apply with ρ = 0 [Takács 1959, Example 1].

The research in this article was motivated by studies of a number of military operations.
When collapsed to their essentials, the operations could be modelled in terms of a sensor
that alternates stochastically between working and broken, and is looking for a target that
reluctantly gives away glimpses at random times. We consider in particular the probability of
seeing the k-th glimpse. Construct g from the probability density function for the waiting time
to the k-th glimpse; intuitively, during infinitesimal interval [t, t+δt] the glimpse provides some
probability of being detected if the sensor is working at that time. The probability of seeing
the glimpse is the accumulation of those probabilities over the time interval [0, τ ], namely
Qτ . Hence by using the results in this article, we know that the probability of seeing the
k-th glimpse is approximately normally distributed, and we can use that knowledge to make
predictions about operational performance.

The question, therefore, was about an alternating renewal process that is rewarded at some
deterministic rate whenever it is working. There were no apparent results in the literature.
The process studied here is not a renewal-reward process as usually defined. Indeed in a
renewal-reward process, we have durations that are punctuated by rewards. An example is
a machine that at random times, credits or debits a random amount of money from a bank
account. In the process studied in this article, when the process is working it accumulates
a reward at a rate that is deterministic over [0, τ ]. An example is a solar panel that sells

2
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electricity into a power grid, earning money at a rate that can change deterministically during
the day, but where the panel is blocked during random intervals.

2. Preliminaries

This section covers the results that we will need to form our proofs. We will invoke Peligrad’s
central limit theorem for linear processes under strong mixing. Let σ(·) denote the σ-field
generated by a collection of random variables.

Definition. Let A, B be two σ-algebras of events and define

α(A,B) = sup |P{AB} − P{A}P{B}| A ∈ A,B ∈ B

A sequence of random variables Z1, Z2, . . . is α-mixing ( strong mixing) if αd → 0 where

αd = sup
k
α(σ(Z1, . . . , Zk), σ(Zk+d, Zk+d+1, . . . ))

Lemma 1 (Peligrad’s central limit theorem for linear processes under strong mixing). Let
{ank : 1 ≤ k ≤ n} be a triangular array of real numbers such that supn

∑n
k=1 a

2
nk < ∞ and

max1≤k≤n|ank| → 0 as n→∞. Let {Zk} be a centred stochastic sequence such that {Z2+δ
k } is

a uniformly integrable family for some δ > 0, infk Var(Zk) > 0, and Var(
∑n

k=1 ankZk) = 1. If
{Zk} is α-mixing and

∑
d d

2/δαd <∞ then
∑n

k=1 ankZk ⇒ N (0, 1) as n→∞.

Proof. See Peligrad & Utev [1997, Theorem 2.2, case (c)] . While the full theorem provides
conditions for φ-mixing, ρ-mixing, and α-mixing, we will only call on α-mixing.

We will need the following result on the α-mixing of regenerative processes.

Lemma 2. Let Z0, Z1, Z2, . . . be a stationary regenerative process with regeneration times
0 = T0, T1, T2, . . .. For any k, define τk = Tk+1 − Tk. If the process is aperiodic, positive
recurrent, and E(τK1 ) <∞ then the process is strong mixing and αd = o(d1−K).

Proof. See Glynn’s study of regenerative processes [Glynn 1982]. Theorem 6.3 shows that
any aperiodic, positive recurrent, regenerative process {Zk} is strong mixing. There exists
an ‘associated process’ {Z ′k} that is stationary. Proposition 6.10 obtains the strong mixing
coefficient αd for {Z ′k}. Proposition 4.7 confirms that if {Zk} is stationary then {Zk} and
{Z ′k} have the same distribution.

We will use the following result on the variance of linear processes.

Definition. For any sequence of random variables Z1, Z2, . . ., define

b2
{Zk}k = E(Z2

1 ) + 2

∞∑
k=1

E(Z1Z1+k)

(b for [Billingsley 2008, Theorem 27.4], the original source of this expression.)

