

Australian Government Department of Defence Science and Technology

# Calibration of the DST Group Research Wind Tunnel Pressure Rings

Jesse McCarthy

Aerospace Division Defence Science and Technology Group

DST-Group-TN-1728

### ABSTRACT

A calibration of the pressure rings in the DST Group Research Wind Tunnel was performed for an empty test section and with an elevated ground plane installed. This pressure ring system is similar in principle to the piezo-rings utilised in the DST Group Low Speed Wind Tunnel for calculating nominal test-section wind speed with a calibration factor. Calibration factors were obtained for both the empty test section and when the elevated ground plane is installed. It is found that the addition of the elevated ground plane changes the calibration factor significantly.

#### **RELEASE LIMITATION**

Approved for Public Release

 $Produced \ by$ 

Aerospace Division 506 Lorimer St, Fishermans Bend, Victoria 3207, Australia

Telephone: 1300 333 362

© Commonwealth of Australia 2018 February, 2018 AR-017-078

APPROVED FOR PUBLIC RELEASE

# Calibration of the DST Group Research Wind Tunnel Pressure Rings

# **Executive Summary**

The DST Group Research Wind Tunnel (RWT) has high- and low-pressure rings (i.e. circumferential pressure tappings) installed, similar in principle to the piezo-rings in the DST Group Low Speed Wind Tunnel (LSWT). The high-pressure ring is located before the wind tunnel contraction and the low-pressure ring after the contraction, where the average static pressure is lower than before the contraction. This pressure differential can be measured and calibrated to provide the average wind speed at a downstream station, thus obviating the need for a local wind speed measurement using an intrusive instrument such as a Pitot-static tube.

A calibration of the RWT pressure rings was carried out with a method similar to the LSWT piezo-ring calibration, for the cases of an empty test section and when an elevated ground plane is installed. A first order least-squares fit accounting for errors in both coordinates was used and a calibration constant obtained for each case. The uncertainties in measurements were assessed and found to be within acceptable limits. Thus, the calibration constants may be applied to the pressure ring data and ultimately used for determining wind speed in the RWT test section with or without the elevated ground plane, instead of relying on a pitot-static tube for wind speed measurements.

 $This \ page \ is \ intentionally \ blank$ 

DST-Group-TN-1728

# Contents

| 1 | INTRODUCTION                                                      | 1  |
|---|-------------------------------------------------------------------|----|
| 2 | RESEARCH WIND TUNNEL DESCRIPTION                                  | 2  |
| 3 | TEST EQUIPMENT                                                    | 3  |
|   | 3.1 Pitot-Static Probe                                            | 3  |
|   | 3.2 Pressure Transducers                                          | 5  |
|   | 3.3 Temperature Probe                                             | 5  |
| 4 | TEST METHODOLOGY                                                  | 6  |
| 5 | DATA REDUCTION                                                    | 8  |
| 6 | RESULTS AND DISCUSSION                                            | 9  |
| 7 | REFERENCES                                                        | 13 |
| A | PPENDIX A: SYSTEM UNCERTAINTIES                                   | 15 |
| A | PPENDIX B: TABULATED EMPTY TEST SECTION DATA                      | 17 |
| A | PPENDIX C: TABULATED DATA WITH ELEVATED GROUND PLANE<br>INSTALLED | 27 |

# Figures

| 1        | DST Group Research Wind Tunnel                                                                                                                                 | 2  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2        | RWT coordinate system                                                                                                                                          | 3  |
| 3        | The elevated ground plane supported by the test section walls rather than the four vertical struts.                                                            | 4  |
| 4        | Photographs of the pitot-static tube fixed to the sting mount inside the RWT for (i) an empty test section, and (ii) with the elevated ground plane installed. | 4  |
| <b>5</b> | The testing instrumentation and connections used in the calibration                                                                                            | 5  |
| 6        | Least-squares regression fits on empty test section data for (i) baseline and (ii) replicate runs.                                                             | 10 |
| 7        | Least-squares regression fits on elevated ground plane data for (i) baseline and (ii) rep-<br>licate runs.                                                     | 10 |

DST-Group–TN–1728

# Tables

| 1  | Pressure ring calibration test matrix.                                                          | 7  |
|----|-------------------------------------------------------------------------------------------------|----|
| 2  | The calibration factors for each RWT test section configuration and the standard error          |    |
|    | of $q_{ts}$ estimation                                                                          | 9  |
| 3  | Test uncertainties                                                                              | 16 |
| 4  | Tabulated data from empty test section test at $U_{ts} = 5 \text{ m/s}$                         | 17 |
| 5  | Tabulated data from empty test section test at $U_{ts} = 10 \text{ m/s} \dots$                  | 19 |
| 6  | Tabulated data from empty test section test at $U_{ts} = 15 \text{ m/s} \dots$                  | 21 |
| 7  | Tabulated data from empty test section test at $U_{ts} = 20 \text{ m/s} \dots$                  | 23 |
| 8  | Tabulated data from empty test section test at $U_{ts} = 24.4 \text{ m/s} \dots$                | 25 |
| 9  | Tabulated data from tests at $U_{ts} = 5 \text{ m/s}$ with the elevated ground plane installed  | 27 |
| 10 | Tabulated data from tests at $U_{ts} = 10 \text{ m/s}$ with the elevated ground plane installed | 29 |
| 11 | Tabulated data from tests at $U_{ts} = 15$ m/s with the elevated ground plane installed         | 31 |
| 12 | Tabulated data from tests at $U_{ts} = 20$ m/s with the elevated ground plane installed         | 33 |
| 13 | Tabulated data from tests at $U_{ts} = 25$ m/s with the elevated ground plane installed         | 35 |

DST-Group-TN-1728

# Glossary

| ADC  | Analog to Digital Converter    |
|------|--------------------------------|
| DST  | Defence Science and Technology |
| FS   | Full Scale                     |
| LSWT | Low Speed Wind Tunnel          |
| PS   | Pitot-Static                   |
| RSS  | Root-Sum-Square                |
| RWT  | Research Wind Tunnel           |
| SCR  | Sting Column Rig               |
|      |                                |

# Notation

| Constant term in linear regression analysis (Pa)                                |
|---------------------------------------------------------------------------------|
| Calibration factor                                                              |
| Number of measured values                                                       |
| Static pressure differential (Pa)                                               |
| Test section absolute pressure (Pa)                                             |
| Test section dynamic pressure (Pa)                                              |
| Universal gas constant for dry air, 287.04 kJ/kg·K                              |
| Reynolds number based on dimension $x$                                          |
| Test section temperature (°C)                                                   |
| Test section wind speed $(m/s)$                                                 |
| A linear dimension used in the calculation of $\operatorname{Re}_x(\mathbf{m})$ |
|                                                                                 |

### Greek Symbols

| $\mu_{ts}$ | Test section air dynamic viscosity ( $Pa \cdot s$ ) |
|------------|-----------------------------------------------------|
| $ ho_{ts}$ | Test section air density $\rm (kg/m^3)$             |

DST-Group-TN-1728

 $This \ page \ is \ intentionally \ blank$ 

# 1. Introduction

The DST Group Research Wind Tunnel (RWT) test section dynamic pressure, from which the wind speed is calculated, has traditionally been measured by using a Pitot-static (PS) tube mounted in the test section. The PS tube is positioned near the aft end of the test section, such that it does not interfere with a test article. However, the dynamic pressure measurement is localised and cannot give an indication of the average wind speed in the test section, which is often used as a reference parameter in test calculations and data reduction.

The DST Low Speed Wind Tunnel (LSWT) has two piezo-rings, which are connected to pressure transducers, installed circumferentially before and after the contraction section. These rings measure the difference in static pressure between the two stations. This static pressure differential  $\Delta P$  is related to the dynamic pressure at some station downstream of the piezo-rings as per Eq. (1);

$$q_{ts} = K\Delta P,\tag{1}$$

where  $q_{ts}$  is the test section dynamic pressure and K is a calibration factor to be determined. This method of determining the test section dynamic pressure is outlined in greater detail by [1]. The advantage of this technique is that an intrusive measurement of dynamic pressure is not required once the calibration factor is obtained. Work has been done by [2] and [3] to obtain calibration factors for the LSWT at multiple centre-line locations in the test section. These factors are now used regularly in LSWT test programmes. [3] also obtained calibration factors in the LSWT test section when the Sting Column Rig (SCR) was installed. It was observed that the presence of the SCR had an appreciable influence on the calibration factor, which was attributed to tunnel blockage effects.

The RWT has pressure rings<sup>1</sup> installed similarly to the LSWT, in that they are placed before and after the contraction section. These pressure rings were never calibrated and thus have not been used in any tests to date. The cross-sectional shape of the RWT test section is geometrically similar to the LSWT, and both wind tunnels have the same contraction ratio. Thus, a similar calibration technique as that of [2] and [3] is carried out for the RWT pressure rings. However, [2] and [3] found that the calibration factor did not change significantly with stream-wise location inside the test section. Also, the RWT is not generally used for high fidelity testing, and the models usually do not span the length of the test section. Thus, calibration factors inside the RWT are obtained at one centre-line station only, for two cases:

- 1. Empty test section, and
- 2. An elevated ground plane (EGP) installed

The latter case is included because the findings of [3] suggested influence of model support blockage on the calibration factor.

<sup>&</sup>lt;sup>1</sup>Pressure rings operate equivalently to piezo-rings in this context.



Figure 1: The DST Group Research Wind Tunnel. Diagram taken from [4].

# 2. Research Wind Tunnel Description

The DST RWT is a suction-type, closed-jet tunnel, with an open airflow return circuit. The flow is initially conditioned at the inlet using honeycomb screen with square cells, and subsequently with three turbulence reducing screens. A 4:1 contraction leads into the test section, which has an irregular-octagonal cross-section that is 800 mm wide, 622.2 mm high and 1196 mm long. The width and height test section dimensions are a scaled-down version of the LSWT by a linear factor of 3.429 [4]. The cross sectional area of the LSWT is 5.283 m<sup>2</sup>, so this gives a RWT test section cross-sectional area of 0.449 m<sup>2</sup>. A single-stage, twenty-four (24) blade fan, driven by a 22 kW AC motor, is downstream of the test section. The fan and motor permit a maximum wind speed of approximately 28 m/s with no turbulence reducing screens installed. With the three screens installed, the maximum achievable wind speed in the tunnel is around 25 m/s. Usually, the RWT would be used with the turbulence reducing screens installed, as a study by [4] found significant non-uniformity in flow angularity and turbulence intensities in the test section without the screens installed. At nominal wind speeds of 10–20 m/s with the screens installed, the turbulence intensities were below 0.3% and flow angularity was within 0.5° [4]. A diagrammatic representation of the RWT is shown in Fig. 1.

The tunnel coordinate system  $(x_T, y_T, z_T)$  has its origin along the tunnel centre-line and at the entrance of the test section, with flow in the positive  $x_T$  direction and  $z_T$  is positive towards the tunnel floor. According to the right-hand rule, the  $y_T$  direction is then positive towards the starboard side of the tunnel, when viewing upstream (Fig. 2).

The RWT test section may accommodate a pressure tapped EGP that spans the entire width of the test section. The EGP was designed to interface with four aerodynamically shaped vertical struts, which offset the EGP from the test section floor. However, it was found when installing the EGP that there was no width tolerance between the EGP and the RWT test section walls, and instead the EGP was supported by the test section walls rather than the four struts (Fig. 3). The tight fit and mass of the EGP meant that dislodging or vibrations of the



Figure 2: RWT coordinate system.

EGP did not occur, and the EGP sat level with the test section. Thus, instead of modifying the EGP such that mounting on the four struts was possible, the testing was conducted with the EGP supported by the test section walls. The EGP has a blockage ratio of approximately 3%, which is below the maximum recommended value of 7% in low-speed wind tunnel testing [1].

