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ABSTRACT 
This report documents a literature review of the methods associated with embedding a 
JVM into a Field Programmable Grid or Gate Array (FPGA). The review demonstrated 
that there was originally a commercial interest in providing silicon solutions for 
embedded JVMs, however with the exception of the JavaCard (which is embedded in all 
credit cards), few actually survived as mainstream products. To fabricate this form of 
design the developer requires a highly multi- disciplined team, that includes skills in 
programming, OS design, FPGA development and a signicant experience with very-low 
level hardware design. This report was written primarily to explore the existing domain 
by documenting the history, developments and possible future for this form of technology. 
A description of the basic concept together with more advanced applications have been 
described as example uses of this technology. Ultimately Defence Science and Technology 
Group (DST Group) could exploit the reuse and exibility of this approach to interface with 
legacy systems or exploit their interoperability for Defence. 
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Executive Summary

As the Java programming language continues to mature, the rhetoric about its effectiveness
in the enterprise environment diminishes. Ultimately, this sentiment softens with each
new release of its specification. Historically Java was supported through academia and
has been adopted by enthusiasts, who willingly engage in open source projects. It has
become a language of choice for many large corporations because it is secure, robust,
reliable and type safe. Being platform independent, it is especially useful for transactional
and network based applications. Given the future of parallel processing and the growing
use of intelligent agent teams within complex programs, Java is a natural language of
choice. Although languages like Erlang, Closure and Scala are being promoted as the
future, Java still has a significant following and is supported by industry, academia and
a growing crowd-sourced communities. Even if Scala is chosen in the future, its bytecode
can execute on a Java Virtual Machine (JVM).

The work presented in this report provides details of how researchers have adapted the
use of a Field Programmable Grid or Gate Array (FPGA) design to embed a Java Virtual
Machine as a logical solution in silicon hardware. A literature review shows there was some
initial commercial interest in providing silicon solutions. This paper was written primarily
to explore the existing domain and document the history, developments and possible future
for this form of technology. Existing concepts are discussed and the document delineates
how this capability could be used to enable the proliferation of common interfaces that
promote seamless interoperability to the wider defence community.

The most recent open source effort in this domain appeared within academia in Europe
as the Java Optimized Processor (JOP). To fabricate this design, the developer requires a
highly skilled, multi-disciplined team, to overcome design issues at many levels of the com-
puting architecture. This starts from the application layer and extend through to middle-
ware, Operating Systems (OSs), kernel and even into the physical hardware. Members of
the team need specific skills in FPGA and very detailed knowledge of hardware design.

This review also outlines the development of the data structures and algorithms used to
support running software in silicon using FPGAs. This means executing bytecode on
a physical JVM using a hardware solution. Existing methods allow developers to run
native processors that directly interpret bytecode without the need for emulation or Just-
in-Time (JIT) compilation. A customised array of physical JVM cores designed to inter-
operate within silicon is envisaged to reduce design complexity and massively enhance
its deterministic performance. Using a services approach for connectivity will also enable
the seamless approach to Network Centric Warfare (NCW) on a massive scale at low
cost. This concept could be used to rapidly create interfaces to legacy systems, exploit
interoperability options that are currently not feasible and even leverage the functionality
provided through enterprise applications in the field. This deterministic solution has
potential uses in mission critical applications and further investigation is recommended.
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1 Background

In computer-based systems, a hardware technology refresh is often used to overcome
complex problems. Designers can often achieve better, smarter and cheaper products
by using Field Programmable Grid or Gate Arrays (FPGAs). This technology breaks
the cost barrier typically associated with fabricating Application-Specific Integrated Cir-
cuit (ASIC) devices. The use of FPGAs also speeds up the development of silicon solutions.
Software-defined silicon solutions are becoming mainstream. The public supply of System
on Chip (SOC) solutions are also becoming reality. This is enabled by the host of tool
chains in the FPGA domain. Software is becoming firmware and the boundary between
programs and hardware is increasingly becoming blurred. A silicon solution can now be
used to hard-wire effective solutions, (such as code folding, variable stack access, using
pipelines, caches, reduced instruction sets and even hardware-based garbage collection).
Experience will enable programmers to write software which uses less resources and hence
operate more efficiently, for example by using compound statements or embedding vari-
ables within a function state, where code can include the data within the stream and
execute in a single cycle. This concept is explored further in Section B.2.

As Java evolved, interest in native designs faded [1] and industry started focussing on
more convenient software solutions, such as the Just-in-Time (JIT) compiler. Hence the
public supply of SOC solutions, such as Java in Silicon, are now becoming reality. As a
result, industry is able to implement technology refresh faster and with more certainty.
Java in Silicon is one of the beneficiaries of this trend. Today technology allows increased
performance to be achieved by the native execution of bytecode on dedicated processors
using FPGAs. The same renaissance is also facilitating main stream researchers access to
tools that enable either virtual or physical realisation of concepts traditionally impaired
through lack of skills, money or time.

One of the reasons to focus on Java is its popularity across academia. Unless they spe-
cialise, most programmers now graduate with Java being their primarily programming
language. It is now the mainstream programming language for teaching, hobbyists, en-
thusiasts and for many professionals supporting open source projects. Java has already
displaced many existing languages and initially posed a threat to C++ [2]. While it has
had a major impact within the enterprise environment, it continues to evolve as a ubiq-
uitous service-based language for mobile, network-based and Internet applications. Major
reasons for this include the ability to encapsulate entities that are type safe using poly-
morphism, dynamic binding and simple inheritance. Over time it has become increasingly
robust because of its security features enabled through dynamic garbage collection. Ex-
ception handling, bounded arrays and constrained referencing also play important roles
in security. The cumulative package enables portability across heterogeneous desktop
platforms. With the proliferation of mobile devices, Sun Microsystems streamlined Java
2 Standard Edition (J2SE) with a targeted version of this technology using Java 2 Mi-
cro Edition (J2ME). Similarly an enterprise environment was also created to cater for
corporate activities.

In the early literature on FPGA techniques used to embed a Java Virtual Machine (JVM)
into silicon, there was limited evidence of commercial interest in hardware solutions, and
only a scattering of academic effort [3, 4, 5]. Over the last decade research in this area has
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picked up and it is concentrated in Europe. For example there were over 80 papers pub-
lished during 2011. Recent work on Object Oriented Programming Languages (OOPLs)
and subsequent effort on intelligent agent research reinforced the need for an alternative
approach to using the traditional harvard architectural model when implementing a Tur-
ing Machine [6]. At present we make the software fit the machine, however Java and the
JVM were designed specifically to cater for Object-Oriented software [7]. This concept
was originally aimed at completely abstracting away the physical machine. A publication
by this author has shown how viable alternatives to software solutions can be created
in hardware that can easily achieve more flexible and less complex designs using Java
[8]. This document further elaborates on how hardware can obtain significant benefits by
combining Java and the FPGA technology.

2 Aim

The aim of this research is to review the literature and illustrate how embedding a JVM
into silicon using an FPGA can potentially provide a longer-term benefit to Defence.

3 State of the Art in Java

All programming languages have a predefined syntax that is used to generate code that
represents a higher-level depiction of the final executable software (regardless of being
compiled or interpreted). Languages have evolved with respect to the environment and
problem space generating the solution. Machine code, Cobol and Pascal are classic ex-
amples. Appendix A provide some background on how Java evolved as a state of the art
programming language. The main topics discussed include: the concepts associated with
data structures, bytecode, target applications, pedigree, the current release, the diversity
as a host language and the concept of using Java syntax as an interpreter to reuse code
or algorithms written in other languages. This information has been generated from the
literature review to provide supporting facts and the status of the current specification of
the JVM.

The concepts associated with interpreting programming languages using virtual machines
are not new. The ‘Basic’ programming language is a classic example of software that
employed the use of intermediate code that is mediated prior to execution1. The concept
of platform independence used in Java is also borrowed. It was demonstrated in the early
1970’s using SmallTalk and later with Pascal (specifically University of California, San
Diego (UCSD) Pascal p-code [10]). Before examining the technology trends it is important
to acknowledge that Java benefited from the evolution of other languages.

1An image of an application in byte-code is far smaller than traditional executable applications. This
reduces bandwidth and storage requirements and is obviously more efficient in a networked environment
[9].

4
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3.1 Technology Trends

New technologies frequently appear on the horizon, however it is difficult to determine
whether they pose a disruptive threat in our domain. We know that today’s Central
Processing Units (CPUs) do not provide an efficient means to solve all problems. Not
long ago the Information and Communications Technology (ICT) community viewed the
microprocessor as the machine. With the introduction of Local Area Networks (LANs)
and Wide Area Networks (WANs), the network became the computer2. With the onset of
mobile computing, we increasingly consider the cloud as the computer.

Our need for more complex computation has stimulated the growth of super computers
using massively parallel techniques. High Performance Computing (HPC) functionality
is generally created, accessed and operated within a facility dedicated to a predefined
task. This changed when the Sony, Toshiba, and IBM (STI) alliance introduced the Cell
microprocessor. According to the Lawrence Berkeley National Laboratory, this delivered
the power of the original Cray super computer to a games console in the home [12].
This growth of processor throughput and functionality evolved to deliver more complex
capability to the wider community. The introduction of multi-core microprocessors with
multi-chip platforms also delivered more applications into the field. This trend is increasing
as consumers demand more capability on their phones. The pitfall for Defence using this
approach is in providing the interoperability, bandwidth, security and reliability (which
indicates the possible need for a private cloud).

Specialised chips and architectures are increasingly being used to solve specific issues. In
the real-world programmers customize software to achieve their goals, but in an ideal
world designers would also like to be able to customise the functionality and operation of
physical hardware (or at least the firmware). As technology migrates further along the path
of parallel processing, we should be able to imagine the resources as simple components of
the overall solution. Figure 1 displays the concept of what a customised computer could
look like in 20 years. This would comprise an ensemble of designs on a single FPGA using
a selection of processor types. Example design libraries currently include:

• Java Virtual Machine (JVM),

• Central Processing Unit (CPU),

• Graphics Processing Unit (GPU),

• Digital Signal Processor (DSP) and

• Configurable Logic block (CLB)

Clusters or arrays of processing units can be functionally assembled or individually cus-
tomized to provide more efficient and solution focused configurations. This concept ini-
tially appears ambitious until the facts are reviewed. The first factor to consider is Moore’s
law [13]. Next are the technology drivers delivered through competition by Intel’s tick-tock

2This phrase become the motto of Sun Microsystems for over forty years through its CEO Scott McNealy
[11].
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Figure 1: What will a Machine look like in 20 years

program and the evolution of lithography processes3. Both bear witness to the ongoing
evolution in miniaturization with enhanced performance. Each time companies like Intel,
Advanced Micro Devices (AMD), Samsung Taiwan Semiconductor Manufacturing Com-
pany (TSMC) or other manufacturers migrate to the latest generation of fabrication tech-
nology, industry delivers improved benchmarks, reduced power consumption and produced
significantly higher chip densities. With the release of the 10 core Westmere micropro-
cessor, Intel confirmed the viability of its 22 nm fabrication technique4. Recently AMD
released their Zen CPU and Intel released their 6th generation Skylake microprocessor to
market, both using 14 nm technology. Intel are currently transitioning memory products
to 11 nm and plan to transition to 8 nm in the immediate future5. Given this level of
miniaturization, using 3D components and copper interconnects, single chip densities in
the order of 100 billion transistors are realistically possible by 2020 (using the same amount
of silicon we do today would produce approximately 250 Skylake cores on the same die.).