UNCLASSIFIED
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Lemma 3. Suppose that Z1, Z2, . . . are real-valued and strictly stationary, E(Zk) = 0 for all
k, g : [0, 1]→ R and Sn =

∑n
k=1 g( kn)Zk.

1. If
∑∞

k=1 E(Z1Z1+k) is absolutely convergent, |
∫ 1
0 g(x)g′(x) dx| <∞, and 0 <

∫ 1
0 (g(x))2 dx <

∞, then Var(Sn)/(nγn)→ b2
{Zk}k as n→∞, where γn = 1

n

∑n
k=1

(
g( kn)

)2.
2. If in addition b{Zk}k > 0 and Sn/

√
Var(Sn)⇒ N (0, 1) as n→∞ then Sn/(b{Zk}k

√
nγn)

⇒ N (0, 1) as n→∞.

Proof. See Appendix.

3. Proof of Main Result

Our core intuition is as follows: Construct

Qn,δt =
(
g( 1
n)Xt1 + g( 2

n)Xt2 + · · ·+ g(1)Xtn

)
· δt

for tk ∈ [0, τ ] at spacings of δt. Then Qn,δt is an approximation to Qτ that becomes perfect
as n → ∞. But Qn,δt is also the sum of random variables, so we can invoke a central limit
theorem. Thus the distribution of Qτ can be approximated by a normal distribution, and the
approximation becomes perfect as τ →∞.

Ultimately, we seek to formalize our intuition as appropriate statements about convergence in
distribution. On any interval [0, τ ] declare

Vτ = Qτ − ḡpτ

For any δt > 0 define

tk = (k − 1) · δt
Yk = Xtk − p

for k = 1, 2, . . . . For any positive integer n put

Qn,δt =
(
g( 1
n)Xt1 + g( 2

n)Xt2 + · · ·+ g(1)Xtn

)
· δt (restated)

Vn,δt =
(
g( 1
n)Y1 + g( 2

n)Y2 + · · ·+ g(1)Yn
)
· δt

σ2n,δt = (n · δt) · p (1− p) ·

(
δt+ 2

∞∑
k=1

z(tk) δt

)

γn =
1

n

n∑
k=1

(
g( kn)

)2
Without loss of generality, we assume that the process is strictly stationary at time zero.
For there exists s such that z1(s) and z0(s) are arbitrarily close to zero, so we may shift our

4
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analysis from [0, τ ] to [s, s+ τ ]. Shifting τ to s+τ will not matter, as we will be taking τ →∞.
Consequently Yk is strictly stationary for all k. Moreover for all t

P{Xt = 1} = p

P{Xt = 0} = 1− p

so E(Yk) = 0 for all k. Declare the following cumulative distribution functions

Gτ (v) = P{Vτ ≤ v}
Gn,δt(v) = P{Vn,δt ≤ v}

H
(
·;µ, σ2

)
for N (µ, σ2)

Let R denote the real numbers and Z≥0 denote the non-negative integers.

We will prove the following propositions.

Proposition 1. If −∞ < ḡ < ∞, then for any v ∈ R, ψ > 0, and ε1 > 0 there exists
δt1 > 0 such that if δt < δt1, m =

⌊
ψ
δt

⌋
, n = m + m′ for any m′ ∈ Z≥0, and τ = n · δt then

|Gn,δt(v)−Gτ (v)| < ε1.

Proposition 2. If 0 < p < 1, 0 < ζ < ∞, and 0 < γ < ∞, then for any v ∈ R, ψ > 0, and
ε2 > 0 there exists δt2 > 0 such that if δt < δt2, m =

⌊
ψ
δt

⌋
, n = m+m′ for any m′ ∈ Z≥0 and

τ = n · δt then 0 < σ2n,δt <∞ and
∣∣∣H(v; 0, γnσ

2
n,δt

)
−H

(
v; 0, σ2Qτ

)∣∣∣ < ε2.