# 3. Test Equipment

An overview of all the testing instrumentation and connections used in the calibration is shown in Fig. 5. A NI 9215 ADC module was used to sample all the measurement instrumentation voltages. The NI 9215 has an expanded bias uncertainty in voltage measurements at 95% confidence of  $\pm 0.18$  mV<sup>2</sup>.

# 3.1. Pitot-Static Probe

A United Sensor straight PS tube (S/N MC 1148) with a tip diameter of 1.55 mm was used for providing a measure of  $q_{ts}$ . The PS tube was interfaced with a sting (Fig. 4), which was guyed with wire to minimise deflections, and positioned on the centre-line of the RWT test section as per Fig. 5. It was estimated that the PS tube longitudinal axis was aligned with the mean flow direction to within  $\pm 2^{\circ}$ .

During the tests, the sting was observed to undergo small amplitude (of order 2 mm or less) oscillations, at the higher wind speeds (> 15 m/s) despite the guying. The frequency of these

 $<sup>^{2}</sup>$ The author has determined these values from separate calibration tests.



Figure 3: The elevated ground plane supported by the test section walls rather than the vertical struts, as highlighted by the red ellipses in the image. Note that the mean flow direction is into the page, and only the two aft struts may be seen in this photograph.



Figure 4: Photographs of the pitot-static tube fixed to the sting mount inside the RWT for (i) an empty test section, and (ii) with the elevated ground plane installed.

DST-Group-TN-1728



Figure 5: The instrumentation used, along with pneumatic (—) and electrical (—) connections. Note that the schematic is not to scale, and that flow is in the positive  $x_T$  direction. The PS tube was installed at  $y_T = 0$ .

oscillations were much greater than the data output frequency of  $q_{ts}$  (Section 4), thus it was anticipated that the oscillations would not significantly affect the time averaged measurements.

## 3.2. Pressure Transducers

Each pressure ring consist of four evenly spaced tappings installed circumferentially about the RWT. The high and low pressure rings are connected respectively to the positive and negative inputs of a Setra 264 differential pressure transducer (S/N 4943165) to measure  $\Delta P$ . The low pressure ring is also connected to a Vaisala PTB110 absolute pressure transducer (S/N M4620252) to measure the absolute static pressure at the entrance to the test section  $P_{ts}$ . The PS tube is connected to an MKS Baratron differential pressure transducer (S/N 62800-3/73529-5A) to measure  $q_{ts}$ .

# 3.3. Temperature Probe

A LabJack EI-1034 temperature probe installed near the aft end of the test section is used to measure the test section temperature  $T_{ts}$ . This value is used, along with the absolute pressure measured by the Vaisala transducer (Section 3.2), to calculate test section air density  $\rho_{ts}$  as;

DST-Group-TN-1728

$$\rho_{ts} = \frac{P_{ts}}{RT_{ts}},\tag{2}$$

where R is the universal gas constant for dry air, equal to  $287.04 \text{ kJ/kg} \cdot \text{K}$ .

# 4. Test Methodology

The test matrix is displayed in Table 1. The PS tube was used to set the nominal test section wind speed  $U_{ts}$ , according to;

$$U_{ts} = \sqrt{\frac{2q_{ts}}{\rho_{ts}}}.$$
(3)

The testing order of  $U_{ts}$  was randomised to prevent any nuisance variable from affecting the results. Each  $U_{ts}$  set point was assigned an integer ranging from 1 to 5, corresponding to 5, 10, 15, 20 and 25 m/s respectively, and a random sequence generator utilising atmospheric noise [5] was used to generate  $U_{ts}$  sequences for each run. One replicate for each test section configuration was performed in order to confirm repeatability of the data. The  $U_{ts}$  set points for the replicate tests were also randomised using the random sequence generator. The position of the PS tube as displayed in Fig. 5 did not change throughout the testing. The stream-wise position of the PS tube was  $x_T = 450$  mm, or 37% of the test section length; this station was chosen as a good representation of the wind speed near the entrance of the test section, and also potential model installation locations.

At each  $U_{ts}$  set point, two user-written LabVIEW<sup>®</sup> programs were used in the following way:

- 1. A program called "RWT Wind Speed Indicator Baratron.vi" samples the Baratron, Vaisala and temperature probe in order to calculate  $U_{ts}$  using Eqs. (2) and (3) with the PS tube positioned as shown in Fig. 5.
- 2. Once the  $U_{ts}$  set point is achieved, "RWT Wind Speed Indicator Baratron.vi" must be halted<sup>3</sup> and a program called "RWT Pressure Ring Calibration.vi" is executed, which samples the Setra 264 and the Baratron simultaneously, and logs the data.

Voltage data from the Setra 264 and Baratron were sampled continuously with an average of 1,000 samples taken at a sampling rate of 1,000 Hz, so that averaged voltage data was logged at 1 Hz. For each run, the voltage data were logged for a total period of 60 seconds. This gave a total of 60 samples from both the Setra 264 and the Baratron, for each test point. The 60 samples were then averaged again in post-processing to give a mean value of  $\Delta P$  and  $q_{ts}$  at each  $U_{ts}$  set point.

 $<sup>^{3}</sup>$ This is because the NI 9215 module cannot run more than one task – or program, simultaneously.

| Test Section<br>Configuration | Run         | $U_{ts} { m ~in}$ Descending Order (m/s) |
|-------------------------------|-------------|------------------------------------------|
|                               |             | 5                                        |
|                               | Baseline    | 20                                       |
|                               | Dasenne     | $25^{\mathrm{a}}$                        |
| Empty                         |             | 15                                       |
|                               |             | 10                                       |
|                               |             | 20                                       |
|                               | Replicate 1 | 10                                       |
|                               | rtophouto 1 | 15                                       |
|                               |             | 25 <sup>a</sup>                          |
|                               |             | 5                                        |
|                               | Baseline    | 5                                        |
|                               |             | 20                                       |
|                               | Dasonno     | 15                                       |
| EGP Installed                 |             | 10                                       |
|                               |             | 25                                       |
|                               |             | 10                                       |
|                               | Replicate 1 | 25                                       |
|                               | replicate r | 15                                       |
|                               |             | 20                                       |
|                               |             | 5                                        |

Table 1: Pressure ring calibration test matrix.

 $^{\rm a}$  The reading at maximum fan power was 24.4 m/s.

DST-Group-TN-1728

# 5. Data Reduction

In general, the test section dynamic pressure  $q_{ts}$  is directly related to the change in static pressure across the two pressure rings  $\Delta P$  through the following equation;

$$q_{ts} = K\Delta P + C_0 \tag{4}$$

where  $C_0$  is the zero, or offset term. Here, the offset term is always zero since it was ensured before the tests that when  $q_{ts} = 0$ ,  $\Delta P = 0$ . Thus, Eq. (4) reduces to Eq. (1) and K may be determined through least-squares regression analysis from a set of N measured  $q_{ts}$  and  $\Delta P$ values as;

$$K = \frac{\sum_{i=1}^{N} (\Delta P)_{i} (q_{ts})_{i}}{\sum_{i=1}^{N} (\Delta P)_{i}^{2}}$$
(5)

Eq. (5) is closed loop and in standard texts, e.g. [6], the data points can be weighted to adjust for uncertainties in the "dependent" variable –  $q_{ts}$  in this case. However,  $q_{ts}$  is not strictly dependent on  $\Delta P$ , but like  $\Delta P$  is a *measured* quantity. Moreover, uncertainties exist not only in  $q_{ts}$  but also in the measurement of  $\Delta P$ . Thus, it is more appropriate to utilise a least-squares regression algorithm that accounts for uncertainties in both  $q_{ts}$  and  $\Delta P$ , to determine the values of and uncertainty in K. This process is not closed loop, and requires an iterative approach. In [7], such an iterative algorithm was developed; this procedure is used with the number of measured samples, N = 5, corresponding to each  $U_{ts}$  set point.

The standard error in the estimation of  $q_{ts}$  using the calculated K factors is given by;

$$SE = \sqrt{\frac{\sum_{m=1}^{N} (q_{ts_m} - \hat{q_{ts_m}})^2}{N-1}},$$
(6)

where  $q_{ts}$  is the measured test section dynamic pressure using the PS tube, and  $\hat{q}_{ts}$  is the back-calculated test section dynamic pressure according to Eq. (1).

| Test Section<br>Configuration | Run         | Run Calibration<br>Factor, K | Final Calibration<br>Factor, K | Standard Error of $q_{ts}$ Estimation (Pa) |  |
|-------------------------------|-------------|------------------------------|--------------------------------|--------------------------------------------|--|
| Empty                         | Baseline    | $1.0934 \pm 0.0070$          | $1.0931 \pm 0.0074$            | 0.83                                       |  |
| <u>r</u> - <u>J</u> -         | Replicate 1 | $1.0928 \pm 0.0078$          |                                |                                            |  |
| EGP installed                 | Baseline    | $1.1639 \pm 0.0062$          | $1.1642 \pm 0.0078$            | 1.06                                       |  |
| 13 GI IIIStanoa               | Replicate 1 | $1.1644 \pm 0.0084$          | 111012 ± 0.0010                | 1.00                                       |  |

Table 2: The value and expanded uncertainty at 95% confidence of the calibration factor K for each RWT test section configuration as determined using the least-squares method of [7], as well as the standard error of  $q_{ts}$  estimation.

# 6. Results and Discussion

The results for the empty test section are shown in Fig. 6, and for the EGP installed in the test section in Fig. 7. Tabulated test data for the empty test section and with the EGP installed are included in Appendices B and C respectively. The final calibration factors K for the empty test section and with the EGP installed were the average of the baseline and replicate results. Expanded uncertainties in K are reported at 95% confidence with a coverage factor of 2. The final calibration factors for each test section configuration, along with the standard error of estimation, are tabulated in Table 2. The system uncertainties are summarised in Appendix A.

K for the empty test section is similar to those obtained by [2] and [3] ( $\approx 1.07$ ) in the LSWT at a stream-wise station 21% of the test section length. The similarity in K values between the LSWT tests and the RWT tests could be because of the same contraction ratio, and test-section cross-sectional shape between the RWT and LSWT. The main differences between the study in the RWT and studies by [2] and [3] in the LSWT are:

- 1. The RWT contraction and test section are smaller than the ones in the LSWT, albeit by a constant scaling factor (Section 2). This could mean that flow viscous effects influence the value of K.
- 2. The RWT is an open circuit, suction configuration where the static pressure inside the test section is sub-atmospheric; the LSWT is closed circuit and operates nominally at atmospheric pressure.
- 3. The RWT flow conditioning upstream of the settling chamber comprises of square celled honeycomb and three turbulence reducing screens; the LSWT flow conditioning comprises only of triangular celled honeycomb.

It is outside the scope of this calibration to quantify the effects of these differences on the values of K. Furthermore, uncertainties in K were not reported for either study in the LSWT, so it is difficult to conclude that the observed difference in K between the RWT and LSWT is due to the aforementioned differences, and not simply within the uncertainty bounds of measurement. However, a brief discussion on each of the identified differences is presented.



Figure 6: Least-squares regression fits (—) on empty test section data (•) for (i) baseline and (ii) replicate runs. The expanded uncertainty in the calibration factor K is also shown at 95% confidence with a coverage factor of 2.



Figure 7: Least-squares regression fits (—) on elevated ground plane data (•) for (i) baseline and (ii) replicate runs. The expanded uncertainty in the calibration factor K is also shown at 95% confidence with a coverage factor of 2.