3Global Foundries reported it is installing Advanced Semiconductor Materials Lithography (ASML)
hybrid 193-immersion Extreme Ultra-Violet (EUV) processes targeted at 5 nm by 2017 to allow other
manufactures to release similar technology to market by 2018 [14, 15, 16].

4Intel actually pledged an 80 core single chip prototype within five years at the 2006 Intel Developers
Forum [17] and demonstrated a 275 mm2 network-on-chip architecture contains 80 4 GHz tiles of floating-
point cores and packet-switched routers (arranged as a 10*8 2D array) at the International Solid-State
Circuits Conference in 2007 [18]

5At 14 nm, 1.75 billion transistors are used for the Skylake processor, however 10 billion are theoretically
feasible

6
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In the not too distant future, microprocessors will be treated as components modelled
around clusters (using quad, octal or even hexadecimal designs), on a single carrier, com-
plete with interconnected networks of arbitrated buses6. This concept will facilitate dy-
namically regenerative homogeneous agents that are synthesized (virtually or in Silicon)
automatically when instantiated or invoked7. In an ideal world this would enable the
programmer to evolve concepts without the constraints currently experienced within the
platform, in the network or imposed when simulating the environment.

3.2 Existing Contributions

The concept of embedding a Virtual Machine (VM) as a set of physical logic circuits is
not new. Both industry and academia have pursued Silicon solutions to physically execute
Pascal and Forth. This document focuses on Java and the ability to embed a physical JVM
into silicon using FPGAs. Over the past decade a number of researchers have experimented
with solutions using hardware acceleration, translation and even dedicated processors to
run byte code as native instructions. Several of these are listed below:

Acceleration: A coprocessor is attached to the host and Bytecode is redirected and pro-
cessed independent to the core software. Recently designs integrate the coprocessor
with the core processor. These processors provide support without compromising
host compatibility, but consume significantly more power. Examples include:

• AU-J2000 from Aurora VLSI8,

• MOCA-J from NanoAmp Solutions9, and

• Moon 2 from Vulcan Machines (Can be native or acts as a coprocessor)10.

Translation: A small hardware unit is positioned just prior to the instruction cache to
translate Bytecode into native machine code. These processors can constrain the use
of some key features offered by Java, such as security, garbage collection and object
scope at hardware level. Examples include:

• ARM Jazelle from ARM11,

• JA108 from Nazomi Communications12, and

• JVXTreme from Synopsys (previously Insilicon)13.

Dedication: Bytecode is executed directly, similar to machine code on traditional pro-
cessors, without the need for interpretation or translation. At present these solutions

6This issue involves increased complexity as explained by Metcalfes Law [19].
7Xilinx are already producing their series 7 products at 28 nm and increasingly integrating support

peripherals to compliment the rich set of CLB currently provided. Future designs could feasibly see
enhancement to the type and density of embedded components, making design more effortless and efficient.

8See http://www.auroravlsi.com/.
9See http://www.nanoamp.com/.

10See http://www.vulcanasic.com/.
11See http://www.arm.com/products/processors/technologies/jazelle.php.
12See www.nazomi.com/ and java.epicentertech.com/Archive_Embedded/Nazomi/ja108_pb.pdf.
13See www.synopsys.com/dw/doc.php/doc/smartmodel/manuals/simcfg.pdf.
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are limited to simple implementations that are confined to a stack design. They are
not able to execute applications with an alternate instruction set. Examples include:

• picoJava from Sun Microsystems14,

• aJ-100 and aJ-200 from aJile Systems (This contains the JEMCore)15, and

• lavaCore from Xilinx16.

3.3 The Traditional Java Virtual Machine

A JVM is software that runs as a process within the Operating System (OS) to inter-
pret bytecode files when required. The JVM interacts with the Built-in Operating Sys-
tem (BIOS) when resources are required for Input/Output (I/O) operations. The basic
concepts associated with the traditional JVM are discussed in Appendix B.1. Regard-
less of the pedigree or platform, every native processor must decode and implement each
instruction as a logical operation. Machine code instructions provide the logic required
to configure the processor to execute the intended operation of each command. A queue
of these instructions performs the function generated via the compiler. The logic associ-
ated with implementing the functions of a JVM using an FPGA can be extracted directly
from the specification for the virtual machine. Appendix B.1 also describes how the Java
instruction set supports the bytecode specification and memory model (as discussed in
Appendix B.2 and B.3).

3.4 The Hardware Implementation of a Java Machine

A physical Java Machine (also labelled a Java Silicon Machine (JSM)) provides the log-
ical circuitry required to directly execute bytecode instructions (without the need for
cross-compilation or interpretation) and all traditional support logic associated with a
traditional computer. This machine will contain the logic required to execute as a physi-
cal JVM (B.4). The logic circuits required can be easily assembled in a silicon solution17.
The solution would be capable of directly executing a stream of bytecode as native machine
readable instructions. As discussed, this concept is similar to using a math co-processor or
GPU, although the physical machine discussed (which includes the JVM, memory man-
agement and I/O) is used as a direct alternative to the CPU, such as those provided by
Intel and AMD.

As suggested, the evolution of the JIT compiler constrained the production of dedicated
chips and support for silicon solutions faded. Given that Java has established its creden-
tials as a mainstream programming language and has a deterministic operating system
to support mission critical systems (See Real-Time Specification for Java (RTSJ) in Ap-
pendix B.5), it is increasingly being used by industry. Because of this support and the

14See http://www.oracle.com/.
15See http://www.ajile.com/.
16See http://www.xilinx.com/.
17Such as an FPGA using Hardware Description Language (HDL) connections to assemble Very High

Speed Integrated Circuit Hardware Description Language (VHDL) component libraries (half adders, stacks,
cache, memory, comparators and so forth).
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ease of developing Java software, the focus on dedicated processing is re-gaining strength,
especially in the embedded market.

Sun Microsystems was ambitious when it embarked on its three physical processor designs.
Their vision was to alleviate any implementation or software incompatibility and provide
a universal programming capability for all platforms. A number of industries expressed
interest in this concept and continued investigating physical stack based designs. Two
examples include Patriot and ShBoom [20]. Early research using Java-chip simulations
pointed to significant speed advantages (a multiple of 11.3) over general-purpose CPUs
using emulated JVMs [21]. This is significant, because it operates across many of the Open
Systems Interconnection (OSI) layers (from the application, session, network and transport
layers). For example, at the enterprise level, JBOSS actually provides customized logic in
order to extend its own invocation layer and handle bidirectional communications protocols
to improve throughput. However, embedded processors provide this directly because they
integrate the software and hardware layers within silicon. Figure 2 depicts the progressive
devolution of JVM into the physical machine. This diagram is provided to portray the
significant benefits of reducing the physical constraints and added complexity encountered
by many programmers when dealing with target platforms and OSs. The image on the
left shows the JVM supported within traditional computer platforms, while that on the
right represents a physical Java processor embedded in silicon.

Figure 2: Devolving the JVM in Hardware [22]

To execute Java software on traditional computer platforms, three approaches have been
implemented. These include: traditional interpretation, natively compiled execution and
a direct execution. It should be noted that Java, like most modern languages, is written
using a specific syntax using human readable source code (programme). The programme
is then compiled (using Javac) into an intermediate symbolic facsimile in the form of
bytecode (normally in one or more libraries called jar files). Given a system that supports
Java, the user can execute this application using the OS. The style of execution will
depend on how the system was designed, however the three approaches diverge.

Traditional Interpretation: When the bytecode (application) is run using a traditional
interpretation method on a Personal Computer (PC), the operation system will
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invoke the JVM and pass the bytecode to the JIT compiler to translate the incoming
stream into executable binary that is sent to the CPU and processed like any other
application.

Native Compilation: Prior to employing JIT compilation, a natively compiled approach
was used. Regardless of the approach, the bytecode must be cross-compiled into
machine readable binary code (targeted to run on the technology used to host the
application (commonly using AMD, Intel and Advanced RISC Machine (ARM) mi-
croprocessors instruction sets)).

Direct Execution: The bytecode stream is simply directed to a co-processor that has
logic circuits designed to execute bytecode instructions natively (as machine instruc-
tions using the same concepts employed by CPUs to execute their binary instruction
sets). A Java Processor could be used in three modes. It could be configured as a
co-processor, an embedded processor within its own SOC (typically using an FPGA)
or designed as a desktop system like the traditional PC. This report focuses on the
SOC approach, where the solution is embedded into an Xilinx XC3S500 FPGA, as
described in Section 4.

The literature provides significant history about a number of success stories. Each provides
enough information to glean the lessons learned. The important lessons are collated in
Appendix C. This includes a brief description of the kilo Virtual Machine (C.1), PicoJava
(C.2), PicoJavaII (C.3), JEM (C.4), aJile (C.5), and the JavaCard (C.6) followed by a list
of other notable research (C.7).

3.5 A Java Optimised Processor within Silicon

The Java Optimized Processor (JOP) provides a processor design that is capable of directly
executing Java byte code. It originated from academia and has evolved to provide access
to RTSJ using FPGAs. The architecture utilizes a stack based machine design, with a
compact set of instructions. The internal architecture relies on a four stage pipe-line
design (1+3) which provides efficient processing of Java bytecode. Traditional JVMs
currently conduct Complex Instruction Set Computer (CISC) like instructions, where the
JOP uses a Reduced Instruction Set Computer (RISC) style approach to improve speed
and efficiency18. Like its predecessors, the JOP transforms the traditional concept of
an Instruction Set Architecture (ISA) which is traditionally supported by an operating
system using a hierarchy of calls to a physical machine that directly supports a higher-
level language programs [9].

A detailed discussion on JOP is provided in Appendix D. The description is composed of
nine sections that include: a description of how the JOP was designed and implemented
(D.1), the microcode used (D.2), physical pipelines (D.3), caches (D.4), hardware inter-
rupts (D.5), techniques to process bytecode folding (D.6), garbage collection (D.7), with
additional information about multi-core designs using Multi-threaded JVMs (D.8), Blue-
JEP (D.9) and the CMP (D.10), while D.11 describes how Corba can be used to promote
interoperability.