Proposition 3. If E(W 2
k ) + E(B2

k) > 0, E(W 3
k ) < ∞,E(B3

k) < ∞ for all k, 0 < ζ < ∞,
there exists ẑ(t) continuous and nonincreasing such that |z(t)| ≤ ẑ(t) for all t sufficiently
large and

∫∞
0 ẑ(t) dt < ∞, and 0 < γ < ∞ and |

∫ 1
0 g(x)g′(x) dx| < ∞, then for any v ∈ R,

δt > 0, and ε3 > 0 there exists N3 > 0 such that if n > N3 and 0 < σ2n,δt < ∞ then∣∣∣Gn,δt3(v)−H
(
v; 0, γnσ

2
n,δt3

)∣∣∣ < ε3.

We will then be equipped to prove the theorem, namely:

Proposition 4. If the conditions of the theorem are met then for all v and ε > 0 there exists
τ ′ > 0 such that if τ > τ ′ then

∣∣∣Gτ (v)−H
(
v; 0, σ2Qτ

)∣∣∣ < ε.

In effect, we show that the diagram at Figure 1 is commutative. That is, we control the
discrepancy ε =

∣∣∣Gτ (v)−H
(
v; 0, σ2Qτ

)∣∣∣ by decomposing it into

ε1 = |Gτ (v)−Gn,δt(v)|
ε2 =

∣∣H(v; 0, γnσ
2
n,δt

)
−H

(
v; 0, σ2Qτ

)∣∣
ε3 =

∣∣Gn,δt(v)−H
(
v; 0, γnσ

2
n,δt

)∣∣
We choose δt to satisfy ε1 and ε2. We then choose n large enough to satisfy ε3 knowing that
we can do so without compromising ε1 or ε2.

UNCLASSIFIED
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Gn,δt(v)
(3)−−−−→

n→∞
H
(
v; 0, γnσ

2
n,δt

)
(1)

yδt→0 (2)

yδt→0

Gτ (v)
(4)−−−−→
τ→∞

H
(
v; 0, σ2Qτ

)
Figure 1: We prove that this diagram is commutative, via Propositions 1 through 4 as labelled.

3.1. Proof of Proposition 1

Proof. Consider the functions xt : [0,∞)→ {0, 1} (where 0 = ‘broken’, 1 = ‘working’). Put

λ(xt; s) =

∫ s

0
g(t/s)xt dt− ḡps

µ(xt; s, δt) =

bs/δtc∑
k=0

g(tk/s)xtkδt− ḡps where tk = k · δt

as = inf
xt
λ(xt; s)

bs = sup
xt
λ(xt; s)

Put

χ(v; s, δt) = {xt : λ(xt; s) = v but µ(xt; s, δt) 6= v or λ(xt; s) 6= v but µ(xt; s, δt) = v}
ξ(v; δt) = sup

κ∈[1,∞)
P{Xt ∈ χ(κv;κψ, δt)}

(Intuitively : Define Xt as being stretched by factor κ if the sojourns in each state are each
multiplied by κ. If Xt yields reward v over [0, ψ] then stretching it by κ will yield κv over
[0, κψ]. Hence ξ(v; δt) is the supremum probability of getting a realization of Xt where the
actual reward is v but the approximated value is different, where the supremum is taken over
all possible stretchings of the time window [0, ψ].)

For all v ∈ [aψ, bψ], 0 ≤ ξ(v; δt) ≤ 1 for all δt (from being a supremum over probabilities), and
ξ(v; δt) → 0 as δt → 0 (pointwise convergence). By the bounded convergence theorem, there
exists δt1 such that if δt < δt1 then∫

[aψ ,bψ ]
ξ(v; δt) dv < ε1

Hence if δt < δt1 then

|Gm+m′,δt(v
′)−Gτ (v′)| =

∫ ψ
τ
v′

aψ

P{Xt ∈ χ( τψv; τ, δt)} dv

≤
∫ bψ

aψ

ξ(v; δt) dv

< ε1

6
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3.2. Proof of Proposition 2

We prove in three steps:

1. If 0 < p < 1 and 0 < ζ <∞ then for any v ∈ R, ψ > 0, and ε2 > 0 there exists δt2 > 0
such that if δt < δt2, n ∈ Z≥0 and τ = n · δt then 0 < σ2n,δt <∞.