The Reynolds number  $\operatorname{Re}_x$ , based on some internal dimension x of the wind tunnel test section, is defined as:

$$\operatorname{Re}_{x} = \frac{\rho_{ts} U_{ts} x}{\mu_{ts}},\tag{7}$$

where  $\mu_{ts}$  is the dynamic viscosity of the air in the test section. The LSWT calibrations by [2] and [3] were conducted over a range in  $U_{ts}$  of 5 to 90 m/s, at 5 m/s intervals. This covers the range in  $U_{ts}$  tested in the RWT. However, despite the same nominal wind speeds being tested between the LSWT and RWT, the values of  $\text{Re}_x$  will differ approximately by a factor of order O(3.4), which is the scaling factor between the sizes of the RWT and LSWT contraction and test sections (Section 2). It is well known that the boundary layer characteristics for internal flows are strongly dependent on the Reynolds number, and it could be that this difference in  $\text{Re}_x$  between the RWT and LSWT is contributing to the observed difference in K.

Upon inspection of Eqs. (2) and (7), which shows the dependency of  $\text{Re}_x$  on  $\rho_{ts}$ , operating at sub-atmospheric pressure in the RWT as opposed to atmospheric pressure in the LSWT means that differences in  $\text{Re}_x$  could occur. However, the variation of  $\rho_{ts}$  across the tested range was no more than 1%<sup>4</sup>, which translates to an effectively negligible change in  $\text{Re}_x$ . Also, the values of  $q_{ts}$  and  $\Delta P$  are obtained through differential measurements, inherently negating the effect of changes in absolute pressure.

The difference in flow conditioning between the RWT and LSWT theoretically should not affect the difference in observed K values. The derivation of Eq. 1 from the Bernoulli equation (refer to [1, chap. 6]) considers only the flow between the pressure rings and into the test section. It does not account for the upstream flow state or upstream losses associated with flow conditioning devices. The upstream flow is effectively an "inlet" condition to the pressure rings. However, in practice, changing the flow conditioning is likely to cause differences in the flow uniformity across the test section, see [4]. If the position of the PS tube remains fixed, and the flow conditioning is changed in a given wind tunnel, it may be that the calibration factor is slightly different, owing to changes in flow uniformity. Nevertheless, the difference in flow conditioning between the RWT and LSWT likely does not significantly affect the observed difference in K.

K for the case where the EGP was installed increased significantly from the empty test section value. This is opposite to what [3] observed when the SCR was installed in the LSWT, where the value of K decreased slightly compared to the empty test section. It was observed here that the maximum wind speed as determined using the PS tube was slightly greater when the EGP was installed ( $U_{ts} = 25 \text{ m/s}$ ), than with the empty test section ( $U_{ts} = 24.4 \text{ m/s}$ ). This is due to the blockage caused by the EGP. Continuity laws govern that the 3% blockage should cause a 3% increase in  $U_{ts}$ ; this is in fact what is observed when the EGP is removed from the test section,

24.4 m/s  $\times$  1.03 (blockage)  $\approx 25$  m/s.

 $<sup>^4\</sup>rho_{ts}$  can also change due to variations in test section temperature.

DST-Group-TN-1728

However, the increase in K for when the EGP is installed is directly associated with a decrease in  $\Delta P$  for a set  $q_{ts}$  (Eq. 1). This means that the static pressure differential between the high and low pressure ring has decreased. Though not conclusive, this might be explained by the blockage induced by the EGP: the region in front of the EGP contains dividing streamlines that terminate as stagnation points on the EGP leading edges. In the stagnation regions, the static pressure is comparatively higher than what it would be in the absence of stagnation regions (i.e. no EGP installed). These relatively high pressure regions extend upstream by some distance and it is possible that the low pressure ring is influenced by these high pressure regions. It is difficult to compare directly with the measurements in [3], since the PS tube in that work was placed in front of the SCR on the LSWT centre-line, and uncertainties in K were not reported.

The calibration factors obtained here should be used to calculate the reference wind speed in the RWT. Installation of test articles will likely change the calibration factor due to blockage, but this effect may be corrected if necessary. Removing the RWT turbulence screens is also likely to change the calibration factor. As recommended in [4], the RWT should not be used without the turbulence screens.

# 7. References

- Barlow, J., Rae, W. & Pope, A. (1999) Low-Speed Wind Tunnel Testing, 3rd edn, John Wiley & Sons Inc., New York.
- [2] Edwards, C. D. (2000) Calibration of the Reference Velocity in the Test Section of the Low Speed Wind Tunnel at the Aeronautical and Maritime Research Laboratory, Technical Note DSTO-TN-0248, Aerospace Division, DST Group.
- [3] Lam, S. (2015) Calibration of the DST Group Low Speed Wind Tunnel Test-Section Reference Velocity, Draft Report.
- [4] Erm, L. P. & Jacquemin, P. P. E. (2015) Calibration of the Flow in the Test Section of the Research Wind Tunnel at DST Group, Technical Note DSTO-TN-1468, Aerospace Division, DST Group.
- [5] www.random.org (2017) Random Number Generator, URL.
- [6] Bevington, P. R. (1969) Data Reduction and Error Analysis for the Physical Sciences, McGraw-Hill, New York.
- [7] Reed, B. C. (2010) A spreadsheet for linear least-squares fitting with errors in both coordinates, *Phys. Educ.*
- [8] AIAA (1999) Assessment of experimental uncertainty with application to wind tunnel testing, Standard No. AIAA S-071A.
- [9] Setra Systems (2011) Setra Model 264 Calibration Certificate, Calibration Report 24010930, Setra Systems, Inc, 159 Swanson Road, Boxborough, MA 01719, USA.
- [10] Howes, M. (2017) Measurement Report on Pressure Transducer, MKS model 220CD-00100A2B / PDR-C-1C serial number 62800-3 / 73529-5A, Calibration Report No. RN170560, National Measurement Institute, 36 Bradfield Road, West Lindfield, NSW 2070, Australia.
- [11] Vaisala (2016) PTB110 Barometer Calibration Certificate, Calibration Report H47-16460020, Vaisala Oyj, PO Box 26, FI-00421 Helsinki, Finland.
- [12] www.labjack.com (2017) EI-1034 Datasheet, URL.

DST-Group–TN–1728

 $This \ page \ is \ intentionally \ blank$ 

# Appendix A. System Uncertainties

System uncertainties are calculated according the methodology outlined in [8] and summarised in Table 3. Bias uncertainty in instrumentation was estimated from calibration data and includes the NI 9215 uncertainty in voltage measurements. Bias uncertainty in K was determined using the method of [7]. Precision uncertainty in instrumentation was estimated using the standard deviation of 60 samples at each  $U_{ts}$  set point, with precision uncertainty over all wind speeds calculated as the Root-Sum-Square (RSS) of the precision uncertainty at each  $U_{ts}$  set point. It was assumed that precision uncertainty in K was negligible.

The Setra 264 differential pressure transducer was factory calibrated in December 2011 and has a standard bias uncertainty of  $\pm 0.25\%$  FS, or  $\pm 1.56$  Pa [9]. The MKS Baratron differential pressure transducer was last calibrated in June 2017 and has an expanded bias uncertainty of  $\pm 0.15$  Pa at 95% confidence with a coverage factor of 2 [10]. The Vaisala absolute pressure transducer and temperature probe used to calculate  $U_{ts}$  were not logged during the calibration, so precision uncertainties in these instruments could not be estimated. The Vaisala was last calibrated in November 2016 and has an expanded bias uncertainty of  $\pm 15$  Pa at 95% confidence with a coverage factor of 2 [11]. The temperature probe has a standard bias uncertainty of  $\pm 0.22$  °C [12].

 $Table \ 3: \ Test \ uncertainties$ 

| Parameter        | Test Section<br>Configuration | Bias<br>Uncertainty | Precision<br>Uncertainty | Expanded Uncertainty<br>95% Confidence<br>Coverage factor = 2 |    |
|------------------|-------------------------------|---------------------|--------------------------|---------------------------------------------------------------|----|
| $\Delta P$ (Pa)  | Empty                         | 1.56                | 0.189                    | 3.14                                                          |    |
| ()               | EGP                           |                     | 0.172                    | 3.13                                                          |    |
| $a_{ts}$ (Pa)    | Empty                         | 0.13                | 0.235                    | 0.537                                                         |    |
| <i>qus</i> (1 w) | EGP                           | 0110                | 0.198                    | 0.474                                                         |    |
| K                | Empty                         | 0.0037              | —                        | 0.0074                                                        |    |
|                  | EGP                           | 0.0039              |                          | 0.0078                                                        |    |
| $P_{t_{a}}$ (Pa) | Empty                         | 7 5                 | 75                       | _                                                             | 15 |
| 1 15 (1 0)       | EGP                           |                     |                          |                                                               |    |
| $T_{ts}$ (°C)    | Empty                         | 0.22                | -                        | 0.44                                                          |    |
| - 10 ( 0)        | EGP                           | 0.22                | -                        |                                                               |    |

# Appendix B. Tabulated Empty Test Section Data

| Time (s) | Baseline $q_{ts}$ | Baseline $\Delta P$ Repeat $q_{ts}$ |        | Repeat $\Delta P$ |
|----------|-------------------|-------------------------------------|--------|-------------------|
| 0        | 15.083            | 12.904                              | 14.716 | 12.223            |
| 1        | 15.095            | 12.872                              | 14.584 | 12.280            |
| 2        | 15.031            | 12.894                              | 14.385 | 12.210            |
| 3        | 14.864            | 12.887                              | 14.136 | 12.126            |
| 4        | 15.136            | 12.975                              | 13.974 | 12.054            |
| 5        | 15.393            | 12.982                              | 14.463 | 12.044            |
| 6        | 15.209            | 12.812                              | 14.580 | 11.920            |
| 7        | 15.067            | 12.836                              | 14.723 | 11.461            |
| 8        | 15.062            | 12.933                              | 14.348 | 11.068            |
| 9        | 15.074            | 12.906                              | 13.421 | 10.689            |
| 10       | 15.240            | 12.895                              | 12.840 | 10.794            |
| 11       | 15.314            | 12.867                              | 12.561 | 10.883            |
| 12       | 15.338            | 12.947                              | 12.443 | 10.870            |
| 13       | 15.023            | 12.933                              | 12.707 | 10.769            |
| 14       | 15.018            | 12.846                              | 13.069 | 10.690            |
| 15       | 15.161            | 12.799                              | 13.299 | 10.687            |
| 16       | 14.929            | 12.829                              | 13.287 | 10.568            |
| 17       | 15.314            | 12.867                              | 12.750 | 10.562            |
| 18       | 15.860            | 12.801                              | 12.636 | 10.776            |
| 19       | 15.831            | 12.883                              | 12.383 | 10.992            |
| 20       | 15.472            | 12.996                              | 12.738 | 11.008            |
| 21       | 15.087            | 13.070                              | 13.188 | 10.932            |
| 22       | 14.537            | 13.027                              | 13.080 | 11.180            |
| 23       | 14.918            | 12.994                              | 13.061 | 11.137            |
| 24       | 15.633            | 12.944                              | 12.891 | 11.096            |
| 25       | 15.695            | 12.917                              | 13.135 | 11.008            |
| 26       | 15.020            | 12.953                              | 13.063 | 10.843            |
| 27       | 14.525            | 12.893                              | 13.161 | 10.562            |
| 28       | 14.462            | 12.865                              | 12.970 | 10.709            |
| 29       | 15.042            | 12.968                              | 13.003 | 10.778            |
| 30       | 15.246            | 12.916                              | 12.994 | 10.745            |
| 31       | 15.345            | 12.943                              | 13.210 | 10.792            |
| 32       | 15.249            | 12.818                              | 13.099 | 10.677            |
| 33       | 15.155            | 12.656                              | 13.274 | 10.542            |
| 34       | 14.589            | 12.756                              | 13.108 | 10.434            |
| 35       | 15.350            | 12.762                              | 12.803 | 10.292            |
| 36       | 15.774            | 12.871                              | 12.846 | 10.289            |
| 37       | 15.785            | 12.956                              | 12.677 | 10.301            |
| 38       | 15.086            | 13.080                              | 12.843 | 10.193            |
| 39       | 15.287            | 13.023                              | 12.603 | 10.122            |