18At present the JOP requires bytecode to be preprocessed via an optimizer, which translates the byte-
code file into a non-complex set of instructions.
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3.6 Conceptual Summary

With respect to this review, a traditional JVM can be summarised as software that is
targeted to a specific platform. Such software enables the contents of a predefined file to
be parsed, loaded, verified and interpreted at run-time before being executed natively. Java
provides developers with the ability to free the user from the desktop by delivering network
enabled products to hand held devices or mobile computers (netbooks, ultra laptops and
even tablets). Each instantiation of a JVM can be connected to a stream of bytecode.
This source file has been previously compiled into a bytecode file that can be piped to a
stream to be distributed and executed on supporting heterogeneous platforms. Two major
impediments to adopting Java have been its perceived slow speed and lack of ability to
deliver enterprise level applications. Most desktop platforms use JIT compilers to achieve
near real-time execution to alleviate these issues (approximately 90% of real-time binary
code). JIT compilers are embedded into many standard computer systems, many now
with clock frequencies exceeding 4 GHZ. Unfortunately the actual throughput of bytecode
on these machines is far from predictable due to the OS. For Defence applications, we
need real-time systems that provide deterministic assurance. Many JIT compilers prohibit
real-time systems, therefore alternatives are required, such as direct execution using RTSJ
running on one or more JOP cores.

At present we are often requested to customise designs or blackbox implementations, to
provide solutions, prior to integration. Customising solutions using FPGAs typically in-
volves a significant amount of effort, resources and expertise. However this approach
will generally absorbs the integration risk currently being borne by the Commonwealth.
Ideally we desire a seamless method of interoperably exchanging customised subsets of
information within acceptable time constraints. Existing research shows that software en-
gineers focus on individual systems to address specific problems, typically at the expense
of interoperability, complexity, system constraints and often increased integration risks
[23].

Industry and Governments around the world acknowledge the need for standards. They
reduce the complexity of describing a need but make contracting and procurement pro-
cesses easier to verify, while enabling reuse and interoperability. There is no single product
or interface that can uniquely solve every problem, but there is a clear need to create a
common protocol to assist with the integration and interoperability of C4ISR assets. A
SOC design that embeds a JVM or JOP within an FPGA can have a customised interface
containing both analogue and digital circuits that are generated to allow the solution to
be connected to almost any equipment in the field. This approach can make it easier for
engineers to rapidly leverage from previous designs and efficiently abstract a significant
portion of the complexity out of the final solution. This improves time to market and en-
hances interoperability while retaining a common framework. By embedding one or more
JVM cores into an FPGA using VHDL to produce a Silicon solution, it is feasible that
higher level languages could deliver enterprise level operations closer to the source. This
means that raw data can be pre-processed into meta-data with less skill and streamline the
need for off-board computation prior to distribution. This solution would enable engineers
to seamlessly adapt existing systems at low cost, in an acceptable and efficient manner,
using the highest level of abstraction, with reduced maintenance or obsolescence issues.
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4 Demonstrating the Virtual Machine in Silicon

Prior to verifying the principle of using this flexible approach to interfacing legacy equip-
ment in the field, a prototype was physically configured using a Spartan 3 demonstration
board. This was achieved by leveraging a collaborative agreement with Prof. Schoeberl
from the University of Demark (who provided some documentation and the JOP design
libraries). Subsequently a prototype was configured to demonstrate a physical JVM work-
ing within a Xilinx XC3S500 FPGA. The success of this experiment required a significant
learning curve to ensure the required skills were available. A significant amount of research
is also required to ensure the background information is obtained prior to embarking on
any synthesis. An initial survey of the domain space revealed a number of commercial
products existed. These were based on the original effort by Sun Microsystems. More
recent effort by a number of academic endeavours has since been published. The most
prolific of these was the JOP. This design ran over 500 times faster than a embedded
machine using an interpreted JVM [24]. It also has the highest native clock frequency of
those surveyed. Regardless of which design is chosen, each calls on the mastery of several
sophisticated tools and a customized environment. The basic process of producing a work-
ing platform capable of demonstrating the prototype example is shown in Figure 3. This
is followed by a brief introduction to the tools and the development environment used.

Figure 3: The Concept of using the JOP

12
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4.1 Tools

To complete this project a multi-disciplined team is required as there are a large number of
tools required to generate a successful demonstration. Each tool has an inherent learning
curve that takes time and significant practice to master. An appropriate environment for
each tool needs to be set prior to installation and test. The latter is to verify any issues
relate to the actual design and NOT the tools. These include:

• cygwin and/or Linux;

• cvs or git;

• gcc and make;

• Java Developers Kit (JDK);

• Eclispe and/or NetBeans;

• VHDL;

• Xilinx ISE and/or Altera’s Quartus II.

Alternatives tools can be chosen, but the existing libraries are written in C++, Java and
VHDL, while each tool required is only targeted to a limited number of operating systems.
Because ISE for this work was targeted to Windows, cygwin was installed to enable the
use of gcc on the same platform.

4.2 The Development Environment

There have been numerous commercial attempts at exploiting the direct execution of
bytecode in a hardware level JVM. Each had their own reasons, but Sun Microsystems
suggested that the ‘write once, run anywhere’ approach would be verifiable and extremely
beneficial because it is secure, well behaved and directly connected to the transport layer19.
To do this without an operating systems also reduces costs, processing overheads and
system complexity. This espouses the concept that an intelligent client that is thin and
easily adapted to the users’ needs is now in reach.

Prior to synthesising the JOP the developer must identify the technology being used to host
the actual SOC design. Based on the supplied information the appropriate development
environment can be chosen and the necessary tools or support libraries installed. In this
case a Xilinx Spartan 3 FPGA chip, mounted on a product evaluation board was obtained
(shown in Figure 4). This is supplied with a number of I/O connectors and has several
integrated peripherals. These include the display, switches, Light Emitting Diodes (LEDs)
and three expansion ports. Some of this I/O is used during the test application.

19This concept will be debated by some programmers, because without rigid version controls, even subtle
changes can result in the need to patch code.
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Figure 4: Spartan 3 Board

This board contained the XC3S500 variant of the chip in an FT320 ball grid array for-
mat. This chip was identified because it contains internal Static Random Access Mem-
ory (SRAM) which is used to create on-board stacks. The crucial part of the design is
the mapping of the chip resources with the intended I/O. This mapping is done once
prior to synthesis, but may require updates with physical design changes. Figure 5 shows
the functional schematic of the evaluation board and includes the concept of the chip
connectivity.

Figure 5: Spartan 3 Functionality

Schoeberl provided a reference handbook on the JOP [25]. He also generously established a
“getting started”20 web page for his group. The web page provides instructions on how to

20See http://www.jopwiki.com/Getting_started

14

UNCLASSIFIED

http://www.jopwiki.com/Getting_started


UNCLASSIFIED
DST-Group–TN–1723

download the source Internet Protocol (IP), obtain the tools, instructions on assembling
the microcode, compiling an example Java application and getting it to run. This site
currently supports designs for the:

• Xilinx Spartan-3,

• ACEX EP1K50C144 JOP core, and

• Cyclone EP1C6/12.

This research also exposed a multi-core design which is discussed as future work.

4.3 Service Based Interfaces and Interoperability

The growth of information, the increasing diversity of information systems and the grow-
ing popularity of high-speed network connections continue to challenge enterprise system
integration in several aspects [26]:

• Variety of system platforms and programming languages,

• Coexistence of client-server or mainframe oriented system application,

• Lack of a well-defined architecture, and

• Conflicting data formats and semantic definitions.

Over the past two decades a number of data passing methodologies have evolved to improve
service-based interfaces and interoperability. These include:

• Distributed Component Object Model (DCOM);

• Distributed Computing Environment (DCE);

• RESTful web framework for Java (REST) (light traffic21);

• Simple Object Access Protocol (SOAP) (heavy traffic); and

• Grid or Clustered computing.

There are still situations where Common Object Request Broker Architecture (CORBA)
and Data Distribution Service (DDS) provide suitable solutions. These might include
cases where:

• Building a distributed system involves multiple programming languages and multiple
platforms,

• System entails sending complex data structures where SOAP is not efficient enough,

• There is a significantly high rate of messaging that HTTP cannot support, or

• Legacy applications must be used.
21When combined with JavaScript Object Notation (JSON) and Remote Procedure Call (RPC) clusters,

REST can be scaled.
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4.4 Practical Use-Case

Boeing introduced its PRiSMj software to implement the Ovm22 real-time JVM on-board
the Scan-Eagle Unmanned Air Vehicle (UAV) platform in 2011 [27]. Figure 6 depicts the
Scan Eagle system during the launch phase of flight.

Figure 6: The Boeing Scan Eagle UAV [27]

This is claimed to be Boeing’s first attempt to fly a UAV using a real-time Java System [27].
PRiSMj was chosen because it supported RTSJ and because of the claim that it provided
better performance than using native C++ and presented less issues with portability [28].
This project was sponsored by Defense Advanced Research Project Agency (DARPA) and
uses a tertiary thread prioritisation protocol using an event notification mechanism with
an update frequency of 1, 5 and 20 Hz. Given the commercial nature of this project,
the existing documentation infers it uses Ahead of Time (AOT) compilation to maximize
the opportunities for optimization. This resulted in some of the native interfacing being
cross compiled (approximately 15,000 lines of C code), however the global application is
composed of over 250,000 lines of Java bytecode. Unfortunately there is no real evidence
that the OVM supports the direct execute bytecode [29].

4.5 Alternative uses in Defence

Defence Science and Technology Group (DST Group) provides technical advice on plat-
form mission system support and operations. There is also significant experience at the
enterprise level, especially with platforms like the Airborne Early Warning and Control,
which uses The Ace ORB (TAO) operating in CORBA for distributed mission system
support. TAO23 is CORBA 3.0 compliant and interoperability for this framework is al-

22From Purdue University, see http://www.ovmj.org/

23See http://www.theaceorb.com/
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ready supported in Java using JacORB24. The JacORB has been incorporated into JBoss
to enable the seamless interoperability between Java 2 Enterprise Edition (J2EE) and
CORBA enterprise environments. As most web-services are developed in Java, a new ar-
chitecture for Real-Time Distributed Embedded Systems is proposed. Figure 7 represents
this concept.

Figure 7: Possible Architecture in Real-Time Distributed Embedded Systems

It is recommended that DST Group conducts more research to advance the concept of
interoperability between well established enterprise level systems and the legacy systems
currently fielded. At present the Australian Defence Force (ADF) relies on industry to
provide customised interfaces to facilitate interaction with legacy equipment. Most of these
systems are connected using slow, thin communications portals, therefore the efficiency
at both levels needs to be considered. Hence, the goal of this venture is to provide a
ubiquitous and flexible interface that enables interoperability for both fixed and mobile
assets.

The aim is to test at least one physical implementation using experimentation by adapting
an Adaptive Communication Environment (ACE)/TAO interface to allow publisher/sub-
scriber access to sub-systems attributes within a JOP. Information has been gleaned from
a subset of the available literature, however that literature strongly suggests that there is
a need to continue this exploration through experimentation, verification and testing.