Proof. We have

ζ =

∫ ∞
0

z(t) dt = lim
δt→0

∞∑
k=1

z(tk) δt

by definition, so there exists δt2 > 0 such that the series
∑∞

k=1 z(tk) δt is convergent for
all δt < δt2. Moreover ζ > 0 so we can refine δt2 so that

∑∞
k=1 z(tk) δt > 0 whenever

δt < δt2. Likewise γ > 0 so we can again refine δt2 so that γn > 0 whenever δt < δt2.
Hence 0 < σ2n,δt <∞ whenever δt < δt2.

2. For any v ∈ R, ψ > 0, and ε2 > 0 there exists δt2 > 0 such that if δt < δt2 and m =
⌊
ψ
δt

⌋
then

∣∣∣H(v; 0, γmσ
2
m,δt

)
−H

(
v; 0, γmσ

2
Uψ

)∣∣∣ < ε2.

Proof. H
(
·; ·, σ2

)
is continuous for all σ2 > 0, so it is sufficient to show that σ2m,δt → σ2Uψ

as δt → 0. But this is evident given the equation for ζ at step 1, and m · δt → ψ as
δt→ 0.

3. If τ = (m+m′) · δt then
∣∣∣H(v; 0, γm+m′σ2m+m′,δt

)
−H

(
v; 0, σ2Qτ

)∣∣∣ < ε2.

Proof. As for Proposition 1.

3.3. Proof of Proposition 3

We start with the following lemma.

Lemma 4. (i)
∑∞

k=1 E(Y1Y1+k) is absolutely convergent if and only if
∑∞

k=1|z(tk)| is (abso-
lutely) convergent. (ii) b2

{Yk}kn = σ2n,δt for all n.

Proof. We have

E(Y 2
1 ) = (δt)2 · E((Xt1 − p)

2)

= (δt)2 ·
(

(1− p)2 · p+ (−p)2 · (1− p)
)

= (δt)2 p (1− p)

UNCLASSIFIED
7



DST-Group–TN–1631

UNCLASSIFIED

E(Y1Y1+k) = (δt)2 (1− p) (1− p) p · (p+ (1− p) · z1(tk)) +

(δt)2 (1− p) (−p) p · (1− p− (1− p) · z1(tk)) +

(δt)2 (−p) (1− p) (1− p) · (p− p · z0(tk)) +

(δt)2 (−p) (−p) (1− p) · (1− p+ p · z0(tk))
= (δt)2 p (1− p)

(
(1− p) p− p (1− p)
−p (1− p) + p (1− p)

)
+

(δt)2 p (1− p)
(
(1− p+ p) (1− p) · z1(tk)+
(1− p+ p) p · z0(tk)

)
= (δt)2 p (1− p) ((1− p) · z1(tk) + p · z0(tk))
= (δt)2 p (1− p) · z(tk)

so
∑∞

k=1|E(Y1Y1+k)| = (δt)2 p (1− p)
∑∞

k=1|z(tk)| and thus each series is absolutely convergent
if and only if the other one is. Moreover

b2
{Yk}k = δt · p (1− p) ·

(
δt+ 2

∞∑
k=1

z(tk)δt

)
b2
{Yk}kn =σ2n,δt

We are now equipped to prove the proposition. For any k and n, put

a′nk = g( kn) · δt

ank =
a′nk√

Var(
∑n

k=1 a
′
nkYk)

Then Vn,δt =
∑n

k=1 a
′
nkYk by construction. In steps 1 through 11, we verify that {Yk} satisfies

the conditions of Peligrad’s central limit theorem. Then step 12 obtains Proposition 3.

1. Y1, Y2, . . . is strictly stationary, E(Yk) = 0.

Proof. By construction.

2.
∑∞

k=1|z(tk)| is absolutely convergent.