Table 4: Tabulated data from empty test section test at  $U_{ts} = 5 m/s$ 

### DST-Group-TN-1728

| 40 | 15.178 | 12.993 | 12.474 | 10.182 |
|----|--------|--------|--------|--------|
| 41 | 14.905 | 12.812 | 12.215 | 10.346 |
| 42 | 14.783 | 12.836 | 12.362 | 10.505 |
| 43 | 15.009 | 12.989 | 12.780 | 10.580 |
| 44 | 15.361 | 13.045 | 12.939 | 10.650 |
| 45 | 15.412 | 12.957 | 12.974 | 10.675 |
| 46 | 15.503 | 12.936 | 12.904 | 10.502 |
| 47 | 15.217 | 12.923 | 12.693 | 10.518 |
| 48 | 14.930 | 12.991 | 12.546 | 10.399 |
| 49 | 15.078 | 12.985 | 12.694 | 10.217 |
| 50 | 15.530 | 12.910 | 12.645 | 10.327 |
| 51 | 15.687 | 12.932 | 12.902 | 10.376 |
| 52 | 15.454 | 12.991 | 12.673 | 10.371 |
| 53 | 15.222 | 12.907 | 12.509 | 10.449 |
| 54 | 14.794 | 12.959 | 12.545 | 10.667 |
| 55 | 14.588 | 12.939 | 12.995 | 10.847 |
| 56 | 14.573 | 12.821 | 13.024 | 10.955 |
| 57 | 14.630 | 12.741 | 13.235 | 11.174 |
| 58 | 14.424 | 12.721 | 13.444 | 11.405 |
| 59 | 14.891 | 12.832 | 13.690 | 11.618 |
| 60 | 15.261 | 12.952 | 13.902 | 11.483 |
| -  |        |        |        |        |

Table 4 Continued: Tabulated data from empty test section test at 5 m/s  $\,$ 

| Time (s) | Baseline at. | Baseline $\Lambda P$ | Repeat at. | Repeat $\Delta P$ |
|----------|--------------|----------------------|------------|-------------------|
|          |              |                      |            |                   |
| 0        | 0 59.381     |                      | 59.604     | 55.244            |
| 1        | 59.189       | 54.738               | 60.061     | 54.809            |
| 2        | 59.199       | 54.630               | 59.731     | 54.255            |
| 3        | 59.342       | 54.536               | 58.848     | 54.456            |
| 4        | 58.982       | 54.331               | 58.796     | 54.435            |
| 5        | 58.657       | 54.434               | 58.574     | 54.315            |
| 6        | 58.959       | 54.346               | 58.390     | 54.296            |
| 7        | 59.017       | 54.421               | 58.606     | 53.953            |
| 8        | 59.074       | 54.509               | 58.430     | 54.055            |
| 9        | 59.123       | 54.391               | 58.468     | 54.249            |
| 10       | 58.957       | 54.529               | 58.784     | 54.531            |
| 11       | 58.975       | 54.710               | 59.160     | 54.540            |
| 12       | 59.188       | 54.345               | 59.156     | 54.560            |
| 13       | 59.164       | 54.288               | 59.277     | 54.650            |
| 14       | 58.797       | 54.602               | 59.394     | 54.623            |
| 15       | 58.895       | 54.588               | 59.006     | 54.209            |
| 16       | 58.992       | 54.438               | 58.776     | 54.287            |
| 17       | 59.021       | 54.815               | 58.732     | 54.416            |
| 18       | 59.268       | 54.732               | 58.947     | 54.648            |
| 19       | 59.270       | 54.420               | 59.322     | 54.600            |
| 20       | 59.226       | 54.582               | 59.286     | 54.379            |
| 21       | 58.780       | 54.902               | 59.175     | 54.358            |
| 22       | 59.051       | 54.573               | 59.100     | 54.534            |
| 23       | 58.795       | 54.580               | 59.166     | 54.637            |
| 24       | 59.110       | 54.489               | 59.529     | 54.273            |
| 25       | 59.163       | 54.801               | 58.901     | 54.025            |
| 26       | 59.211       | 54.917               | 58.334     | 53.884            |
| 27       | 59.648       | 55.039               | 58.440     | 54.007            |
| 28       | 59.616       | 54.889               | 58.472     | 53.823            |
| 29       | 59.475       | 54.541               | 58.557     | 53.897            |
| 30       | 59.236       | 54.591               | 58.699     | 53.728            |
| 31       | 59.441       | 54.593               | 58.314     | 53.760            |
| 32       | 59.125       | 54.329               | 58.423     | 53.606            |
| 33       | 58.893       | 54.178               | 58.480     | 53.710            |
| 34       | 58.766       | 54.375               | 58.441     | 53.867            |
| 35       | 59.007       | 54.280               | 58.511     | 53.773            |
| 36       | 58.765       | 54.226               | 58.749     | 54.061            |
| 37       | 58.750       | 54.652               | 58.617     | 53.998            |
| 38       | 58.932       | 54.780               | 58.429     | 53.755            |
| 39       | 59.184       | 54.720               | 58.201     | 53.880            |
| 40       | 59.278       | 54.684               | 58.028     | 54.202            |

Table 5: Tabulated data from empty test section test at  $U_{ts}=10\ m/s$ 

### DST-Group-TN-1728

\_

| 41 | 59.362                                                                                                                     | 54.749                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.241                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 42 | 59.071                                                                                                                     | 54.668                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.300                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.832                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 43 | 59.369                                                                                                                     | 54.717                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57.953                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.078                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 44 | 59.419                                                                                                                     | 54.636                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.060                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 45 | 59.547                                                                                                                     | 54.806                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57.997                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.279                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 46 | 59.435                                                                                                                     | 54.989                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.372                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 47 | 59.579                                                                                                                     | 54.945                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.991                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.451                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 48 | 59.593                                                                                                                     | 54.773                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59.073                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 49 | 59.401                                                                                                                     | 54.923                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59.200                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.787                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 50 | 59.127                                                                                                                     | 54.996                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 59.188                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 51 | 58.686                                                                                                                     | 54.884                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.697                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 52 | 58.116                                                                                                                     | 54.845                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.577                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.859                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 53 | 58.694                                                                                                                     | 54.656                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.483                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 54 | 59.360                                                                                                                     | 54.675                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.207                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 55 | 59.785                                                                                                                     | 54.589                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.223                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.904                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 56 | 59.841                                                                                                                     | 54.666                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.362                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 57 | 59.779                                                                                                                     | 54.736                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.502                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 58 | 59.336                                                                                                                     | 54.752                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.260                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 59 | 59.177                                                                                                                     | 54.662                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 58.235                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 60 | 59.239                                                                                                                     | 54.583                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57.892                                                                                                                                                                                                                                                                                                                                                                                                                                             | 53.866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|    | 41<br>42<br>43<br>44<br>45<br>46<br>47<br>48<br>49<br>50<br>51<br>52<br>53<br>53<br>54<br>55<br>56<br>57<br>58<br>59<br>60 | 41       59.362         42       59.071         43       59.369         44       59.419         45       59.547         46       59.435         47       59.579         48       59.593         49       59.401         50       59.127         51       58.686         52       58.116         53       58.694         54       59.360         55       59.785         56       59.841         57       59.336         59       59.177         60       59.239 | 41 $59.362$ $54.749$ $42$ $59.071$ $54.668$ $43$ $59.369$ $54.717$ $44$ $59.419$ $54.636$ $45$ $59.547$ $54.806$ $46$ $59.435$ $54.989$ $47$ $59.579$ $54.945$ $48$ $59.593$ $54.773$ $49$ $59.401$ $54.923$ $50$ $59.127$ $54.996$ $51$ $58.686$ $54.884$ $52$ $58.116$ $54.656$ $54$ $59.360$ $54.675$ $55$ $59.785$ $54.689$ $56$ $59.841$ $54.666$ $57$ $59.779$ $54.736$ $58$ $59.336$ $54.752$ $59$ $59.177$ $54.662$ $60$ $59.239$ $54.583$ | 41       59.362       54.749       58.241         42       59.071       54.668       58.300         43       59.369       54.717       57.953         44       59.419       54.636       58.060         45       59.547       54.806       57.997         46       59.435       54.989       58.372         47       59.579       54.945       58.991         48       59.593       54.773       59.073         49       59.401       54.923       59.200         50       59.127       54.996       59.188         51       58.686       54.884       58.697         52       58.116       54.845       58.577         53       58.694       54.656       58.483         54       59.360       54.675       58.207         55       59.785       54.589       58.223         56       59.841       54.666       58.362         57       59.779       54.736       58.502         58       59.336       54.752       58.260         59       59.177       54.662       58.235         60       59.239       54.583 |

Table 5 Continued: Tabulated data from empty test section test at 10 m/s  $\,$ 

DST-Group-TN-1728

| Time (s) | Baseline $q_{ts}$ | Baseline $\Delta P$ | Repeat $q_{ts}$ | Repeat $\Delta P$ |
|----------|-------------------|---------------------|-----------------|-------------------|
| 0        | 132.856           | 120.964             | 133.502         | 121.955           |
| 1        | 132.539           | 121.450             | 133.375         | 121.923           |
| 2        | 132.280           | 121.572             | 133.278         | 122.130           |
| 3        | 132.331           | 121.432             | 133.027         | 122.088           |
| 4        | 132.156           | 120.778             | 132.666         | 122.484           |
| 5        | 131.894           | 120.819             | 132.877         | 122.538           |
| 6        | 132.026           | 121.410             | 132.645         | 122.054           |
| 7        | 131.469           | 121.572             | 132.876         | 122.476           |
| 8        | 131.218           | 121.427             | 133.000         | 122.509           |
| 9        | 131.487           | 121.550             | 133.097         | 122.345           |
| 10       | 132.367           | 121.187             | 132.913         | 122.358           |
| 11       | 132.163           | 121.130             | 132.962         | 122.126           |
| 12       | 132.086           | 121.265             | 133.130         | 121.808           |
| 13       | 131.745           | 121.487             | 132.824         | 121.628           |
| 14       | 131.432           | 121.613             | 132.858         | 122.280           |
| 15       | 132.465           | 121.786             | 132.861         | 122.009           |
| 16       | 132.532           | 121.626             | 132.714         | 122.009           |
| 17       | 132.192           | 121.544             | 132.526         | 121.910           |
| 18       | 132.079           | 121.299             | 132.783         | 121.938           |
| 19       | 132.119           | 121.688             | 132.875         | 122.230           |
| 20       | 132.691           | 121.604             | 132.869         | 122.133           |
| 21       | 132.887           | 121.336             | 132.793         | 122.319           |
| 22       | 132.582           | 121.481             | 132.714         | 122.089           |
| 23       | 132.412           | 121.443             | 132.855         | 122.079           |
| 24       | 131.747           | 121.363             | 132.760         | 121.990           |
| 25       | 131.821           | 121.454             | 132.621         | 122.057           |
| 26       | 131.770           | 121.121             | 132.951         | 122.075           |
| 27       | 131.545           | 121.409             | 133.202         | 122.397           |
| 28       | 131.385           | 121.273             | 133.315         | 122.542           |
| 29       | 131.642           | 121.194             | 134.013         | 122.657           |
| 30       | 131.918           | 121.642             | 133.823         | 122.292           |
| 31       | 132.171           | 121.299             | 133.769         | 122.533           |
| 32       | 132.050           | 121.238             | 133.573         | 122.185           |
| 33       | 132.334           | 121.382             | 132.978         | 122.433           |
| 34       | 132.293           | 121.458             | 132.533         | 122.016           |
| 35       | 132.203           | 121.417             | 132.403         | 121.987           |
| 36       | 132.333           | 121.362             | 132.358         | 122.063           |
| 37       | 132.478           | 121.417             | 132.556         | 122.194           |
| 38       | 132.479           | 120.833             | 132.864         | 121.937           |
| 39       | 132.219           | 121.427             | 133.010         | 122.051           |
| 40       | 132.192           | 121.298             | 132.981         | 122.186           |