5 Conclusion

This report provides a literature review that shows there is sufficient support for further
investigation into using a physical Java Processor in future mission systems of the type
currently used in Scan Eagle. There is also sufficient academic interest and opportunities
to engage in new partnerships to access the technology required. The Appendices in this
document provide a description of the basic concepts required to instantiate a physical
Java Machine in an FPGA. These instructions are also supported by experimental results
and scenarios about how more advanced applications can be provided. The results clearly

24Although a new JacORB (Version 3.8) was released in 2016, the Java implementation is currently
using 2.3.1, see http://www.ociweb.com/products/jacorb
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indicate that the JOP is a viable design that should be used to champion on-going research
into mobile, multi-core, distributed SOC interfaces. This concept is still evolving and more
research can be expected before a single standard emerges, however the benefits for both
DST Group and Defence are significant.
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Appendix A The Java Programming Language

Distributed programming is not new, however Java delivered dynamic interaction in a het-
erogeneous environment facilitated across the Internet [7]. This is achieved by executing
Java byte code (compiled Java) on a purpose built virtual machine. The focus of this
report is highlighting the linkages required to successfully embed an operational Java Vir-
tual Machine (JVM) in a Field Programmable Grid or Gate Array (FPGA). Currently the
JVM uses software libraries to provide a small, reliable, portable, distributed, real-time
operating environment that runs seamlessly on many Operating Systems (OSs) and com-
puter architectures. The Java programming language has syntax and functionality that has
been influenced by techniques presented in existing languages that included C++, Eiffel,
SmallTalk, Objective C, and Cedar/Mesa. Like most modern languages, each implemen-
tation is supplied with a predefined set of libraries that are supported by the developers
to ensure the uniform implementation of the language across all platforms. Originally
Sun Microsystems provided support for Unix, Macintosh and Windows NT/95 platforms
and now supports most other platforms. Sun originally championed Java by licensing to
Apple, IBM and Microsoft, who all distributed the JVM with their OSs. Access to Java
within HyperText Markup Language (HTML) documents was also provided by Doyle and
his team in 1993 (using Applets25) [30]. In some ways, this concept revolutionised the way
humans interact with computers and information. Today JavaScript, Flash and HTML5
are more frequently used as underlying code for Graphical User Interfaces (GUIs).

In 1996 Singleton reported that James Gosling actually started developing Java in 1991
while working on the Network extensible Window System (NeWS) [31]26. It was quickly
retitled as Oak27 in an attempt to expand into the Personal Digital Assistant (PDA)
market; however, eventually drifted until it became Java in 1994. The Java language
was promoted by Gosling in a white paper [7], and supported by Arnold with a full
programming reference guide [33]. Sun Microsystems commercially released Java as a
product by introducing the Java Developers Kit (JDK) for a targeted number of computer
architectures. Java Intelligent Network Interface (JINI) introduced to promote the use of
Java on mobile devices, and it soon became a significant framework, because it removed the
need for physical peripherals or interfaces using networked services. The Java language is
designed to operate with objects of a number of predefined types, although the JVM only
supports primitive types natively. Objects are constructed as a structured element that
is managed using classes that where boundary aligned in 8-bytes increments in memory
(unused bit or bytes are padded). The primitive types and their native representation are
also consistent with most programming languages.

Java is promoted as a less complex implementation of C++. Its syntax has the familiarity
of C++, but is less confusing because the programmer does not need to deal with pointers,
pre-processing, multiple inheritance, label or automatic coercion [34]28. Some performance

25These Applets initially consisted of animated characters, sprites and simple games; however, devotees
and industry are now producing serious Java applications that run natively.

26The original project was called Green, which was aimed at implementing a heterogeneous network of
electronic consumer products.

27This variant was supported to demonstrate the concept of the ’set-top-box’ [32].
28It should be noted that you can use ‘Goto-like’ labels and implicit coercion without the loss of precision

(when promoting types), although the more recent introduction of ‘auto boxing’ can enable the programmer
to introduce some very nasty bugs.
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Figure A1: Java2 JVM Targets [35, 36]

was compromised to deliver type-safe features, that include references, index safe arrays
and automatic garbage collection. This approach provided a fresh, cleaner, safer program-
ming environment for beginners and professionals. Presently programmers are forced to
compile their code (classes) prior to execution; however, modern development tools reveal
the possibility of a fully interpreted environments similar to Basic by utilizing the power of
compiled languages [2]. Since its release, Java has undergone several significant upgrades
(1.2, 1.4, 1.5, 1.6, 1.7 and now 1.8).

This evolution stagnated for several years after Oracle acquired Sun Microsystems29. Dur-
ing this period a number of alternative JVM stack-based languages like Closure, Groovy,
Scala and Gershwin emerged [37]30. Another set of commentators from IBM and Oracle
believe that the next generation of Java will fork into something with a complete new di-
rection (retaining its backwards compatibility)31. Regardless of direction, there has been
significant effort on a variety of projects focused on retaining the JVM, including more
than 60,800 links on sourceforge32. This is far more than any other language hosted on
this site. Java libraries exist that now support, interpret or emulate the syntax of many
common languages. With recent releases, Java has been improved to include concurrent
processes and software developers need to consider processing objects in parallel. Java was
primarily used for teaching in universities, however has extended its reach to enthusiasts,
professionals and even enterprise application development.

A.1 The Current Mainstream Release - Java SE8

Java is still evolving with the latest release set at SE8u144 (September 2017). Java classes
are still used to define templates that can instantiate objects, complete with abstracted
object data types, properties and methods. Object Oriented Programming (OOP) pro-
grammers use classes to encapsulate the state and behaviour of objects within a problem

29See http://www.datamation.com/entdev/article.php/3862566/Whats-Javas-Future.htm

30See http://www.ece.cmu.edu/~koopman/projects.html#stack

31See http://www.sdtimes.com/content/article.aspx?ArticleID=34820&print=true

32See http://sourceforge.net/directory/os:windows/?q=java
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space. Software is increasingly being written using inheritance and event messaging to sup-
port a systems approach to problem solving (often using a distributed paradigm). Agents
are being employed to make decisions and support autonomous behaviour. Each class
would typically run as an independent thread with the ability to communicate with other
classes or agents using Simple Object Access Protocol (SOAP), RESTful web framework
for Java (REST) and even JavaScript Object Notation (JSON). The Agent class was
first introduced in version SE5 and further refined in version SE6. The Java Management
eXtensions (JMX) provided the ability to analyse or test applications with agents or even
applications running in separate JVMs. Java SE7 was released in 2007 and it supports
Portable Operating System Interface (POSIX) threads with a richer set of periodic and
episodic unit calculations. Java SE8 was released in 2014 with ‘Lambda’ expressions,
collections, compact profiles, improved security, time/date internationalisation, improved
tools and Java FX. Table A1 lists a number of notable improvements previously submit-
ted by the Java Community Process (JCP)33. Java Specification Requestss (JSRs) are
routinely submitted for industry concurrence (with approved requests being issued as part
of interim updates) [38]. For a complete listing of current JSR activities, consult the
Community Development of Java Technology Specifications page34.

As suggested, Java evolves based on a community sponsored improvement process. Im-
provements are frequently highlighted in forums and discussion boards. Several requests
reviewed while researching this report include: reducing the need for boilerplate code, bet-
ter interoperability between classes running on independent JVMs in the same memory
space and improved reflected properties using optionally annotated meta-data.

Simplified Boilerplate Code: The Facade pattern is commonly used in Java to asso-
ciate components in a single GUI. Each component is progressively constructed
prior to being aggregated into a compounded control. It has been suggested that
default implementations for components be accepted for scroll bars, spin controls,
mouse, keyboard and move events to simply coding. Embedded components would
essentially be abstracted through reflective properties and each object (also called a
‘bean’) or component could be instantiated using a single call. Programmers should
only be called upon to override a default API call when a customized implementation
is required. For instance a button generally always requires an event handler. Most
GUI programmers also include mouse controls (through click events). Programmers
even extend their designs to include keyboard short-cuts (key events) and increas-
ingly some even add gesture controls (touch events). It would be feasible to pass
attributes as options to include icons, actions and default values during construction
without the additional effort required to build individual components and chaining
the object references. If this were the default condition, many aspiring programmers
would achieve a more meaningful contribution with less complexity and frustration.

33The JCP was established in 1998. This community acts a formalized mechanism that allows interested
parties to develop standard technical specifications for consideration in future Java releases. Proposed
changes are submitted and championed in an open source arrangement with community members.

34See https://jcp.org/en/jsr/all

39This will provide methods to manage Episodic, Scientific, Empirical and System time measurement.
40This functionality is being progressively supported in Java FX 3D.
41See above.
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Table A1: Notable JSR Activities

JSR Description

109 Web-services 1.3. This specification defines the programming model and

runtime architecture for implementing web services in Java.

166 Provides fork and join processes to support concurrency.

It will also provide a set of work queues to support work stealing

to manage idle workers.

203 Extends the work started in JDK 1.4 and will improve File and

Directory permissions.

255 Provide JMX updates to enable the federation of remote services.

270 Use components in JTabbedPane.

286 Portlets 2.0. plans to align with Java 2 Enterprise Edition (J2EE)

1.4, integrate other new JSRs relevant for the portlet, and align with

the Web Services for Remote Portlets (WSRP) specification V-2.0.

292 Culminated discussion on tail call optimization and interface injection,

however may only see invokedynamic included.

294 This was raised to improved modularity and namespaces that became project

jigsaw when the OSGi Alliance joined the project.

295 Is targeted to improve Swing and Bean binding/validation.

296 Use SwingWorker with JFC & Swing.

299 Better Dependency management similar to that experienced with Marven,

JBOS Seam, Enterprise Java Beans (EJB) and OSGi.

310 Provides better Date and Time dimensioning in an attempt to provide

socialized labels which will be great for managing behaviour39.

330 Services Framework. This specification will define a high level, lightweight

services and management framework Application Program Interfaces (APIs)

that will provide Java 2 Micro Edition (J2ME) based devices the ability to

manage long running applications and services.

366 Expand the multi-threaded and multi-core capabilities within the Fork/Join

Framework.

367 JSON API binding layer (metadata & runtime)

for converting Java objects to/from JSON messages.

371 This JSR is to develop Model-View-Controller (MVC) 1.0,

a model-view-controller specification for Java EE.

912 Version 1.3 of the Java 3D API40.

926 Maintenance of the Java 3D specification41.

927 The maintenance of the Java TV specification.

The concepts associated with reuse and flexibility are promoted using interfaces,
wrappers and redirection.

Improved Interoperability: Traditionally Object Oriented Programming Languages
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(OOPLs) restrict visibility of data or variables using a number of scoping tech-
niques. Many use inheritance to encapsulate or extend object types and behaviour
which can necessarily bloat code or make it a challenge to read. The alternative is
to use predefined redirection statements (One example is using the instanceof call
to pass messages within the application). This is based on complex arrangements
that connect one or more sockets and queues. The manner in which the programmer
addresses the message flow can block execution. For instance a post and wait call
would block the programme until a return was provided, whereas a callback function
(like that used in a model, view, control widget) would allow the programme to con-
tinue and revisit to process the information when the response is signalled. Agents
and agent systems benefit from the latter when they are organised to function as
independent applications (often in their own JVM). To achieve this in Java, devel-
opers can use queue events, but this also compromises asynchronous designs. The
preferred alternative is to use a SwingWorker function call an independent thread
to process the function in the background. This approach enables designers to cre-
ate independent Property Change Listeners as thread that subscribe to components
embedded into a GUI design.