Proof. There exists a continuous, nonincreasing function ẑ(t) such that |z(t)| ≤ ẑ(t) for
all t sufficiently large and

∫∞
0 ẑ(t) dt <∞. So

∑∞
k=1|ẑ(tk)| <∞ and hence

∑∞
k=1|z(tk)| <

∞.

3. The conditions for Lemma 3 are satisfied with 0 < b2
{Zk}k <∞.

8
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Proof. {Yk} is strictly stationary and centred (step 1), and
∑∞

k=1 E(Y1Y1+k) is absolutely
convergent (step 2 and Lemma 4). Now |

∫ 1
0 g(x)g′(x) dx| < ∞, 0 <

∫ 1
0 (g(x))2 dx < ∞,

and 0 < σ2n,δt <∞ by assumption. Hence 0 < b2
{Zk}k <∞ by Lemma 4.

4. supn
∑n

k=1 a
2
nk <∞.

Proof. By Lemma 3 (via step 3), we have
∑n

k=1 a
′
nkYk = Sn · δt so

n∑
k=1

a2nk =

∑n
k=1(g( kn) · δt)2

Var(Sn · δt)
=

nγn
Var(Sn)

→ 1

b2
{Zk}k

as n→∞, and 0 < 1/b2
{Zk}k <∞ (again by step 3).

5. max1≤k≤n|ank| → 0 as n→∞.

Proof. By the assumptions on g, there exists x ∈ [0, 1] such that g( kn)2 ≤ g(x)2 for all
1 ≤ k ≤ n. Now in terms of Lemma 3, for any n and 1 ≤ k ≤ n

a2nk ≤
(g(x) · δt)2

Var(Sn · δt)
=

1

n
· g(x)2

γn
· nγn

Var(Sn)

Now by Lemma 3 (via step 3), the right hand side → 0 as n→∞.

6. E(Y 2+δ
k ) <∞ and > 0 for any δ ≥ 0.

Proof. We have

E(|Yk|2+δ) = (δt)2+δ · E(|Xtk − p|
2+δ)

= (δt)2+δ ·
(
|1− p|2+δ · p+ |−p|2+δ · (1− p)

)
<∞ and > 0

7. If δ = 4 then {|Yk|2+δ} is a uniformly integrable family.

Proof. By step 6, choosing δ = 4 for definiteness.

8. infk Var(Yk) > 0.

Proof. By step 6.

9. Var(
∑n

k=1 ankYk) = 1.
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Proof. Immediate by construction of ank.

10. {Yk} is strong mixing with αd = o(d−2).

Proof. We apply Lemma 2: {Yk} is strictly stationary (step 1) and regenerative (from be-
ing a renewal process). Now E(W 2

k )+E(B2
k) > 0 so {Yk} is aperiodic, and E(Wk),E(Bk) <

∞ so {Yk} is positive recurrent. Finally E(W 3
k ),E(B3

k) <∞ so αd = o(d−2).

11.
∑

d d
2/δαd <∞ when δ = 4.

Proof. Immediate from αd = o(d−2) (step 10).

12. For any v ∈ R, δt > 0, and ε3 > 0 there exists N3 > 0 such that if n > N3 and
0 < σ2n,δt <∞ then

∣∣∣Gn,δt(v)−H
(
v; 0, γnσ

2
n,δt

)∣∣∣ < ε3.

Proof. By steps 1 through 11 and Lemma 1,

Vn,δt√
Var(Vn,δt)

=

n∑
k=1

ankYk ⇒ N (0, 1)

as n→∞. Then by Lemma 3 (via step 3) Vn,δt/(σn,δt
√
γn)⇒ N (0, 1) as n→∞. That

is, for any v ∈ R and ε3 > 0 there exists N3 > 0 such that if n > N3 then∣∣∣∣P { Vn,δt
σn,δt
√
γn
≤ v

σn,δt
√
γn

}
−H

(
v

σn,δt
√
γn

; 0, 1

)∣∣∣∣ < ε3

But this is true if and only if ∣∣Gn,δt(v)−H
(
v; 0, γnσ

2
n,δt

)∣∣ < ε3

3.4. Proof of Proposition 4

Proof. H is continuous on R, so we are proving the proposition for any v ∈ R. Choose
ε1, ε2, ε3 > 0 such that ε1 + ε2 + ε3 = ε. Choose ψ > 0 arbitrary and observe:

By Proposition 1: There exists δt1 > 0 such that if δt < δt1, m =
⌊
ψ
δt

⌋
, n = m+m′ for

any m′ ∈ Z≥0, and τ = n · δt, then

|Gn,δt(v)−Gτ (v)| < ε1 (1)

Now 0 < p < 1 from Wk, Bk > 0 for all k. We have 0 < ζ < ∞ from the assumptions about
z(t). Hence:

10
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By Proposition 2: There exists δt2 > 0 such that if δt < δt2, n = m + m′ for any
m′ ∈ Z≥0, and τ = n · δt, then 0 < σ2n,δt <∞ and∣∣H(v; 0, γnσ

2
n,δt

)
−H

(
v; 0, σ2Qτ

)∣∣ < ε2 (2)

Put δt′ = min {δt1, δt2}. Then 0 < σ2n,δt′ <∞ for all n ≥ m (by Proposition 2). Furthermore
z(t) satisfies the conditions for Proposition 3 so

By Proposition 3: There exists N3 > 0 such that if n > N3 then∣∣Gn,δt′(v)−H
(
v; 0, γnσ

2
n,δt′

)∣∣ < ε3 (3)

Set τ ′ = max {N3,m} · δt′. Now suppose that τ > τ ′. Set n =
⌈
τ
δt′

⌉
and note that n > N3 and

n = m+m′ for some m′ ∈ Z≥0. Then∣∣Gτ (v)−H
(
v; 0, σ2Qτ

)∣∣ ≤ ∣∣Gτ (v)−Gn,δt′(v)
∣∣+∣∣Gn,δt′(v)−H

(
v; 0, γnσ

2
n,δt′

)∣∣+∣∣H(v; 0, σ2Qτ
)
−H

(
v; 0, γnσ

2
n,δt′

)∣∣
<ε1 + ε3 + ε2

as required.

4. Remarks

Figures 2 shows examples from experiments. In each case, the predicted distribution appears
to be a good approximation to the empirical distribution.

The author conjectures that the condition E(B3
k), E(W 3

k ) < ∞ could be weakened to E(B2
k),

E(W 2
k ) <∞. This would match the assumption made by Takács [1959, 1974]. The condition

E(B3
k), E(W 3

k ) <∞ is used only to enforce α-mixing at the rate required by Peligrad’s central
limit theorem. Her theorem also holds under φ-mixing, and Glynn [1982, Theorem 6.3] states
a sufficient condition for a regenerative process to be φ-mixing, but the present author was
unable to prove that E(B2

k), E(W 2
k ) <∞ would satisfy Glynn’s condition.
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Figure 2: Predicted probability density function for Qτ vs empirical scaled-relative frequency
histogram from 100,000 simulations, where τ = 137 and δt = τ/1000.
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Appendix A. The Variance of Asymptotically Normal
Sums of Strictly Stationary Processes under

Weighting

Let Sn be the sum of n random variables. Many central limit theorems establish that under
specified conditions, Sn/

√
Var(Sn) ⇒ N (0, 1) as n → ∞ (converges in distribution to the

normal distribution with mean 0, variance 1). It can be desirable to calculate σ2 and f(n)
such that Sn/(σ

√
n · f(n))⇒ N (0, 1). In this appendix, we prove the following:

Lemma 5. Suppose that Z1, Z2, . . . are real-valued and strictly stationary, E(Zk) = 0 for
all k, g : [0, 1] → R and Sn =

∑n
k=1 g( kn)Zk. If

∑∞
k=1 E(Z1Z1+k) is absolutely convergent,

|
∫ 1
0 g(x)g′(x) dx| <∞, and 0 <

∫ 1
0 (g(x))2 dx <∞, then

lim
n→∞

Var(Sn)

nγn
= σ2 , E(Z2

1 ) + 2

∞∑
k=1

E(Z1Z1+k)

where γn =
1

n

n∑
k=1

(
g( kn)

)2.
Corollary 1. If Lemma 5 is satisfied with σ > 0 and Sn/

√
Var(Sn) ⇒ N (0, 1) as n → ∞

then Sn/(σ
√
nγn)⇒ N (0, 1) as n→∞.