Table 6: Tabulated data from empty test section test at  $U_{ts} = 15~m/s$ 

### DST-Group-TN-1728

| <br>41 | 131.709 | 121.266 | 133.061 | 122.224 |
|--------|---------|---------|---------|---------|
| 42     | 131.690 | 121.556 | 133.151 | 122.069 |
| 43     | 131.679 | 121.511 | 132.830 | 122.086 |
| 44     | 131.774 | 121.075 | 132.878 | 122.020 |
| 45     | 132.323 | 121.530 | 132.591 | 121.821 |
| 46     | 132.620 | 121.040 | 132.500 | 122.030 |
| 47     | 132.403 | 121.218 | 132.741 | 122.302 |
| 48     | 132.416 | 121.502 | 132.873 | 122.077 |
| 49     | 132.298 | 121.541 | 132.943 | 121.932 |
| 50     | 132.276 | 121.559 | 132.732 | 121.924 |
| 51     | 132.689 | 121.256 | 132.888 | 121.940 |
| 52     | 132.825 | 120.942 | 133.105 | 122.322 |
| 53     | 131.735 | 121.173 | 133.217 | 121.966 |
| 54     | 130.901 | 121.343 | 133.118 | 121.953 |
| 55     | 131.438 | 121.500 | 132.903 | 122.151 |
| 56     | 131.505 | 121.379 | 132.727 | 122.176 |
| 57     | 131.827 | 121.156 | 132.768 | 121.890 |
| 58     | 132.144 | 121.430 | 132.815 | 121.757 |
| 59     | 132.012 | 121.042 | 132.337 | 121.702 |
| 60     | 131.864 | 120.979 | 132.619 | 122.138 |
|        |         |         |         |         |

Table 6 Continued: Tabulated data from empty test section test at 15 m/s  $\,$ 

DST-Group-TN-1728

| Time (s) | Baseline $q_{ts}$ | Baseline $\Delta P$ | Repeat $q_{ts}$ | Repeat $\Delta P$ |
|----------|-------------------|---------------------|-----------------|-------------------|
| 0        | 234 556           | 214 127             | 231 057         | 210 796           |
| 1        | 234.550           | 214.127             | 231.037         | 210.790           |
| 1        | 224.025           | 214.004             | 231.109         | 210.370           |
| 2        | 234.005           | 214.449             | 230.997         | 211.298           |
| 3        | 234.723           | 213.969             | 231.722         | 211.072           |
| 4        | 234.019           | 213.891             | 231.792         | 210.930           |
| 5        | 234.080           | 213.764             | 231.402         | 210.300           |
| 6        | 234.407           | 213.289             | 230.682         | 210.191           |
| 7        | 234.586           | 213.231             | 229.924         | 209.876           |
| 8        | 234.625           | 212.930             | 230.021         | 210.046           |
| 9        | 234.010           | 212.287             | 230.442         | 210.318           |
| 10       | 233.278           | 212.445             | 230.490         | 210.804           |
| 11       | 233.359           | 212.508             | 231.283         | 211.125           |
| 12       | 232.983           | 212.948             | 232.107         | 211.212           |
| 13       | 233.320           | 213.407             | 232.415         | 211.338           |
| 14       | 233.979           | 213.592             | 232.231         | 210.736           |
| 15       | 234.180           | 213.580             | 231.304         | 210.835           |
| 16       | 234.557           | 214.394             | 231.412         | 210.900           |
| 17       | 234.797           | 213.785             | 232.206         | 211.290           |
| 18       | 234.887           | 214.535             | 232.381         | 211.948           |
| 19       | 235.256           | 213.808             | 232.627         | 212.010           |
| 20       | 234.472           | 212.706             | 232.772         | 211.743           |
| 21       | 233.522           | 212.391             | 232.655         | 211.459           |
| 22       | 233.240           | 213.077             | 232.183         | 211.663           |
| 23       | 234.044           | 213.572             | 232.110         | 211.874           |
| 24       | 234.379           | 214.417             | 232.152         | 211.662           |
| 25       | 235.120           | 214.768             | 231.793         | 211.350           |
| 26       | 235.687           | 214.950             | 231.410         | 211.687           |
| 27       | 235.864           | 215.111             | 231.845         | 211.551           |
| 28       | 236.078           | 215.146             | 232.446         | 211.612           |
| 29       | 236.209           | 214.712             | 232.728         | 211.624           |
| 30       | 235.558           | 214.668             | 232.503         | 211.396           |
| 31       | 235.117           | 214.437             | 232.053         | 211.382           |
| 32       | 235.052           | 214.785             | 231.899         | 211.530           |
| 33       | 235.220           | 214.274             | 232.026         | 211.237           |
| 34       | 235.248           | 214.583             | 232.112         | 211.575           |
| 35       | 235.213           | 214.002             | 232.381         | 211.517           |
| 36       | 234.592           | 214.254             | 232.009         | 210.846           |
| 37       | 234.722           | 214.579             | 231.045         | 210.852           |
| 38       | 235.213           | 214.342             | 231.568         | 211.323           |
| 39       | 235.203           | 214.570             | 232.073         | 210.843           |
| 40       | 235.515           | 214.692             | 231.962         | 210.738           |

Table 7: Tabulated data from empty test section test at  $U_{ts}=20~m/s$ 

### DST-Group-TN-1728

| 41 | 235.460 | 214.621 | 231.740 | 210.357 |
|----|---------|---------|---------|---------|
| 42 | 235.925 | 214.526 | 231.328 | 209.846 |
| 43 | 235.681 | 214.761 | 231.740 | 210.740 |
| 44 | 235.734 | 214.575 | 232.094 | 212.019 |
| 45 | 236.162 | 214.856 | 233.177 | 212.193 |
| 46 | 236.074 | 214.920 | 233.295 | 212.678 |
| 47 | 236.261 | 215.152 | 233.714 | 212.793 |
| 48 | 235.913 | 215.255 | 233.870 | 212.647 |
| 49 | 235.757 | 215.214 | 233.094 | 212.113 |
| 50 | 235.648 | 214.804 | 232.893 | 211.796 |
| 51 | 235.427 | 215.302 | 232.514 | 211.711 |
| 52 | 235.773 | 215.211 | 232.353 | 212.219 |
| 53 | 236.168 | 215.928 | 232.434 | 212.493 |
| 54 | 236.562 | 215.380 | 232.622 | 212.004 |
| 55 | 236.705 | 215.857 | 232.444 | 211.814 |
| 56 | 237.020 | 215.746 | 232.790 | 212.302 |
| 57 | 237.249 | 215.623 | 232.958 | 212.513 |
| 58 | 236.526 | 215.693 | 233.492 | 211.542 |
| 59 | 236.602 | 215.542 | 233.010 | 211.963 |
| 60 | 235.950 | 215.808 | 232.906 | 212.169 |
|    |         |         |         |         |

Table 7 Continued: Tabulated data from empty test section test at 20  $\ensuremath{m/s}$ 

DST-Group-TN-1728

| Time (s) | Baseline $q_{ts}$ | Baseline $\Delta P$ | Repeat $q_{ts}$ | Repeat $\Delta P$ |
|----------|-------------------|---------------------|-----------------|-------------------|
| 0        | 347.729           | 316.861             | 346.276         | 317.151           |
| 1        | 347.350           | 317.121             | 346.668         | 317.423           |
| 2        | 347.414           | 317.354             | 346.766         | 317.177           |
| 3        | 347.096           | 317.272             | 346.916         | 317.296           |
| 4        | 346.829           | 316.987             | 346.397         | 316.952           |
| 5        | 346.096           | 317.431             | 346.199         | 316.836           |
| 6        | 346.667           | 317.079             | 346.514         | 317.007           |
| 7        | 346.387           | 317.461             | 346.295         | 317.314           |
| 8        | 347.093           | 317.318             | 346.268         | 317.015           |
| 9        | 347.058           | 317.577             | 346.694         | 316.896           |
| 10       | 347.845           | 317.654             | 347.410         | 317.561           |
| 11       | 347.661           | 317.329             | 347.125         | 317.057           |
| 12       | 347.592           | 317.383             | 346.463         | 317.208           |
| 13       | 347.180           | 317.641             | 346.388         | 316.826           |
| 14       | 347.304           | 317.369             | 346.284         | 316.945           |
| 15       | 347.260           | 317.092             | 346.905         | 316.948           |
| 16       | 347.039           | 316.740             | 347.240         | 316.989           |
| 17       | 346.505           | 317.334             | 346.775         | 316.829           |
| 18       | 346.580           | 317.806             | 346.833         | 317.271           |
| 19       | 347.179           | 317.476             | 347.143         | 316.783           |
| 20       | 347.284           | 317.263             | 346.677         | 316.497           |
| 21       | 347.413           | 317.069             | 346.449         | 316.623           |
| 22       | 347.411           | 317.050             | 346.638         | 316.928           |
| 23       | 347.266           | 317.114             | 346.912         | 316.882           |
| 24       | 346.657           | 317.519             | 346.404         | 316.411           |
| 25       | 346.650           | 317.177             | 345.709         | 316.530           |
| 26       | 346.350           | 317.354             | 346.291         | 316.681           |
| 27       | 346.358           | 317.439             | 346.341         | 317.016           |
| 28       | 346.693           | 317.347             | 347.004         | 316.809           |
| 29       | 346.850           | 317.094             | 346.352         | 317.042           |
| 30       | 347.445           | 317.252             | 346.073         | 316.815           |
| 31       | 347.590           | 317.405             | 345.869         | 316.824           |
| 32       | 347.601           | 317.109             | 346.252         | 316.810           |
| 33       | 347.400           | 317.070             | 345.912         | 316.175           |
| 34       | 346.654           | 317.184             | 345.756         | 316.650           |
| 35       | 346.287           | 316.995             | 345.904         | 316.914           |
| 36       | 345.933           | 317.145             | 345.760         | 316.362           |
| 37       | 346.327           | 317.028             | 345.485         | 316.562           |
| 38       | 346.063           | 316.977             | 345.832         | 317.195           |
| 39       | 346.184           | 317.353             | 346.396         | 316.520           |
| 40       | 346.878           | 317.430             | 346.905         | 316.528           |

Table 8: Tabulated data from empty test section test at  $U_{ts}=24.4\ {\rm m/s}$ 