Annotated Meta-data: Annotations42 were introduced to Java in version 5.0 and im-
proved/extended in version 6 to facilitate the use of meta-data43. Annotations can
be used to provide: information to the compiler, conduct both ‘compiler-time’ and
‘deployment-activity’ processing or to enable run-time processing. When Annota-
tion are declared they can be applied to the class, specified fields, methods or other
program element. The annotation processors generate macro-like code that is au-
tomatically completed at build-time44. Originally, Java programs were ‘decorated’
with annotations indicating which methods were remotely accessible. This provided
clarity when using Java API for XML-based RPC (JAX-RPC) web service and when
relying on Reflection. Annotations are also used to provide deployment descriptor
for Enterprise Java Beans (EJBs) in order to reduce complexity and enforce its strict
syntax requirements. Annotations have proven popular in Java and many tutorials
now exist, therefore it will not be the subject of discussion in this report.

The trend in simulation applications is to separate the scenario data from the business
logic. Traditionally the business logic is programmed to represent both the environment
structure and its behaviour. This concept needs to be further extended to simplify an im-
plementation that supports a dynamic context. The new model should retain the business
logic that supports common functionality (model kernel), but separate the context and
behaviour. A XML Object Model (XOM) file provides the mechanisms required to encode
the behaviour of the changing context to implement patterns45 using the Java Context
and Dependency Injection (CDI) framework in enterprise platforms46 to weld components

42JSR 175 - A Metadata Facility for the JavaTMProgramming Language.
43@Annotations were originally implemented to enable developers to introduce tags or their own pre-

processes, similar to that in other languages.
44This is sometimes called boilerplate code and could include support for strict syntax encoding, the

generation of Extensible Markup Language (XML) files or even documentation (like javadoc). Care should
be taken to ensure it doesn’t result in confusion or unintentionally pollute the programs semantics.

45Java makes use of the java.util.Observable patterns.
46See JSR-299 for further detail.
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using the Java Message Service (JMS) within the base environment and each scenario
instantiated.

Existing simulation frameworks are more complex than necessary because they need to
address all possible events47 for any given entity that interacts with the environment. Be-
haviour, desire and intent are generally infused with the business logic. Alternatively the
implementation logic inherits a communication model, such as Knowledge Query Manipu-
lation Language (KQML), Access Control List (ACL) or Foundation of Intelligent Physical
Agents (FIPA). SOAP is emerging as the model of choice for distributed communications
in Java.

47Events contain objects or messages that are used when a software component wants to notify a state
of change to another component within any package, thread or application.
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Appendix B A JVM in Silicon

There have been a number of Virtual Machines (VMs) designed to support Java over the
past two decades. The Sun Microsystems originally offered the concept based on three
variants. They took the form of the: picoJava, microJava and ultraJava processors. Sun
Microsystems’ picoJava architecture was targeted at a wide range of devices from small,
hand held appliances to desktop network computers. The picoJava chip contains the core
architecture of the Java Virtual Machine (JVM) and can be built as physical machine. The
microJava chip includes the picoJava core plus memory, I/O and other control functions
and was targeted towards controllers, network-based devices and consumer products. The
ultraJava chip was modelled after the UltraSPARC workstation and targeted at desktop
use and incorporates some of Sun Microsystems’ 3D graphics processing.

B.1 The Java Virtual Machine

Prior to the physical manifestation of a machine that was capable of processing Java
bytecode natively, researchers attempted to simulate and verify their ideas. Lindholm and
Yellin labelled the outcome as the JVM [39]. The Bytecode instruction set was defined
using one byte opcode (8-bits) followed by zero or more operand bytes [40]. The JVM
was a software interpreter that abstracted the complexity of the computing machine. This
relieved the programmer of many of the low-level constructs associated to interfacing with
the platform hardware and Input/Output (I/O). The language focused on processing
object typed software using network concepts [39]. It does not assume any particular
implementation, technology, operating system or host and processes class files constructed
from symbolic code with embedded ancillary information compiled from the Java source
code [7, 33]. The initial conceptual representation of a JVM is shown in Figure B1.

Figure B1: Concept surrounding the JVM
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B.2 Java Bytecode

When Java is installed on a Personal Computer (PC), compilation of source code produces
a class library that contains bytecode. Execution typically requires greater than 45 kBytes
of Read Only Memory (ROM) (containing linked libraries) and a large amount of Random
Access Memory (RAM). Enterprise level implementations require hundreds of kBytes to
store more complex libraries (typically as jar files). Unfortunately smart phones, Personal
Digital Assistants (PDAs) and mobile devices normally have limited resources. Early use
of Java on set-top boxes and primitive web-browsers used Java processors to implement
dynamic translation. More recent releases have proven to be more capable in Connected
Device Configuration (CDC) applications. However, with the increased use of System on
Chip (SOC) devices, the scope for native Java Processors has re-surfaced.

There are theoretically 256 bytecodes internally supported by the current JVM, however
only 201 are defined. Two of these instructions are reserved as software traps and a third
for debugging. The Java Optimized Processor (JOP) defines 226 variable length bytecode
instructions. The additional instructions are mapped to replace bytecode engaged in
machine level activities, such as parsing, loading and verifying classes. Figure B2 displays
the frequency distribution of JOP bytecode instructions.

Figure B2: Java Bytecode Distribution

Each column depicts the percentage of opcodes based on their length in bytes, where
62% have one byte, 20% two bytes, 15% three bytes and only 3% have four bytes). This
indicates that almost two thirds have no operand and will operate natively using a single
instruction cycle, while over 80% of the bytecode will run using in-line data. To take
advantage of this fact, the JOP maps 54 of the incoming bytecodes into internal 10-bit
hardware instructions (where the additional bits are used to populate the nxt and opd flags
within the processor). At the time of writing, 43 of the 201 different bytecodes are also
implemented using single byte microcode machine instructions, 93 with multi-byte internal
microcode sequences and the remaining 40 bytecodes are implemented in accordance with
the JVM specification.

Figure B3 displays two columns. On the left is a Java programme that adds two variables.
On the right is the equivalent compiled bytecode. This example uses a simple stack
operation and efficiency should only be calculated by reviewing the bytecode. Using a
print statement to visualise the results would employ slow console operations and therefore
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benchmarking should only be conducted using a JOP deployed to an Field Programmable
Grid or Gate Array (FPGA).

Figure B3: Java Bytecode Example

Using the same concepts associated with programming in assembly code and stack oper-
ations, a knowledgeable programmer could pack bytecode by hand to produce very tight
code (without the need to define, instantiate and manipulate variables or classes). More
details can be sourced from the literature. Examples include: Haggar [41], Schoeberl
[25], Arhipov [42] and Rauh [43]. Other techniques can be applied to stream line existing
code or improve execution using physical hardware (for instance, by introducing a method
stack or dynamic access to the stack). After analysing 801,117 randomly sampled methods,
sourced from jar-files found in community projects on-line, 73% were found to contain less
than nine subroutines [44]. Schoberl introduced a method stack to manage frequently used
subroutines. This increases cache coherence and minimises the use of padding instructions
and the need to flush the programme cache or use slower I/O [45].

Listing 1 illustrates how a complex print statement in Java (a compounded set of state-
ments to concatenated hard coded ‘Text’ with a ‘Sring’ variable) is generally less efficient
than a more deliberate example shown in Listing 2. The compiled bytecode of both exam-
ples is displayed before its original Java source listing (boxed). The curious reader could
use javap to generate the same result.

getstatic #3; // Field System.out:Ljava/io/PrintStream;

new #4; // class StringBuffer

dup

invokespecial #5; // StringBuffer."<init>":()V

ldc #6; // String Result =

invokevirtual #7; // StringBuffer.append:(LString;)LStringBuffer

iload_1

invokevirtual #8; // StringBuffer.append:(I)LStringBuffer;

invokevirtual #9; // StringBuffer.toString:()LString;

invokevirtual #10;// PrintStream.println:(LString;)V

1 System . out . p r i n t l n ( ’ ’ Running Total =’ ’ + currentValue ) ;

Listing 1: Complex Print Statement
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getstatic #3; //Field System.out:Ljava/io/PrintStream;

ldc #4; //String Result =

invokevirtual #5; //Method PrintStream.print:(LString;)V

getstatic #3; //Field System.out:LPrintStream;

iload_1

invokevirtual #6; //Method PrintStream.println:(I)V

1 System . out . p r i n t ( ’ ’ Running Total =’ ’ ) ;
2 System . out . p r i n t l n ( currentValue ) ;

Listing 2: Simplified Print Statement

When less complex source-code is provided (adding variables via the stack in lieu of the
compounding expression), the JOP is able to deploy more efficient bytecode to take advan-
tage of its enhanced stack operations and improve program throughput. In this case, fewer
calls are made and therefore less bytecode is generated (note the number of invokevirtual
and invokespecial). The concept of bytecode folding is discussed more in Section D.6. Sim-
ilarly Schoeberl also introduced binary enhancements to the new command that defines
and populates variables in a single loop (see the JOP handbook for further details [25]).

Most desktop machines provide an ecosystem to host or emulate a VM. The JVM interacts
with middle-ware, the Operating System (OS) and kernel prior to executing code on
the physical machine. A Java processor executes bytecode as machine instructions in
hardware, all without the need for any added interpretation, Just-in-Time (JIT) processing
or cross compilation. The JVM within the silicon chip is the machine and operates without
a kernel, OS or middle-ware. Using the JOP, Java software can be written to execute
application or serve data deterministically (with known physical constraints). This concept
is demonstrated in Figure B4.

Figure B4: Virtual or Physical

This concept shows how a traditional JVM driven via a JIT compiler hosted by a PC can
be transformed into a physical device, free of an OS, that becomes the machine! Addi-
tional functionality can also be incorporated physically to provide the same functionality
associated with many middle-ware products.

B.3 Memory

The JVM provides a physical garbage collection that is capable of dynamically managing
the memory pool of instantiated data types. Traditionally the memory management unit
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on current Central Processing Units (CPUs) is a physical device that is software controlled
via the kernel under the direction of the operating system monitor processes [9]. Using
a JOP to physically embed the functionality of a JVM within the CPU architecture,
removes the need for a kernel or OS. These components are redundant as are the delays
associated with the monitoring activities. Unfortunately the functionality can vary because
the memory footprint for Java changes according to the complexity required [46]. The
capability of this functionality is classified using four categories. These are:

Java 2 Enterprise Edition (J2EE): There are 100’s of classes associated with Enterprise
Java Beans (EJB) and other enterprise classes. The default footprint for EJB 3.0 is
over 100 MB of memory, without services running.

Java 2 Standard Edition (J2SE): The jar files for Java 2 Standard Edition (J2SE)
amounts to over 15 MB of SOC memory, ROM or Hard Disk Drive (HDD) storage.

Java 2 Micro Edition (J2ME) + CDC: The footprint for CDC and kilo-Virtual Ma-
chine (KVM) still requires at least 2 MB of SOC memory (excluding the OS).