Remark 1. If F (x) = g−1(x) is a well-defined cumulative distribution function, and µR and
σ2R are the mean and variance of the distribution defined by F , then µR =

∫ 1
0 g(x) dx and

σ2R + µ2R =
∫ 1
0 (g(x))2 dx.

A.1. Proofs

Proof of Lemma 5. (The following proof is derived from [Billingsley 2008, Theorem 27.4], with
extensions to handle g.) Put ρk = E(Z1Z1+k), gk = g( kn). Now E(Zk) = 0 so E(Sn) = 0 hence

Var(Sn) = E((g1Z1 + · · ·+ gnZn)2)

= g21E(Z2
1 ) + 2g1g2E(Z1Z2) + · · ·+ 2g1gn−1E(Z1Zn−1) + 2g1gnE(Z1Zn) +

= g22E(Z2
2 ) + 2g2g3E(Z2Z3) + · · ·+ 2g2gnE(Z2Zn) +

...

g2n−1E(Z2
n−1) + 2gn−1gnE(Zn−1Zn) +

g2nE(Z2
n)

= nγnρ0 + 2

n−1∑
k=1

ρk

n−k∑
i=1

gigi+k
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as Z1, Z2, . . . is strictly stationary. Then

Var(Sn)

nγn
= ρ0 + 2

n−1∑
k=1

ρk
1

nγn

n−k∑
i=1

gigi+k

∣∣∣∣Var(Sn)

nγn
− σ2

∣∣∣∣ = 2

∣∣∣∣∣
∞∑
k=n

ρk +

n−1∑
k=1

(
1− 1

nγn

n−k∑
i=1

gigi+k

)
ρk

∣∣∣∣∣
= 2

∣∣∣∣∣
∞∑
k=n

ρk +
n−1∑
k=1

∑n
i=1 g

2
i −

∑n−k
i=1 gigi+k

nγn
ρk

∣∣∣∣∣
= 2

∣∣∣∣∣
∞∑
k=n

ρk +
n−1∑
k=1

∑n
i=n−k+1 g

2
i −

∑n−k
i=1 (gigi+k − g2i )

nγn
ρk

∣∣∣∣∣
= 2

∣∣∣∣∣
∞∑
k=n

ρk +

n−1∑
k=1

αk + βk
γn

k

n
ρk

∣∣∣∣∣
where αk = − 1

n

∑n−k
i=1 gi

gi+k−gi
k/n , βk = 1

k

∑n
i=n−k+1 g

2
i . Construct α(s) =

∫ s
0 g(x)g′(x) dx and

β(s) =
∫ 1
s (g(x))2 dx, then α( kn) ≈ αk and β( kn) ≈ βk for any k < n. So if α∗ = sups∈[0,1]|α(s)|

and β∗ = sups∈[0,1]|β(s)| then∣∣∣∣Var(Sn)

nγn
− σ2

∣∣∣∣ ≤ 2
∞∑
k=n

|ρk|+
α∗ + β∗ + ε

nγn

n−1∑
k=1

k|ρk|

for some small error term ε where ε→ 0 as n→∞. Moreover

n−1∑
k=1

k|ρk| =

|ρ1| + |ρ2| + |ρ3| + · · ·+ |ρn−1| +
|ρ2| + |ρ3| + · · ·+ |ρn−1| +

|ρ3| + · · ·+ |ρn−1| +
...
+ |ρn−1|

=
n−1∑
i=1

n−1∑
k=i

|ρk|

≤
n−1∑
i=1

∞∑
k=i

|ρk|

so ∣∣∣∣Var(Sn)

nγn
− σ2

∣∣∣∣ ≤ 2

∞∑
k=n

|ρk|+
α∗ + β∗ + ε

nγn

n−1∑
i=1

∞∑
k=i

|ρk|

To complete the proof, we show that right-hand side converges to zero as n → ∞. In three
steps:

1.
∑∞

k=1 ρk is absolutely convergent, so
∑∞

k=n|ρk| → 0 as n→∞.