### DST-Group-TN-1728

| 41347.682317.575346.356316.40442347.677317.067346.157316.46143347.106316.646347.158317.13644346.111316.684347.245316.79145345.903316.610346.899316.80846346.845317.429346.055316.52347347.388316.896346.280316.96748346.889316.999346.242316.38349346.948317.176345.895316.69250346.991316.592346.160316.74151346.181316.075345.865316.19052345.959316.641346.125316.58953346.334316.749346.198316.68754346.059316.670346.500316.91555346.354316.873346.756317.09956347.259317.051346.585316.69458346.743317.464346.657316.62059346.398316.766346.416316.44460346.553316.947345.414316.303 |        |         |         |         |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------|---------|---------|---------|
| 42347.677317.067346.157316.46143347.106316.646347.158317.13644346.111316.684347.245316.79145345.903316.610346.899316.80846346.845317.429346.055316.52347347.388316.896346.280316.96748346.948317.176345.895316.69249346.948317.176345.895316.69250346.991316.592346.160316.74151346.181316.075345.865316.19052345.959316.641346.125316.58953346.334316.749346.198316.68754346.595316.670346.500316.91555346.354316.873346.756317.09956347.259317.201346.585316.69458346.743317.464346.657316.62059346.398316.766346.416316.44460346.553316.947345.414316.303                               | <br>41 | 347.682 | 317.575 | 346.356 | 316.404 |
| 43347.106316.646347.158317.13644346.111316.684347.245316.79145345.903316.610346.899316.80846346.845317.429346.055316.52347347.388316.896346.280316.96748346.889316.999346.242316.38349346.948317.176345.895316.69250346.991316.592346.160316.74151346.181316.075345.865316.19052345.959316.641346.125316.58953346.434316.749346.198316.68754346.059316.670346.500316.91555346.354316.873346.595316.69457347.069317.201346.585316.69458346.743316.766346.416316.44460346.553316.947345.414316.303                                                                                           | 42     | 347.677 | 317.067 | 346.157 | 316.461 |
| 44346.111316.684347.245316.79145345.903316.610346.899316.80846346.845317.429346.055316.52347347.388316.896346.280316.96748346.889316.999346.242316.38349346.948317.176345.895316.69250346.991316.592346.160316.74151346.181316.075345.865316.19052345.959316.641346.125316.58953346.434316.749346.198316.68754346.059316.670346.500316.91555346.354316.873346.756317.09956347.259317.051346.595316.69458346.743317.766346.657316.62059346.398316.766346.416316.44460346.553316.947345.414316.303                                                                                           | 43     | 347.106 | 316.646 | 347.158 | 317.136 |
| 45345.903316.610346.899316.80846346.845317.429346.055316.52347347.388316.896346.280316.96748346.889316.999346.242316.38349346.948317.176345.895316.69250346.991316.592346.160316.74151346.181316.075345.865316.19052345.959316.641346.125316.58953346.434316.749346.198316.68754346.059316.670346.500316.91555346.354316.873346.756317.09956347.259317.051346.585316.69458346.743317.464346.657316.62059346.398316.766346.416316.44460346.553316.947345.414316.303                                                                                                                         | 44     | 346.111 | 316.684 | 347.245 | 316.791 |
| 46346.845317.429346.055316.52347347.388316.896346.280316.96748346.889316.999346.242316.38349346.948317.176345.895316.69250346.991316.592346.160316.74151346.181316.075345.865316.19052345.959316.641346.125316.58953346.434316.749346.198316.68754346.059316.670346.500316.91555346.354316.873346.595316.85657347.069317.051346.585316.69458346.743316.766346.416316.44460346.553316.947345.414316.303                                                                                                                                                                                     | 45     | 345.903 | 316.610 | 346.899 | 316.808 |
| 47347.388316.896346.280316.96748346.889316.999346.242316.38349346.948317.176345.895316.69250346.991316.592346.160316.74151346.181316.075345.865316.19052345.959316.641346.125316.58953346.434316.749346.198316.68754346.059316.670346.500316.91555346.354316.873346.756317.09956347.259317.051346.595316.69458346.743317.464346.657316.62059346.398316.766346.416316.44460346.553316.947345.414316.303                                                                                                                                                                                     | 46     | 346.845 | 317.429 | 346.055 | 316.523 |
| 48346.889316.999346.242316.38349346.948317.176345.895316.69250346.991316.592346.160316.74151346.181316.075345.865316.19052345.959316.641346.125316.58953346.434316.749346.198316.68754346.059316.670346.500316.91555346.354316.873346.756317.09956347.259317.051346.595316.69458346.743317.464346.657316.62059346.398316.766346.416316.44460346.553316.947345.414316.303                                                                                                                                                                                                                   | 47     | 347.388 | 316.896 | 346.280 | 316.967 |
| 49346.948317.176345.895316.69250346.991316.592346.160316.74151346.181316.075345.865316.19052345.959316.641346.125316.58953346.434316.749346.198316.68754346.059316.670346.500316.91555346.354316.873346.756317.09956347.259317.051346.595316.85657347.069317.201346.585316.69458346.743316.766346.416316.44460346.553316.947345.414316.303                                                                                                                                                                                                                                                 | 48     | 346.889 | 316.999 | 346.242 | 316.383 |
| 50346.991316.592346.160316.74151346.181316.075345.865316.19052345.959316.641346.125316.58953346.434316.749346.198316.68754346.059316.670346.500316.91555346.354316.873346.756317.09956347.259317.051346.595316.69457346.743317.464346.657316.62058346.398316.766346.416316.44460346.553316.947345.414316.303                                                                                                                                                                                                                                                                               | 49     | 346.948 | 317.176 | 345.895 | 316.692 |
| 51346.181316.075345.865316.19052345.959316.641346.125316.58953346.434316.749346.198316.68754346.059316.670346.500316.91555346.354316.873346.756317.09956347.259317.051346.595316.85657347.069317.201346.585316.69458346.743316.766346.416316.44460346.553316.947345.414316.303                                                                                                                                                                                                                                                                                                             | 50     | 346.991 | 316.592 | 346.160 | 316.741 |
| 52345.959316.641346.125316.58953346.434316.749346.198316.68754346.059316.670346.500316.91555346.354316.873346.756317.09956347.259317.051346.595316.85657347.069317.201346.585316.69458346.743317.464346.657316.42059346.398316.766346.416316.44460346.553316.947345.414316.303                                                                                                                                                                                                                                                                                                             | 51     | 346.181 | 316.075 | 345.865 | 316.190 |
| 53346.434316.749346.198316.68754346.059316.670346.500316.91555346.354316.873346.756317.09956347.259317.051346.595316.85657347.069317.201346.585316.69458346.743317.464346.657316.42059346.398316.766346.416316.44460346.553316.947345.414316.303                                                                                                                                                                                                                                                                                                                                           | 52     | 345.959 | 316.641 | 346.125 | 316.589 |
| 54346.059316.670346.500316.91555346.354316.873346.756317.09956347.259317.051346.595316.85657347.069317.201346.585316.69458346.743317.464346.657316.62059346.398316.766346.416316.44460346.553316.947345.414316.303                                                                                                                                                                                                                                                                                                                                                                         | 53     | 346.434 | 316.749 | 346.198 | 316.687 |
| 55346.354316.873346.756317.09956347.259317.051346.595316.85657347.069317.201346.585316.69458346.743317.464346.657316.62059346.398316.766346.416316.44460346.553316.947345.414316.303                                                                                                                                                                                                                                                                                                                                                                                                       | 54     | 346.059 | 316.670 | 346.500 | 316.915 |
| 56       347.259       317.051       346.595       316.856         57       347.069       317.201       346.585       316.694         58       346.743       317.464       346.657       316.620         59       346.398       316.766       346.416       316.444         60       346.553       316.947       345.414       316.303                                                                                                                                                                                                                                                     | 55     | 346.354 | 316.873 | 346.756 | 317.099 |
| 57347.069317.201346.585316.69458346.743317.464346.657316.62059346.398316.766346.416316.44460346.553316.947345.414316.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 56     | 347.259 | 317.051 | 346.595 | 316.856 |
| 58346.743317.464346.657316.62059346.398316.766346.416316.44460346.553316.947345.414316.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 57     | 347.069 | 317.201 | 346.585 | 316.694 |
| 59346.398316.766346.416316.44460346.553316.947345.414316.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 58     | 346.743 | 317.464 | 346.657 | 316.620 |
| 60346.553316.947345.414316.303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 59     | 346.398 | 316.766 | 346.416 | 316.444 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60     | 346.553 | 316.947 | 345.414 | 316.303 |

Table 8 Continued: Tabulated data from empty test section test at 24-4  $\ensuremath{m/s}$ 

# Appendix C. Tabulated Data with Elevated Ground Plane Installed

| Time (s) | Baseline $q_{ts}$ | Baseline $\Delta P$ | Repeat $q_{ts}$ | Repeat $\Delta P$ |
|----------|-------------------|---------------------|-----------------|-------------------|
| 0        | 16.913            | 13.499              | 15.535          | 12.057            |
| 1        | 16.871            | 13.379              | 15.799          | 12.039            |
| 2        | 16.778            | 12.314              | 15.896          | 12.062            |
| 3        | 15.878            | 12.638              | 15.868          | 12.051            |
| 4        | 15.949            | 13.226              | 15.738          | 12.064            |
| 5        | 16.386            | 13.385              | 15.569          | 12.108            |
| 6        | 16.496            | 12.946              | 15.506          | 11.959            |
| 7        | 16.126            | 12.822              | 15.185          | 11.866            |
| 8        | 15.938            | 12.212              | 15.110          | 11.986            |
| 9        | 15.513            | 11.787              | 15.057          | 11.996            |
| 10       | 15.036            | 11.690              | 15.297          | 11.980            |
| 11       | 14.864            | 11.731              | 15.318          | 11.995            |
| 12       | 15.050            | 11.697              | 15.173          | 12.059            |
| 13       | 15.090            | 11.785              | 15.249          | 12.047            |
| 14       | 15.317            | 11.743              | 15.557          | 12.013            |
| 15       | 15.250            | 11.793              | 15.735          | 11.986            |
| 16       | 15.278            | 11.888              | 15.544          | 12.170            |
| 17       | 15.073            | 11.841              | 15.747          | 12.109            |
| 18       | 15.192            | 11.847              | 15.702          | 12.049            |
| 19       | 15.066            | 11.864              | 15.472          | 12.006            |
| 20       | 15.039            | 11.948              | 15.256          | 12.053            |
| 21       | 15.133            | 11.982              | 15.100          | 12.072            |
| 22       | 15.143            | 11.904              | 15.300          | 12.172            |
| 23       | 14.988            | 11.802              | 15.385          | 12.191            |
| 24       | 14.820            | 11.769              | 15.329          | 12.135            |
| 25       | 14.762            | 11.857              | 15.422          | 12.121            |
| 26       | 14.885            | 11.983              | 15.533          | 12.127            |
| 27       | 14.803            | 12.405              | 15.398          | 12.181            |
| 28       | 15.190            | 13.223              | 15.452          | 12.145            |
| 29       | 16.063            | 13.631              | 15.449          | 12.168            |
| 30       | 16.740            | 13.751              | 15.629          | 12.090            |
| 31       | 17.213            | 13.726              | 15.524          | 12.081            |
| 32       | 17.101            | 13.679              | 15.615          | 11.957            |
| 33       | 17.257            | 13.810              | 15.438          | 11.908            |
| 34       | 17.283            | 13.730              | 15.072          | 11.943            |
| 35       | 17.204            | 13.796              | 15.167          | 12.041            |
| 36       | 17.197            | 13.785              | 15.397          | 12.168            |
| 37       | 17.199            | 13.719              | 15.448          | 12.233            |

Table 9: Tabulated data from tests at  $U_{ts} = 5 m/s$  with the elevated ground plane installed

### DST-Group-TN-1728

| 38 | 17.194 | 13.645 | 15.489 | 12.121 |
|----|--------|--------|--------|--------|
| 39 | 17.126 | 13.475 | 15.616 | 11.989 |
| 40 | 16.946 | 12.617 | 15.490 | 12.007 |
| 41 | 16.178 | 12.190 | 15.639 | 12.130 |
| 42 | 15.623 | 12.138 | 15.510 | 12.113 |
| 43 | 15.364 | 12.106 | 15.511 | 12.071 |
| 44 | 15.310 | 12.161 | 15.698 | 12.129 |
| 45 | 15.339 | 12.231 | 15.599 | 12.097 |
| 46 | 15.681 | 12.299 | 15.858 | 11.966 |
| 47 | 15.783 | 12.286 | 15.542 | 11.865 |
| 48 | 15.520 | 12.372 | 15.321 | 11.785 |
| 49 | 15.326 | 12.361 | 15.243 | 11.840 |
| 50 | 15.541 | 12.412 | 15.413 | 11.850 |
| 51 | 15.573 | 12.319 | 15.147 | 11.836 |
| 52 | 15.494 | 12.274 | 14.947 | 11.966 |
| 53 | 15.220 | 12.810 | 15.275 | 12.010 |
| 54 | 15.618 | 13.277 | 15.418 | 11.977 |
| 55 | 16.316 | 13.251 | 15.458 | 11.981 |
| 56 | 16.479 | 13.099 | 15.356 | 11.977 |
| 57 | 16.281 | 12.627 | 15.324 | 11.972 |
| 58 | 15.849 | 12.420 | 15.376 | 11.970 |
| 59 | 15.672 | 12.520 | 15.167 | 11.844 |
| 60 | 15.617 | 12.681 | 15.206 | 11.810 |