Java 2 Micro Edition (J2ME) + CLDC: This limited form of CDC using a KVM
requires only 450 kB of SOC memory (excluding the providers OS). This is typically
described as Connected, Limited Device Configuration (CLDC).

The only way to reduce the footprint for any particular implementation is to reduce data
types, constrain the implementation of a given profile, pre-load classes within the JVM
or to discard any redundant classes in lieu of existing functionality. Other complications
occur when trying to invoke additional features such as a Real-Time Specification for Java
(RTSJ) model. In embedded machines memory becomes immortal48 and can eventually
cause capacity constraints or even complete failure. Flexibility comes at a cost; either
to the footprint and performance or the cost of analysis and functionality. The only real
answer is to include hardware to implement concurrent garbage collection using instance
counts and status bits as shown in the JOP hardware [47].

B.4 Garbage Collection

Studies have shown that the life of data (an Object) is relatively short [48]. Garbage
collection is designed to dispose of redundant objects in order to free memory and promote
reuse to reduce the volume of total amount of memory required on-board the system. By
examining a heap stack with kbytes of memory, at least 90% of all newly created objects
expire rapidly. It is feasible to easily reduce memory overheads by simply reusing the
expired capacity within the allocation pool and an engineer can easily lower the overall
memory budget of any system using a more efficient memory management process. The
JOP employs a generational system to manage its memory pool. Other efficiencies are
realised through bytecode folding and cache optimization (Section D.4).

48Embedded machines generally operate without operator influence making any data present in memory
immortal. Most SOC products contain a combination of both static and flash memory, so even if the power
is removed, some memory needs to be manually purged or re-flashed.
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B.5 Real-Time Specification for Java (RTSJ)

At present developers have relied on Ada and C++ to support real-time applications for
mission critical systems. We are generally forced to make choices (sacrifices) to achieve
deadlines, and given the chance, benefit from reviewing alternatives. Effort to incorporate
RTSJ into Java has evolved. This evolution is shown in Figure B549.

Figure B5: RTSJ Evolutionary Time-line (Updated)

The ultimate goal of its designers is to provide RTSJ software with service-like interop-
erability. The goal of this report is more modest. It begins with a literature survey on
the origins and evolution of Java, prior to assessing the feasibility of using a dedicated
(physical) processor to interface field-able systems in real-world environments by sampling
all available research.

RTSJ is commonly used in applications that require hard timing constraints, such as
robotics and critical systems. Recent work at Lund University discusses the use of RTSJ
with real-time garbage collection employed to control the scheduling [47] of a Flexpicker
pick-and-place industrial robot50 using its native EtherCat control system. This is achieved
using a standard platform based controller driven solely by Java code. The solution
was demonstrated at Java Technologies for Real-time and Embedded Systems (JTRES)
conference in 2007. The developers used real-time multi-threaded control loops for each
axis of motion. These Proportional Integral Derivative (PID) controllers interfaced directly
to the servo control mechanisms. Motion controllers generated trajectory information
using velocity and torque drive controllers, all written in Java with a minor amount of
Java Native Interface (JNI) code [49]. This demonstration successfully translated a video
image of passing participants and repetitively captured their portraits physically on canvas
in a timely manner.

The most relevant use of RTSJ in an airborne mission system was by Boeing in the ScanEa-
gle Unmanned Air Vehicle (UAV) [27]. Other developments include work by Masson and
Midonnet (at JTRES’08), who proposed extensions of the specification which enabled the

49See the RTSJ website at http://www.rtsj.org/

50This was a parallel kinematic robot (ABB IRB 340).
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management of aperiodic events [50]. More recently, a draft review of the specification has
been released under Java Specification Requests (JSR) 282 (release 1.1 at alpha 6.0).
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Appendix C Physical Virtual Machines

Following the conceptual aims of Pascal to execute p-code directly, three physical Java
processors were initially proposed by Sun Microsystems to enable manufactures to build
machines that would run bytecode natively. This concept continues to attract substantial
debate and the reader is free to examine material from various domains before developing
any conclusions. No discussion is afforded to commercial developments because they essen-
tially promotional material or closed Internet Protocol (IP) solutions51. Several examples
include:

• Timesys (initially funded by IBM);

• Jasmaica; and

• Ravenscar.

Given that this report is about the silicon instantiation of the interpreter, discussion
remains focussed on how the Java Virtual Machine (JVM) was progressively abstracted.
Hence the following description starts with a brief review of the kilo-Virtual Machine
(KVM), moves on to the picoJava, the microJava and the UltraJava [20], prior to exploring
the JEM, aJile, JavaCard and concluding with a list of other notable activities found in
the literature.

C.1 The kilo Virtual Machine

Initially the term kilo-Virtual Machine (KVM) was used to highlight the memory bud-
get and relationship between the JVM and traditional desktop platforms. This reference
is with respect to only requiring kilo-bytes of memory to service a JVM as opposed to
mega-bytes for most desktop applications. The term slowly faded, but is still referenced
when discussing the core operation of JavaCard solutions. The intention was to create
a compact, portable JVM that was specifically designed from scratch to operate small
resource-constrained devices in as little as one hundred kilobytes of memory. More specif-
ically, the KVM was designed to be [35]:

• small, with a static memory footprint of the Virtual Machine (VM) core in the range
of 40 kilobytes to 80 kilobytes of memory,

• clean, well-commented, and highly portable,

• modular and customizable, and

• as complete and as fast as possible without sacrificing the other design goals.

It was originally targeted to operate on 16/32-bit Reduced Instruction Set Computer
(RISC)/Complex Instruction Set Computer (CISC) microprocessors with constrained mem-
ory footprints, such as mobile phones, pagers, Personal Digital Assistants (PDAs), and
Electronic Funds Transfer Point-Off Sale (EFTPOS) terminals.

51These designs have been targeted to specific Field Programmable Grid or Gate Array (FPGA) tech-
nologies with dedicated routing or customised Logic Cell (LC).
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C.2 PicoJava

The term KVM faded with the introduction of the picoJava. The design was first an-
nounced by Sun Microsystems in 1997 [51]. It was introduced as a Verilog library to be
implemented as an Application-Specific Integrated Circuit (ASIC) [52]. The picoJava was
licensed by Fujistsu, IBM, LG and NEC, but was never commercially released, although it
did attracted limited academic interest. For instance, Dey et al. recorded their experience
with the simulated core using model sim [53]. They described their research in terms of
using a System on Chip (SOC) attached as a co-processor design directly connected to
the PI-Bus for hardware acceleration. Dey also reported the implementation consumed
440 thousand gates. The picoJava processor was eventually released to the public as an
open-source project in 1999 [54]. Sun Microsystems also released reference manuals for
both the Micro-architecture [55] and Programming Reference [56]. The basic design used
a CISC-based processor core with over 300 instructions. This information enabled devel-
opers to implement enhancements and release the picoJavaII as prefabricated ASIC chips
and more recently transition their libraries to FPGA chips. The picoJava microprocessor
was composed of a number of core components, interconnected using internal data and
control buses. Figure C1 shows the general configuration of the processor design. These
include:

• Instruction Cache,

• Data Cache,

• Stack Cache,

• Integer Unit, and

• Micro-Read Only Memory (ROM).

All microprocessors require registers to monitor the physical state of operation within
their environments. Examples include program counters, memory addressing registers
and interrupt mechanisms. Each architecture uses a proprietary design and many rely on
the programmer to consider these issues when creating efficient software (usually via the
compiler). The picoJava is not based on a RISC architecture, but does make efficient use
on single cycle instructions [52]52. The hardware uses interrupts and traps to manage many
of the more complex software tasks, such as creating arrays and invoking methods [57].
As a direct execution engine must be designed to cope with expensive resource intensive
operations, especially when the hardware creates objects, manages arrays and conducts
garbage collection [9].

The picoJava is a stack-based 32-bit microprocessing core with a variable length Instruction
Set Architecture (ISA) of 300 instructions53 implemented using a 6-stage pipeline. It was
released with the option of including a physical or virtual Floating-Point Unit (FPU).

52In all microprocessors, many instructions relate to constants, local variables and stored values. In the
picoJava these represent 15.2%, 41.5% (both predominantly stack based) and 24.2% respectively.

53A large number of multi-byte instructions are resolved at run-time and substituted by reserved single-
byte alternatives that are only accessed by the core [52].
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Figure C1: Block Diagram of the picoJava core [55]

The biggest impediment with this design is migrating the closed IP designs for the caches,
integer unit, stacks, FPU and micro-ROM instructions to other environments54.

The picoJava is an RTL hard core55 that was designed for ASIC fabrication using Verilog
code56, similar to Digital Signal Processors (DSPs) and many router switching chips.
Experience testifies that generating designs on different chips is a non-trivial process.
Hence the user will generally need to generate and test the necessary masking image. A
soft core is one that provides the IP of the design in a modular format that can be targeted
with some flexibility to an given manufacturers technology. Common examples include
Altera, Lattics and Xilinx FPGAs. A firm core on the other hand is one the that tries
to balance the need for efficiency and optimization with that of flexible reuse [53]. Unlike
the picoJava, modern designs provide gate-level libraries without the physical limitation
or constraints that prevent the proliferation of many existing designs. This IP stifles the
expansion of open source development due to cost, availability and licensing.

54There are a number of other considerations relating to the physical Register Transfer Level (RTL)
footprint, implicit built in test and signal monitoring (Using primitive forms of Joint Test Action Group
(JTAG) using Logical Built in Self-test (LBIST), Multiple Input Shift Register (MISR), Linear Feed Shift
Register (LFSR) and Shift Register Sequence Generator (SRSG)) [58, 53].

55This is a synthesizable library with 46,376 Lines of Code (loc) in Verilog [53].
56The verification support for this design consisted of several libraries. The simulation library contained

22,454 loc, the runtime support 34,642 loc and the functional test another 11,348 loc [53].
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C.3 PicoJavaII

Attempts to design a microprocessor that directly executes higher level instruction sets are
not new. During the reign of Pascal, we had pcode. This was followed using the concept
of casting Forth into silicon. This design also introduced the concept of using a dribbler
unit to serve code without the typical write-back caching penalties. In 1985 Chuck Moore
designed the Novix NC4000 microprocessor to directly execute Forth. Harris technol-
ogy quickly followed with the RTX200 and soon after the M17 Minimum Instruction Set
Computer (MISC) processor. The picoJava II was released by Sun Microsystems as the
microJava701 in 1997. Sun Microsystems subsequently licensed the technology to Rockwell
Collins, who created the JEM1 in 1997 which was quickly spun-off as the aJile aJ-100.
Advantel followed the concept but eventually created an independent design called the
TinyJ. Fujitsu released a the J-StaterKit based on the MB86799 in 2000 complete with
an Real-Time Operating System (RTOS) called JTRON [59, 60, 57].