2. We have α∗, β∗ < ∞, 0 < limn→∞ γn < ∞ by the assumptions about g. Specifically: if
a function is integrable on [0, 1] then for any s it is integrable on the subintervals [0, s]
and [s, 1]. Thus α(s) and β(s) are continuous on [0, 1], hence they are bounded on [0, 1].
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3. Put ζi =
∑∞

k=i|ρk| and ωn−1 = 1
n−1

∑n−1
i=1 ζi. Now {ζi}i is decreasing so ωn → 0 as

n→∞. Hence
1

n

n−1∑
i=1

∞∑
k=i

|ρk| =
1

n

n−1∑
i=1

ζi =
n− 1

n
ωn−1 → 0

as n→∞.

Proof of Corollary 1. We have

Sn
σ
√
nγn

=
Sn√

Var(Sn)
·
√

Var(Sn)

σ
√
nγn

So if Sn/
√

Var(Sn)⇒ N (0, 1) and Lemma 5 is satisfied with σ > 0, then the right hand side
converges in distribution to N (0, 1) by Slutsky’s theorem.

Proof of Remark 1.

1. µR =
∫ g(1)
g(0) x dF (x) by definition. Now

∫
x dF (x) = xF (x)−

∫
F (x) dx and∫

F (x) dx =

∫
g−1(x) dx

=

∫
tg′(t) dt via x = g(t)

=

[
tg−1(t)−

∫
g−1(t) dt

]
= xF (x)−

∫
g(x) dx

which yields

xF (x)−
∫
F (x) dx =

∫
g(x) dx

Hence µR =
∫ 1
0 g(x) dx.

2. σ2R + µ2R =
∫ g(1)
g(0) x

2 dF (x) by definition. Now
∫
x2 dF (x) = x2F (x)− 2

∫
xF (x) dx and∫

xF (x)dx =

∫
xg−1(x) dx

=

∫
g(t)tg′(t) dt via x = g(t)

=

[
g(t)tg(t)−

∫
g(t)

(
g(t) + tg′(t)

)
dt

]
=

[
(g(t))2 t−

∫
(g(t))2 dt−

∫
g(t)tg′(t) dt

]
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so

2

∫
g(t)tg′(t) dt =

[
(g(t))2 t−

∫
(g(t))2 dt

]
2

∫
xF (x)dx = x2g−1(x)−

∫
(g(x))2 dx

= x2F (x)−
∫

(g(x))2 dx

which yields

x2F (x)− 2

∫
xF (x) dx =

∫
(g(x))2 dx

Hence σ2R + µ2R =
∫ 1
0 (g(x))2 dx.

A.2. Remarks

If g(x) = 1 for all x then Lemma 5 reduces to the result obtained by Billingsley [2008,
Theorem 27.4] and Durrett [2004, Theorem 7.8]. Billingsley and Durrett made additional
assumptions that lead to σ2 being well-defined and correct and asymptotic normality of Sn.
The present author has extracted the assumptions and logic for σ2 so that it stands on its
own, in a form that can be used with other central limit theorems, and extended Billingsley’s
proof to handle g.

If in addition to being identically distributed, the variables Z1, Z2, . . . are independent, then
σ2 = E(Z2

1 ) as per the classical Lindeberg–Lévy central limit theorem. If they arem-dependent
then σ2 = E(Z2

1 ) + 2
∑m

k=1 E(Z1Z1+k), matching the calculations in the central limit theorem
for m-dependent sequences by Hoeffding & Robbins [Theorem 2, 1948], [1985]. The author
conjectures that the calculations of variance made by Hoeffding & Robbins and Ibraginov
[1975, Theorem 2.2] could be extracted in the same way as was done here.
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