Table 9 Continued: Tabulated data from tests at 5 m/s with the elevated ground plane installed

| Time (s) | Baseline $q_{ts}$ | Baseline $\Delta P$ | Repeat $q_{ts}$ | Repeat $\Delta P$ |
|----------|-------------------|---------------------|-----------------|-------------------|
| 0        | 59.736            | 51.259              | 60.126          | 51.685            |
| 1        | 59.851            | 51.219              | 60.076          | 51.298            |
| 2        | 59.649            | 51.474              | 59.940          | 51.562            |
| 3        | 59.791            | 51.129              | 59.943          | 51.649            |
| 4        | 59.580            | 51.243              | 60.223          | 52.141            |
| 5        | 59.629            | 50.979              | 60.659          | 52.269            |
| 6        | 59.510            | 50.909              | 60.604          | 52.279            |
| 7        | 59.492            | 51.196              | 60.795          | 51.965            |
| 8        | 59.452            | 51.215              | 60.206          | 51.651            |
| 9        | 59.459            | 51.148              | 59.959          | 51.593            |
| 10       | 59.681            | 51.136              | 60.007          | 52.085            |
| 11       | 59.504            | 51.118              | 60.282          | 52.013            |
| 12       | 59.454            | 51.013              | 60.499          | 51.624            |
| 13       | 59.312            | 51.050              | 60.294          | 51.337            |
| 14       | 59.389            | 50.797              | 60.227          | 51.552            |
| 15       | 59.486            | 51.174              | 60.392          | 51.721            |
| 16       | 59.617            | 51.116              | 60.606          | 51.872            |
| 17       | 59.652            | 51.138              | 60.635          | 52.003            |
| 18       | 59.522            | 50.985              | 60.718          | 52.170            |
| 19       | 59.511            | 50.789              | 60.767          | 52.103            |
| 20       | 59.404            | 50.872              | 60.752          | 52.157            |
| 21       | 59.415            | 50.861              | 60.476          | 52.020            |
| 22       | 59.258            | 50.651              | 60.151          | 51.816            |
| 23       | 59.334            | 50.786              | 59.943          | 51.997            |
| 24       | 59.227            | 50.808              | 60.138          | 51.746            |
| 25       | 59.271            | 50.831              | 60.181          | 51.654            |
| 26       | 59.147            | 50.789              | 60.412          | 51.808            |
| 27       | 59.222            | 50.822              | 60.624          | 52.192            |
| 28       | 59.203            | 50.910              | 60.468          | 52.207            |
| 29       | 59.114            | 50.693              | 60.484          | 52.066            |
| 30       | 59.302            | 50.695              | 60.830          | 51.929            |
| 31       | 58.955            | 50.713              | 60.689          | 51.883            |
| 32       | 59.076            | 50.550              | 60.790          | 51.992            |
| 33       | 58.865            | 50.844              | 60.553          | 52.072            |
| 34       | 58.953            | 50.975              | 60.411          | 51.999            |
| 35       | 58.970            | 50.860              | 59.954          | 51.372            |
| 36       | 59.047            | 50.739              | 59.938          | 51.529            |
| 37       | 58.930            | 50.799              | 60.337          | 51.431            |
| 38       | 59.096            | 50.606              | 60.032          | 51.407            |
| 39       | 58.870            | 50.781              | 59.825          | 51.357            |
| 40       | 58.963            | 50.645              | 59.999          | 51.520            |

Table 10: Tabulated data from tests at  $U_{ts} = 10 m/s$  with the elevated ground plane installed

### DST-Group-TN-1728

Table 10 Continued: Tabulated data from tests at 10 m/s with the elevated ground plane installed

| 41 | 59.023 | 50.648 | 59.862 | 51.341 |
|----|--------|--------|--------|--------|
| 42 | 59.054 | 50.695 | 59.692 | 51.305 |
| 43 | 59.068 | 50.720 | 59.799 | 51.330 |
| 44 | 59.073 | 50.730 | 59.866 | 51.316 |
| 45 | 58.764 | 50.395 | 60.039 | 51.314 |
| 46 | 58.725 | 50.558 | 59.844 | 51.362 |
| 47 | 58.841 | 50.840 | 59.744 | 51.733 |
| 48 | 59.098 | 50.777 | 59.745 | 51.777 |
| 49 | 59.364 | 50.570 | 59.900 | 51.625 |
| 50 | 58.996 | 50.707 | 60.039 | 51.591 |
| 51 | 59.154 | 50.688 | 59.471 | 51.390 |
| 52 | 58.969 | 50.698 | 59.753 | 51.744 |
| 53 | 59.270 | 50.550 | 60.416 | 51.941 |
| 54 | 58.912 | 50.316 | 60.610 | 51.681 |
| 55 | 59.009 | 50.688 | 60.027 | 51.798 |
| 56 | 59.216 | 50.787 | 60.314 | 51.835 |
| 57 | 59.040 | 50.807 | 60.208 | 51.907 |
| 58 | 59.226 | 50.825 | 60.495 | 52.011 |
| 59 | 59.347 | 50.374 | 60.704 | 51.926 |
| 60 | 58.884 | 49.981 | 60.422 | 51.892 |
|    |        |        |        |        |

| Time (s) | Baseline $q_{ts}$ | Baseline $\Delta P$ | Repeat $q_{ts}$ | Repeat $\Delta P$ |
|----------|-------------------|---------------------|-----------------|-------------------|
| 0        | 131.577           | 113.421             | 134.506         | 115.341           |
| 1        | 131.475           | 113.436             | 134.308         | 115.598           |
| 2        | 131.463           | 112.965             | 134.297         | 115.578           |
| 3        | 131.223           | 112.702             | 134.566         | 115.742           |
| 4        | 131.124           | 112.617             | 134.724         | 115.849           |
| 5        | 131.082           | 112.140             | 134.536         | 115.632           |
| 6        | 131.092           | 112.848             | 134.261         | 115.492           |
| 7        | 131.154           | 113.380             | 134.185         | 115.821           |
| 8        | 131.599           | 113.199             | 134.247         | 115.681           |
| 9        | 131.887           | 113.423             | 134.083         | 115.646           |
| 10       | 132.111           | 113.599             | 133.859         | 115.602           |
| 11       | 131.863           | 113.813             | 133.965         | 115.671           |
| 12       | 132.344           | 114.301             | 133.700         | 115.070           |
| 13       | 132.743           | 114.280             | 133.425         | 115.659           |
| 14       | 132.381           | 113.554             | 133.626         | 115.060           |
| 15       | 132.053           | 113.135             | 133.765         | 115.134           |
| 16       | 131.891           | 113.441             | 133.309         | 115.198           |
| 17       | 132.030           | 114.354             | 133.586         | 115.517           |
| 18       | 132.774           | 113.524             | 134.111         | 115.443           |
| 19       | 132.255           | 113.339             | 134.414         | 115.366           |
| 20       | 131.929           | 112.839             | 134.335         | 115.640           |
| 21       | 131.428           | 112.906             | 134.516         | 115.306           |
| 22       | 130.966           | 112.859             | 134.001         | 115.632           |
| 23       | 130.744           | 112.237             | 134.165         | 115.449           |
| 24       | 130.918           | 113.675             | 134.215         | 115.612           |
| 25       | 131.843           | 113.488             | 134.295         | 115.576           |
| 26       | 131.801           | 113.738             | 134.387         | 115.538           |
| 27       | 131.868           | 113.645             | 134.283         | 115.215           |
| 28       | 131.752           | 113.232             | 133.773         | 114.990           |
| 29       | 131.552           | 113.364             | 133.346         | 115.055           |
| 30       | 131.658           | 113.718             | 133.787         | 115.339           |
| 31       | 132.373           | 113.702             | 133.873         | 115.546           |
| 32       | 132.182           | 113.352             | 134.134         | 115.595           |
| 33       | 132.066           | 112.992             | 134.095         | 115.423           |
| 34       | 131.374           | 112.294             | 134.334         | 115.713           |
| 35       | 131.022           | 112.168             | 134.312         | 115.734           |
| 36       | 130.831           | 112.509             | 134.648         | 115.188           |
| 37       | 130.627           | 111.940             | 134.409         | 115.450           |
| 38       | 130.616           | 112.637             | 134.310         | 115.676           |
| 39       | 130.871           | 113.197             | 134.215         | 115.290           |
| 40       | 131.344           | 113.137             | 134.293         | 115.820           |

Table 11: Tabulated data from tests at  $U_{ts} = 15 m/s$  with the elevated ground plane installed

### DST-Group-TN-1728

Table 11 Continued: Tabulated data from tests at 15 m/s with the elevated ground plane installed

| 41 | 131.708 | 113.681 | 134.138 | 115.542 |
|----|---------|---------|---------|---------|
| 42 | 131.833 | 113.553 | 134.156 | 115.611 |
| 43 | 131.956 | 113.439 | 134.119 | 115.810 |
| 44 | 131.983 | 113.161 | 134.333 | 115.362 |
| 45 | 131.825 | 112.936 | 134.092 | 115.531 |
| 46 | 131.542 | 112.701 | 133.897 | 115.294 |
| 47 | 131.192 | 113.143 | 133.511 | 115.320 |
| 48 | 131.393 | 113.227 | 133.731 | 115.672 |
| 49 | 131.644 | 113.138 | 133.894 | 115.287 |
| 50 | 131.541 | 112.137 | 134.015 | 115.550 |
| 51 | 130.737 | 110.984 | 134.178 | 115.396 |
| 52 | 129.583 | 111.772 | 134.444 | 116.038 |
| 53 | 130.066 | 112.276 | 134.538 | 115.611 |
| 54 | 130.364 | 112.300 | 134.635 | 115.375 |
| 55 | 130.602 | 112.613 | 134.304 | 115.611 |
| 56 | 131.096 | 113.159 | 133.986 | 115.548 |
| 57 | 131.708 | 113.492 | 134.165 | 115.413 |
| 58 | 131.911 | 113.058 | 133.880 | 115.553 |
| 59 | 131.610 | 112.926 | 133.776 | 115.242 |
| 60 | 131.675 | 113.249 | 133.787 | 115.494 |
|    |         |         |         |         |

| Time (s) | Baseline $q_{ts}$ | Baseline $\Delta P$ | Repeat $q_{ts}$ | Repeat $\Delta P$ |
|----------|-------------------|---------------------|-----------------|-------------------|
| 0        | 231.624           | 197.270             | 237.281         | 202.386           |
| 1        | 231.371           | 197.330             | 237.258         | 202.272           |
| 2        | 231.260           | 197.497             | 237.611         | 202.820           |
| 3        | 231.308           | 197.317             | 237.293         | 202.745           |
| 4        | 231.101           | 197.397             | 237.094         | 202.268           |
| 5        | 231.288           | 197.745             | 237.000         | 202.206           |
| 6        | 231.107           | 197.093             | 237.007         | 202.452           |
| 7        | 231.531           | 198.073             | 237.058         | 202.089           |
| 8        | 231.774           | 197.640             | 236.569         | 201.828           |
| 9        | 231.520           | 197.335             | 236.485         | 202.312           |
| 10       | 231.362           | 197.338             | 237.000         | 201.464           |
| 11       | 231.103           | 197.040             | 236.609         | 201.482           |
| 12       | 231.253           | 197.199             | 237.080         | 201.765           |
| 13       | 231.394           | 197.845             | 237.282         | 202.076           |
| 14       | 231.770           | 197.734             | 237.529         | 201.800           |
| 15       | 231.405           | 197.508             | 237.200         | 201.474           |
| 16       | 231.489           | 197.396             | 237.063         | 201.881           |
| 17       | 231.675           | 196.763             | 236.925         | 201.788           |
| 18       | 230.988           | 197.291             | 236.588         | 201.365           |
| 19       | 231.337           | 197.669             | 236.594         | 201.798           |
| 20       | 231.770           | 197.904             | 236.762         | 201.839           |
| 21       | 231.762           | 197.286             | 236.821         | 202.218           |
| 22       | 230.964           | 197.335             | 236.948         | 202.065           |
| 23       | 231.333           | 197.924             | 236.774         | 201.622           |
| 24       | 231.708           | 197.733             | 236.590         | 201.840           |
| 25       | 231.534           | 197.458             | 236.549         | 201.816           |
| 26       | 231.582           | 197.697             | 236.027         | 202.023           |
| 27       | 231.641           | 197.909             | 236.464         | 201.246           |
| 28       | 231.946           | 197.951             | 235.867         | 201.112           |
| 29       | 231.289           | 197.047             | 236.261         | 201.831           |
| 30       | 230.020           | 196.147             | 236.321         | 201.967           |
| 31       | 230.047           | 197.182             | 236.338         | 202.208           |
| 32       | 230.770           | 197.452             | 236.635         | 201.817           |
| 33       | 231.007           | 197.360             | 236.501         | 201.746           |
| 34       | 231.382           | 197.087             | 236.379         | 202.118           |
| 35       | 231.047           | 196.909             | 236.248         | 201.946           |
| 36       | 230.885           | 197.493             | 236.216         | 201.999           |
| 37       | 231.324           | 196.955             | 236.360         | 201.452           |
| 38       | 231.008           | 196.536             | 236.276         | 202.068           |
| 39       | 230.550           | 197.712             | 236.747         | 201.962           |
| 40       | 231.284           | 197.800             | 236.923         | 202.059           |