The picoJava embodies robustness, portability and a high level of security, where memory
is treated as a black-box to protect against malicious code. As its predecessor, it is a
stack machine that manages a fully compliant variable length set of bytecode instructions
[61]. It was released with the option of including a physical or virtual (software emulated)
FPU. The design includes verilog components to build the Stack Cache, Memory with
Input/Output (I/O) and Instruction/Data Caches [61]. This option provided developers
with a low cost method of making the technology portable and enabled them to integrate
this design into customisable products. Figure C2 reveals there were no conceptual changes
to the original design or specification.

Figure C2: picoJavaIITM Core Microarchitecture [62]

The PicoJavaII was originally released as a verilog code for ASIC designs in 1997 [52],
which is no longer available, however a Fujitsu have released an FPGA as open source
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project [63]. It also unveiled a real-time PicoJava processor clone called the MB86799 in
2000 [59]. Many of these projects gave way to Just-in-Time (JIT) compilation embedded
into Internet browsers.

C.4 JEM

Figure C3 shows the original approach to implementing the JVM by Rockwell Collins57.
In 1998, Dr Jensen demonstrated he was able to create, document and transition Java into
VHDL manually using the Altera MaxPlusII development environment. This approach
enabled the transition from Access Control List language - Version 2 (ACL2) to provide
higher-level language support through Java directly to the machine. He has continued
this development of the resulting architecture into a commercially available version of the
PicoJavaII.

Figure C3: The Rockwell Collins approach to the JVM

The JEMCore enables the use of custom microcode. New instructions can significantly
increase the throughput of frequently used algorithms or processes. For example multi-
threaded instructions can be used to improve the processor’s performance. The yield
instruction results in a thread-to-thread switch of one microsecond. This operation would
typically take several micro-seconds in existing RTOS written in a high level language.

C.5 The aJile JVM

The JEMCore is based on the proven JEM architecture from Rockwell Collins. This core
was designed to directly execute Java bytecode in real-time. This core improves the speed

57See presentation by Dr David W. Jensen at http://hokiepokie.org/docs/seminar98.ps.gz
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and efficiency by directly executing the instructions. This eliminates the need for the
overheads normally associated with Java interpreters and JIT compilers. Primitives such
as wait, yield, notify, monitor, enter and exit are implemented as extended bytecodes.
This eliminates the need for an RTOS kernel. This core can be deployed as a native Java
processor or as an independent coprocessor. This concept was used in 3G cellphones (sim
cards) and Java Cards (almost all electronic bank cards). Figure C4 displays the JEM
core embedded into the aJile processor.

Figure C4: The JEM Core inside Rockwell Collins aJile Processor

The aJile processor has evolved from the humble aJ-80 through to the aJ-102. Using a
multi-core design, the aJ-102 product provides a massive 300% performance boost over
the aJ-100. This processor was positioned to radically enhance the platform intelligence
of smart phone infrastructure into the 21st century [64].

Danh Le Ngoc, who is the founder and Vice President of marketing for aJile Systems,
believes the demand for networked SOC processors is being driven by the convergence
of two powerful forces [64]. These include the expansion of mobile communications and
networking. Examples include the ubiquity of 2.5G, 3G, Local Area Network (LAN), and
802.11 networks. Social networks and the growing desire for built-in intelligence are also
forcing industry to invest billions in smart infrastructure.

C.6 JavaCard

A smart card is essentially a credit card sized SOC that stores and information. This
silicon based virtual machine provides a portable, mobile computing concept for dedicated
applications, such as security and banking. It is most commonly deployed as a customized
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or dedicated product, such as an Asynchronous Transfer Mode (ATM) access card or
electronic wallet. Early prototypes were implemented using 8-bit microprocessors based
on a single-chips with embedded memory and private key encryptions. The JavaCard
provides a static embedded system that is instant ON and has no need to dynamically load
classes at run-time [65]. Unlike a computer a smartCard has NO support systems, such as
a power supply, keyboard, hard drive or display. Its I/O relies solely on a physical serial
interface. Originally JavaCards were provided as plastic cards that connected directly to
a smart card reader58 using a five pin mechanical connector. Sun Microsystems released a
number of specifications relating to the JavaCard as it evolved, with version 3.0.1 adding
wireless near-field communication [66] to the design.

In early 2010, an Oracle news release estimated there were over 5 billion access cards
using embedded JavaCard processors59. Smart card technology today runs on 4 to 8
Kb of RAM and between 32-64 Kb of Electrically Erasable Programmable Read-Only
Memory (EEPROM), however many still use slow 8-bit processors that only support a
limited subset of JavaME.

The chip provides a JavaCard Run-time Environment (JCRE) which executes the native
methods within the JVM and control access to any I/O in order to maintain system security
of any embedded data60. Figure C5 displays the supported functionality of the Application
Program Interface (API) and hard coded services61. There is also a primer62 and other
supporting documentation from the JavaCard website 63, Java Commerce website 64 and
enthusiast publications (like Java World65).

C.7 The Java Silicon Machine (JSM)

As Java Cards became popular, the concept of more flexible Java processors evolved as the
JSM [67]. More recent developments in physical the JSM promote embedded systems to
support traditional applications. One example in the academic space is the Java Optimized
Processor (JOP). A quick survey of notable research projects associated with the JSM
has been extracted from the literature. These include:

picoJava: was the first attempt by Sun Microsystems to physically build a commercial
Java processor [9].

aJ102 and aJ200: real-time low-powered network connected processor from aJile Sys-
tems [64].

58All smartCards can be inserted into a Card Acceptance Device (CAD) to exchange data.
59See http://www.itnews.com.au/News/229750,ellison-to-talk-javas-future.aspx?eid=1&edate=20100824&eaddr=

60This provides security for access to Personal Identification Number (PIN) numbers and access protocols.
61The JavaCard framework and associated developer kit is document by Oracle with the API

Java Document at http://docs.oracle.com/javame/config/cldc/opt-pkgs/api/security/satsa-api/jsr177/javacard/framework/service/

package-summary.html

62See http://www.javaworld.com/jw-12-1997/jw-12-javadev.html

63See http://www.javaworld.com/javaworld/jw-02-1998/jw-02-javacard.html

64See http://java.sun.com/products/commerce/

65See http://www.javaworld.com/javaworld/jw-02-1998/jw-02-javadev.html
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Figure C5: JavaCard [62]

Cjip: Reconfigurable System on Chip (RSoC) with embedded JVM from Imsys Technolo-
gies66.

JA 108: Nazomi JSTAR and JSMART acceleration for Connected, Limited Device Con-
figuration (CLDC) and Mobile Information Device Profile (MIDP) products67.

Komodo: is a multi-threaded Java micro-controller for research on real-time scheduling
applications [68].

FemtoJava: is a research project to build an application specific Java processor [69].

ARM926EJ-S: A fully sythesizable Advanced RISC Machine (ARM) based68 RISC pro-
cessor able to run Java bytecode by Jazelle.

JOP: for FPGAs [70].

SHAP: A bytecode processor from the Dresden University of Technology in 2006 [71]69.

jHISC: provides hardware support for object-oriented functions [72].

ObjectCore: is a multi-core ARM based Java processor also designed by Vivaja Tech-
nologies originally using a Vertex V FPGA70.

A microprocessor using a High-Level Instruction Set Computer (HISC) architecture, like
jHISC71, reflects the concepts previously developed by Phillips when implementing a Very

66Imsys is a Swedish fabless designer providing a rewritable-microcode chip with instruction sets for Java,
Forth and C/C++. See the IM3910 - which is a High-Efficiency Microprocessor for Networked Equipment
at http://www.imsystech.com/products/im3910.htm

67See http://www.nazomi.com

68See http://www.arm.com/products/processors/index.php

69See http://shap.inf.tu-dresden.de/

70See http://www.design-reuse.com/sip/pub-14516/, but you will need to register.
71jHISC is a 32-bit object-oriented processor.
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Long Instruction Word (VLIW) design. This used a 128-bit operand descriptor to support
Object Oriented Programming (OOP) with embedded machine readable data types. This
concept is mainly used by Connected Device Configuration (CDC) products running Java
2 Micro Edition (J2ME).
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Appendix D Java Optimized Processor

Java can be cross-compiled, interpreted or directly executed given the appropriate re-
sources. At present Just-in-Time (JIT) compilation has proven capable of implementing
many serious enterprise level applications however, given the availability of System on
Chip (SOC) suppliers, turn-key systems are increasingly being offered. Each requires spe-
cialist knowledge and experience in order to get products to market and reduce system
modification which can be costly and take significant resources. Java is becoming ubiqui-
tous and many applications can be fielded given a suitable platform capable of hosting a
Java Virtual Machine (JVM). Size, mobility and flexibility are stating to drive distributed
computing and autonomous control systems, which is influencing how products evolve.
Customers are demanding systems that they can develop and modify using higher-level
languages, such as Java, without the need to understand SOC design.

The Java Optimized Processor (JOP) has been manifested in many forms and on a variety
of Field Programmable Grid or Gate Array (FPGA) based platforms. To move the de-
sign to a new target chip or development board, the hardware engineer simply change the
memory and Input/Output (I/O) interfaces prior to recompiling the programming mask.
This promotes re-use and reduces the need for the customer to modify any end-user appli-
cations. In many cases, it also enables a supplier to provide new hardware interfaces for
a variety of systems within the same applications, departing from the need to rely on the
existing low level design tools and technology. Several of the approaches requiring cross
compilation, Ahead of Time (AOT), JIT, imaging and synthesis as shown in Figure D1.

Figure D1: Approaches to Creating an Embedded Java Processor

Designs can be derived for existing hardware using cross-compilation or providing custom
designs. These will be designed using either Application-Specific Integrated Circuit (ASIC)
or FPGA methodologies. Examples of each approach include:

Co-processors:
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• JSTAR from Nazomi in 2002 which also evolved as JSMART from the original
Javacard development [73].

• Insilicon from Synopsys in 2001. This is based on an Advanced RISC Machine
(ARM)9 using in hardware folding.

• Jazelle Direct Bytecode eXecution (DBX) from ARM in 200572.

ASIC Designs:

• Pica Java from Sun Microsystems in 1999 using a 6-stage pipeline with micro-
programmed instructions.

• AJ-80 from Ajile using the JEM2 core on Connected Device Configuration
(CDC) with Real-Time Specification for Java (RTSJ) compliance [74].

• CJIP

• FemtoJava was a research project that never passed benchmark testing [75].

FPGA Solutions:

• Moon from Vulcan which supports Java 2 Micro Edition (J2ME) Connected,
Limited Device Configuration (CLDC).

• Lightfoot from DCT using a Xilinx Harvard core.

• Lavacore from Xilinx which is user configurable based on IP cores.

• Komodo from Augsburg University which provides four hardware threads [76].

• SHAP from Dresden University which includes garbage collection.

• JOP from Schoeberl providing a Complex Instruction Set Computer Complex
Instruction Set Computer (CISC) approach with 4-stage pipeline and support
for RTSJ [77].

The JOP is available as an off the shelf design and it can be employed using any number
of existing development platforms. It can be customised during design however, when the
product is fielded, the system will execute bytecode directly. The following sections provide
more detail about the JOP design, including a description of the internal microcode,
pipeline, cache, interrupt system and garbage collection.

D.1 Description

The major operational blocks of the JOP architecture is shown in Figure D2. The
schematic looks similar to the picoJava, however significant effort has been expended
to optimize several components within the JOP core. Stack-based machines traditionally
take data directly from several sources (primarily the data stream and instruction queue).
This process makes opcode throughput more efficient than the transactional approach used
in CISC processors because the computational result is immediately accessible by subse-
quent instructions. As suggested, register based machines rely on a transactional process

72See http://mobile.arm.com/products/processors/technologies/jazelle.php?tab=Jazelle+Architecture
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for every instruction. In CISC machines, most transactions use this process to takes infor-
mation from memory, across a bus into a register prior to any calculation and then return
data back to memory. It should be noted that because Java is written to support Object
Oriented software, 65% of all bytecodes can be optimized within a physical JVM. Further
optimization can also occur by manipulating access to the stack internally. For instance,
you can physically bypass the need to negotiate a significant number of transactions via
the Top of Stack (TOS) by accessing its contents directly using internally managed offsets.

Figure D2: JOP Block Diagram [78]

D.2 Microcode

Like the original picoJava, the JOP has an extended Instruction Set Architecture (ISA).
The standard set is exposed to the compiler and the extension’s hidden to control the
efficient operation of the machine. These are represented by the JVM supported bytecode
instructions and the internal microcode. The latter is a native set of instructions used by
the JOP to manage the extended stack and internal flow of the pipeline. As there are no
bytecodes available to gain low-level access, these instructions transparently provide the
functionality traditionally supported by an underlying Operating System (OS). It is also
used to simplify the execution of some complex instructions [55] using macro style routines
as software traps for simplicity (also described as instruction folding [79]). This enables
the processor to internally substitute duplicitous instructions previously generated by the
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interpreter. One obvious example is the new instruction. Other include:invokestatic,
invokevirtual and invokespecial instructions.

A number of the Java bytecodes are extremely complex, however most of these are very
rarely used. When they are used they can generally be re-assembled into more efficient
forms. A series of 256 static methods have be specifically designed to optimized the
stream for the JOP. This flexible implementation of bytecode is a supplementary step of
the compilation process, however given sufficient resources can feasibly be included in the
overall physical design [80].

D.3 Pipeline

As shown in Figure D3, JOP has a four-stage pipeline that executes bytecode instructions
in a single cycle. The data path for both the data and opcodes are displayed in blue.
The initial stage manages the bytecode stream similar to a monitor. It translates the
instructions with machine readable meta-data into executable code together with any
branching and storage logic. The next three blocks (second stage) fetch, decode and
execute the micro-code generated. The third stage generates addresses to manage the
stack using the fill and spill technique to enable it to push and pop data efficiently to the
Arithmetic Logic Unit (ALU) [80].

Figure D3: JOP Pipeline [80]

D.4 Cache

The JOP provides two time predictable caches [81]. One for the instructions and the other
for methods [78, 82, 83]. The traditional memory bandwidth bottlenecks are minimized
using on-chip Logic Cells (LCs) configured as block memory and is subject to microcode
logic control to ensure it is accessible at predictable time intervals [84]. An internal call tree
is used to manage the method cache. Complete methods are stored in the cache making
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it easy to determine Worst Case Execution Time (WCET) and behavior. This concept
provides a substantial performance improvement over traditional shared stack designs.

D.5 Interrupts

During translation the JOP cleverly avoids the need to handle interrupts within the
pipeline. Special instructions have been provided internally to forecast an impending
interrupt. These instructions are substituted to ensure interrupts always occur on byte-
code boundaries. This enables you to determine pre-emptive delays for WCET timing
calculations [85, 86, 87]. This form of mapping ensures that interrupts remain transparent
to the pipeline core and minimise the design logic inherent in more complex systems. This
solution provides a very acceptable solution for a very minor trade-off.

D.6 Bytecode Folding

JOP reduces code complexity through the use of Bytecode Folding. In essence this re-
compilation process modifies (or re-orders) the program to improve access to the stack [88].
This is similar to the process described when introducing bytecode in Section B.2. When
the variable stack is internal and independent of the method stack additional efficiencies
can be realised. These concepts are still evolving and much will be written before a single
standard emerges.

D.7 JOP Garbage Collection

One of Java’s biggest criticisms is its efficiency related to creating and destroying objects
[47]. To gain executing speed, objects are discarded and the resources then collected in
a background process. This can cause sluggish behaviour during execution of many data
intensive applications on machines with interpreted JVMs. To avoid this issue, Schoeberl
intends on providing Real-Time Garbage Collection within the JOP [89, 90, 91]. He states
that:

A real-time garbage collector provides time predictable automatic memory
management for tasks with bounded memory allocation rate with minimal
temporal interference to tasks that use only static memory. [92].

Work is being conducted by his team to investigate supporting hardware to invoke write-
barriers internal to the JOP aimed at optimizing the dynamic collection process to support
real-time operation.

D.8 Multi-Threaded JVMs

Once upon a time, we commonly conceptualised a single Central Processing Unit (CPU)
as being the machine. We also viewed the whole desktop as the CPU with peripherals.
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Given the rise of multiple cores within a microprocessor chip, the desktop has become the
machine and embedded systems are becoming computers. Soon multi-core computers will
employ heterogeneous processor types (CPUs, Graphics Processing Units (GPUs), Digital
Signal Processors (DSPs) and customized cores, like the JOP). In time, a multi-core
JOP style SOC will perceivably become the computer. This would enable the JVM to
transition from a virtual world to the physical world, enabling byte-code to run natively
without the overheads introduced by the OS and delays caused by interrupts or multi-
tasked processes (background daemons). Although multi-threaded application support on
desktop machines is beginning to mature, they will continue to be constrained by the
OS and middle-ware processes. The concept of having individual JVMs cooperatively
interoperate using independent instantiations on a single Personal Computer (PC) have
emerged [93], although interoperability can be stifled by the OS and associated software
environment. At present the only way to support multi-threaded real-time applications is
by adopting a vendor specific system that uses customised applications. Java SE-7.0 gained
Portable Operating System Interface (POSIX) support. This enables Java programmers
to enhance the scope of applications using a multi-core systems and illustrate the feasible
use of multi-core Java processors, such as the BlueJEP and CMP.

D.9 BlueJEP

The BlueJEP Java processor is synthesised using a silicon core using a design process that
is similar to the JOP as shown in Figure D4.

This uses the BlueSpec system Verilog process, which is a rule based, strongly-typed,
hardware specification with a Term Rewriting System to describe the atomic state of
computations. The design also incorporates BlueSpec Embedded Java Architecture with
Memory Management (BluEJAMM) and has a redesigned six stage pipeline. The BlueJEP
is significantly larger than JOP after synthesis, but it is claimed to exhibit slightly higher
performance [49]. The microprocessor has the following properties [46]:

• Micro-Read Only Memory (ROM) program,

• Stack machine core,

• Real-time predictable system (in addition to being high-performance),

• Supports the full bytecode instruction set,

• Embedded micro-instruction set,

• Loaded and executes classes directly,

• Packaged with synthesis tools, and

• FPGA implementation.
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Figure D4: BlueJEP Flow

D.10 The CMP

Research into dual-threading Java processors emerged in 1992, with papers appearing
periodically, such as the Simulataneous Multi-threaded (SMT) JavaChip [94]. A more
recent example was examined by Pitter which employs Instruction Level Parallelism (ILP)
across multiple JOP cores [95]. The Chip Multi-Processing (CMP) microprocessor block
diagram is shown in Figure D5.

This design was successfully synthesized using Cyclone II (EP2C70F896C6 ) FPGA mounted
on a DE2-70 Development and Education Board using the Quartus II Integrated Synthesis
Environment (ISE) as shown in Figure D6.

After confirming the success of the default design, an eight core array was synthesized.
The results are shown in Figure D7. By reviewing the resources used in the flow summary,
less than 5% of the chip’s capacity was consumed. It is interesting to note that the:
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Figure D5: The Architecture of a Time predictable CMP [96]

Figure D6: DE2-70 Development and Education Board

“logic resource consumed for a stand-alone configurable design is in the range
of 2000-3000 LC. That is 1/3 the size of a soft-core Reduced Instruction Set
Computer (RISC) processor [97]”.

A quick estimate indicates it is feasible to synthesize at least 160 cores in single chip
design using the remaining capacity. Logic dictates that additional structure would be
required, however the potential for creating a cluster of interconnected nodes does spur
the potential for High Performance Computing (HPC) applications using a single SOC.
For instance a 4 x 4 x 4 x 4 node cluster array (i.e. 256 interconnected cores) would deliver
the performance of a powerful super computer on a single chip.
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Figure D7: Results from Building an 8-core CMP project in Quartus II

As part of the research supporting this report, the ML-605 Evaluation board was also
evaluated for a multi-core design. This boards was identified because of its potential of
employing a large cluster of JOP as a SOC solution. As a guide, the board hosts a Virtex 6
XC6VLX240T FPGA with 241,152 LC building blocks. At this density, its not the number
of Java Silicon Machines (JSMs) available, its more about the complexity of capabilities
that can be interconnected in parallel.

Further documentation on the multi-core design is evolving at the University of Vienna
with the latest investigating a time predictable design using a static Time Division Mul-
tiple Access (TDMA) schedule by Schoeberl [98]. The reader is invited to explore other
contributions that should now start considering embedding the firmware protocols required
to achieve interoperability. Industry concedes that Common Object Request Broker Ar-
chitecture (CORBA) has a legacy following, however it has essentially been displaced by
web-services and therefore recommend a compatible service-based interface be considered.

D.11 The Common Object Request Broker Architecture

The Object Management Group (OMG) originally released CORBA in 1991, however
it was revised several times before an enduring version (3.0.2) was released in 200273.

73See the OMG History website at http://www.omg.org/gettingstarted/history_of_corba.htm
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A revised standard (3.2) was released to accommodate near real-time functionality in
201174. The Corba framework provides a skeleton interface for distributed interoperabil-
ity of large homogeneous networks that supports the General Inter-ORB Protocol (GIOP),
Internet Inter-ORB Protocol (IIOP) and Distributed Computing Environment (DCE) us-
ing Control Area Network Inter-ORB Protocol (CIOP) out of the box. It uses an Object
Request Brocker (ORB) as a token that acts as a pass key to transfer a standard set
of message formats or requests over different network using GIOP. This is an abstract
protocol that specifies an implementation over Transmission Control Protocol / Internet
Protocol (TCP/IP) using IIOP.

The real-time extension was provided to force computers with multiple microprocessors to
support application in a predictable manner. This concept monitors execution priorities to
map the underlying Real-Time Operating System (RTOS) task/threads being scheduled
for all operations within the system. Figure D8 shows an ORB ended system that consists
of network interfaces, operating systems, I/O subsystems, communication protocols, and
CORBA compliant middle-ware components or services [99].

Figure D8: Possible Architecture in Real-Time Distributed Embedded Systems [26]

74See the OMG revised Specification website at http://www.omg.org/spec/CORBA/3.2/
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