Table 12: Tabulated data from tests at  $U_{ts} = 20 \, m/s$  with the elevated ground plane installed

#### DST-Group-TN-1728

Table 12 Continued: Tabulated data from tests at 20 m/s with the elevated ground plane installed

|   | 41 | 232.196 | 197.470 | 236.877 | 201.795 |
|---|----|---------|---------|---------|---------|
|   | 42 | 232.171 | 197.365 | 236.409 | 201.875 |
|   | 43 | 231.686 | 197.019 | 236.440 | 201.810 |
|   | 44 | 230.947 | 196.672 | 236.481 | 202.047 |
|   | 45 | 230.435 | 196.436 | 237.064 | 201.899 |
|   | 46 | 230.333 | 197.124 | 236.781 | 201.933 |
|   | 47 | 230.667 | 196.914 | 237.009 | 201.799 |
|   | 48 | 230.600 | 196.420 | 236.318 | 201.659 |
|   | 49 | 230.181 | 196.888 | 236.367 | 202.067 |
|   | 50 | 230.656 | 196.473 | 236.611 | 201.745 |
|   | 51 | 230.222 | 196.655 | 236.573 | 201.582 |
|   | 52 | 230.023 | 195.727 | 236.584 | 201.598 |
|   | 53 | 230.044 | 195.912 | 236.750 | 201.805 |
|   | 54 | 229.691 | 196.050 | 236.504 | 201.456 |
|   | 55 | 230.507 | 197.138 | 236.399 | 201.636 |
|   | 56 | 230.552 | 196.707 | 236.096 | 201.387 |
|   | 57 | 230.853 | 196.938 | 235.934 | 201.825 |
|   | 58 | 230.785 | 196.615 | 236.763 | 202.371 |
|   | 59 | 231.000 | 197.054 | 237.143 | 201.527 |
|   | 60 | 231.231 | 197.308 | 236.181 | 201.540 |
| _ |    |         |         |         |         |

| Time (s) | Baseline $q_{ts}$ | Baseline $\Delta P$ | Repeat $q_{ts}$ | Repeat $\Delta P$ |
|----------|-------------------|---------------------|-----------------|-------------------|
| 0        | 362.781           | 311.543             | 363.477         | 311.663           |
| 1        | 362.889           | 311.198             | 363.974         | 311.382           |
| 2        | 362.610           | 311.314             | 363.395         | 311.257           |
| 3        | 362.754           | 311.143             | 362.711         | 311.639           |
| 4        | 362.519           | 311.415             | 362.723         | 311.588           |
| 5        | 362.680           | 311.315             | 363.001         | 311.363           |
| 6        | 362.398           | 311.385             | 363.243         | 311.009           |
| 7        | 362.415           | 311.669             | 362.160         | 310.881           |
| 8        | 362.440           | 311.662             | 362.497         | 311.479           |
| 9        | 363.007           | 311.284             | 362.514         | 310.574           |
| 10       | 361.837           | 311.773             | 362.269         | 310.963           |
| 11       | 362.793           | 311.976             | 362.144         | 311.304           |
| 12       | 362.878           | 311.851             | 362.449         | 311.491           |
| 13       | 362.665           | 311.045             | 363.240         | 311.663           |
| 14       | 362.469           | 311.364             | 363.635         | 311.754           |
| 15       | 362.321           | 310.992             | 363.392         | 311.495           |
| 16       | 362.159           | 310.945             | 363.363         | 310.921           |
| 17       | 362.279           | 311.449             | 362.459         | 310.538           |
| 18       | 362.419           | 311.123             | 361.558         | 310.902           |
| 19       | 361.906           | 311.112             | 361.890         | 311.152           |
| 20       | 362.449           | 311.632             | 362.755         | 311.261           |
| 21       | 362.646           | 311.230             | 362.920         | 310.925           |
| 22       | 362.810           | 311.076             | 362.182         | 311.380           |
| 23       | 362.099           | 310.391             | 362.862         | 311.065           |
| 24       | 361.599           | 310.784             | 362.502         | 310.925           |
| 25       | 361.790           | 311.376             | 362.312         | 311.259           |
| 26       | 361.989           | 311.652             | 362.287         | 311.095           |
| 27       | 362.490           | 311.086             | 362.682         | 310.227           |
| 28       | 362.044           | 310.981             | 362.452         | 311.263           |
| 29       | 361.890           | 310.863             | 362.492         | 311.028           |
| 30       | 362.090           | 311.075             | 361.798         | 311.043           |
| 31       | 361.774           | 310.844             | 362.237         | 311.365           |
| 32       | 362.161           | 311.030             | 362.794         | 310.830           |
| 33       | 362.362           | 310.689             | 362.703         | 310.612           |
| 34       | 362.850           | 311.371             | 362.028         | 310.553           |
| 35       | 362.639           | 310.744             | 362.173         | 310.989           |
| 36       | 362.734           | 311.059             | 362.063         | 310.697           |
| 37       | 363.220           | 311.101             | 362.467         | 311.030           |
| 38       | 363.569           | 311.079             | 362.732         | 310.922           |
| 39       | 363.477           | 311.299             | 361.949         | 310.340           |
| 40       | 363.540           | 311.459             | 361.904         | 310.603           |

Table 13: Tabulated data from tests at  $U_{ts} = 25 \, m/s$  with the elevated ground plane installed

#### DST-Group-TN-1728

Table 13 Continued: Tabulated data from tests at 25 m/s with the elevated ground plane installed

| 41 | 363.452 | 311.441 | 361.854 | 310.636 |
|----|---------|---------|---------|---------|
| 42 | 362.936 | 311.259 | 362.264 | 310.760 |
| 43 | 362.188 | 309.431 | 362.864 | 310.958 |
| 44 | 361.327 | 310.821 | 362.889 | 310.897 |
| 45 | 361.973 | 311.777 | 362.400 | 310.702 |
| 46 | 362.413 | 311.267 | 362.297 | 310.784 |
| 47 | 362.397 | 310.899 | 361.925 | 310.791 |
| 48 | 362.371 | 311.078 | 361.858 | 310.666 |
| 49 | 362.434 | 311.174 | 362.456 | 310.951 |
| 50 | 362.092 | 311.454 | 362.263 | 310.871 |
| 51 | 362.110 | 311.017 | 362.477 | 310.791 |
| 52 | 361.967 | 311.269 | 362.585 | 310.660 |
| 53 | 362.720 | 310.983 | 362.178 | 310.851 |
| 54 | 362.378 | 311.518 | 362.514 | 311.119 |
| 55 | 363.211 | 311.240 | 362.447 | 310.802 |
| 56 | 363.527 | 311.376 | 362.421 | 310.440 |
| 57 | 363.307 | 311.176 | 361.859 | 311.059 |
| 58 | 362.896 | 311.108 | 362.206 | 310.601 |
| 59 | 362.490 | 310.673 | 361.806 | 310.510 |
| 60 | 362.102 | 310.636 | 361.607 | 310.290 |
|    |         |         |         |         |

| DEFENCE SCIENC<br>DOCUME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GROUP                       | 1. DL                 | M/CAVEAT                                                                                                 | (OF DOCUMENT) |                  |                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------|----------------------------------------------------------------------------------------------------------|---------------|------------------|------------------|
| 2. TITLE<br>Calibration of the DST Group Research Wind Tunnel Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                             |                       | 3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED LIMITED<br>RELEASE USE (L) NEXT TO DOCUMENT CLASSIFICATION) |               |                  |                  |
| Rings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                             |                       | Document(U)Title(U)Abstract(U)                                                                           |               |                  |                  |
| 4. AUTHORS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                             |                       | 5. CORPORATE AUTHOR                                                                                      |               |                  |                  |
| Jesse McCarthy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                       | Defence Science and Technology Group<br>506 Lorimer St,<br>Fishermans Bend, Victoria 3207, Australia     |               |                  |                  |
| 6a. DST GROUP NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6b. AR NU                   | JMBER                 | 6c. TYPE OF REPORT                                                                                       |               | τ                | 7. DOCUMENT DATE |
| DST-Group–TN–1728                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 017-078                     |                       | Technical Note                                                                                           | <u>)</u>      |                  | February, 2018   |
| 8. OBJECTIVE ID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OBJECTIVE ID 9. TASK NUMBER |                       |                                                                                                          |               | 10. TASK SPONSOR |                  |
| 11. MSTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |                       | 12. STC                                                                                                  |               |                  |                  |
| Aircraft Performance and Surviv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vability                    |                       | Aerodynamics and Aeroelasticity                                                                          |               |                  |                  |
| 13. DOWNGRADING/DELIMITING INSTRUCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                             | 14. RELEASE AUTHORITY |                                                                                                          |               |                  |                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                             |                       | Chief, Aerospace Division                                                                                |               |                  |                  |
| 15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |                       |                                                                                                          |               |                  |                  |
| Approved for Public Release                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                       |                                                                                                          |               |                  |                  |
| OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111 OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111 OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111 OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111 OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111 OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111 OVERSEAS ENQUIRIES OUTSIDE STATED |                             |                       |                                                                                                          |               |                  |                  |
| 16. DELIBERATE ANNOUNCEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                       |                                                                                                          |               |                  |                  |
| No Limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                       |                                                                                                          |               |                  |                  |
| 17. CITATION IN OTHER DOCUMENTS No Limitations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                             |                       |                                                                                                          |               |                  |                  |
| 18. RESEARCH LIBRARY THESAURUS<br>Aerodynamics, Wind tunnels, Calibration, Flow measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |                       |                                                                                                          |               |                  |                  |
| 19. ABSTRACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |                       |                                                                                                          |               |                  |                  |
| A calibration of the pressure rings in the DST Group Research Wind Tunnel was performed for an empty test section and with an elevated ground plane installed. This pressure ring system is similar in principle to the piezo-rings utilised in the DST Group Low                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |                       |                                                                                                          |               |                  |                  |

A calibration of the pressure rings in the DST Group Research Wind Tunnel was performed for an empty test section and with an elevated ground plane installed. This pressure ring system is similar in principle to the piezo-rings utilised in the DST Group Low Speed Wind Tunnel for calculating nominal test-section wind speed with a calibration factor. Calibration factors were obtained for both the empty test section and when the elevated ground plane is installed. It is found that the addition of the elevated ground plane changes the calibration factor significantly.