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ABSTRACT

This technical note considers a sensor that alternates randomly between working and broken
versus a target that reluctantly gives away glimpses as a homogenous Poisson process. Over
any interval of time, the sensor has a probability of detecting n glimpses, of detecting the
k-th glimpse, and of detecting the k-th glimpse when there are n glimpses in that interval.
We devise closed-form approximations to the distributions for those probabilities, prove that
the approximations become perfect as the time interval becomes infinitely long (asymptotic
distributions, pointwise convergence), and compare the approximations with empirical results
obtained from simulations.
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An Intermittent Sensor versus a Target that Emits
Glimpses as a Homogenous Poisson Process

Executive Summary

The work in this report was motivated by studies of operations to understand the performance
that may be required from future systems; for example, unmanned aerial vehicles hunting for
time-sensitive targets and submarines standing off from counter-detection. When collapsed to
their essentials, the operations could be modelled in terms of a sensor that alternates between
working and broken at random times, and is looking for a target that reluctantly gives away
glimpses as a homogenous Poisson process. We refer to this situation as the intermittent sensor
homogenous glimpses model.

In studies of such operations, the key measures of performance include the probability of de-
tecting n glimpses, of detecting the k-th glimpse, and of detecting the k-th glimpse when there
are n glimpses in the time interval. This report establishes that if we accept the intermittent
sensor homogenous glimpses model then the measures of performance have approximations
that are easy to calculate, and the approximations are close to reality when the time interval
is long. So while the model is evidently an abstraction of real life, it can be sufficiently valid
for a first, ‘back of the envelope’ analysis. Moreover the approximations provide insight into
how performance will behave overall, something that can be difficult to obtain from stochastic
simulation only.

The results can be applied to analysis of operations whenever the intermittent sensor homogen-
ous glimpses model is a valid abstraction of the operation being studied. The analysis proves
that the approximations become perfect in the technical sense of ‘pointwise convergence’ and
uses simulation to compare the approximations with reality. The report will be of interest
to analysts who are considering the intermittent sensor homogenous glimpses model for their
work.
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Notation

Detection of glimpses
[0, τ ] Time interval
U Cumulative duration that the sensor is working during [0, τ ]

µU Mean of U
σ2
U Variance of U
z Mean time between glimpses from the target
ζ Mean rate at which the target gives away glimpses = 1

z

ζ̂ Upper bound on ζ
Sensor reliability

Wk Time to failure on the k-th cycle
µF Mean of sensor’s times to failure
σ2

F Variance in times to failure
Bk Time to repair the failure in the k-th cycle
µR Mean of times to repair the sensor
σ2

R Variance in times to repair
ρ Correlation of Wk with Bk (for all k)
c Calculation parameter (Lemma 1)
w Calculation parameter (Lemma 1)

Measures of performance during an interval [0, τ ]

Pn Probability of detecting n glimpses
P k Probability of detecting the k-th glimpse
P kn Probability of detecting the k-th glimpse given n glimpses

Conventional formalisms
R Real numbers
P(·) Probability of ·
E(·) Expected value of ·
N (µ, σ2) Normal distribution with mean µ and variance σ2

lnN (µ, σ) Log-normal distribution from N (µ, σ2)

H(·;µ, σ) Cumulative distribution function for N (µ, σ2)

h(·;µ, σ) Probability density function for N (µ, σ2)

W (·) Lambert-W function
Notation specific to Section 3

hn(·) Probability mass function for Poisson distribution
^
pn Maximum value attained by hn(·)
κn(·) Conversion function

Notation specific to Section 4
g(·) Rate of reward
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1. Introduction

There are military operations that can be modelled as a contest between a sensor that altern-
ates between working and broken at random times and a target that reluctantly gives away
glimpses. The intermittent sensor homogenous glimpses model goes further by modeling the
target as giving away glimpses as a homogenous Poisson process. The model has been applied
to uninhabited aerial vehicles hunting for time-sensitive targets [6] and submarines standing
off from counter-detection [8].

In studies of such operations, the key measures of performance are based on the probability
of detecting the target with the sensor over an interval of time. Specifically, it is useful to
consider the probability of detecting n glimpses during an interval of time (especially the case
of detecting n = 0 glimpses which equates to not detecting the target) as this measures the
ability to obtain enough information about a target to take action against it. Indeed a single
glimpse may be enough to infer that the target is nearby, but multiple glimpses may be needed
if the target is to be classified, localized, and hence attacked. It is likewise useful to consider
the probability of detecting the k-th glimpse during an interval of time and of detecting the
k-th glimpse when there are n during that interval, as this measures the ability to collect a
specific piece of intelligence from a target. For example, if the goal is to record the emissions
from a target so that it can be recognized in the future, then it may be necessary to capture
specific emissions within the total set that occurs over a time interval.

This report obtains approximations to those measures of performance that are easy to calcu-
late, and proves that the approximations are close to reality when the time interval is long.
So while the intermittent sensor homogenous glimpses model is evidently an abstraction of
real life, it can be sufficiently valid for a first, ‘back of the envelope’ analysis. Moreover the
approximations provide insight into how performance will behave overall, something that can
be difficult to obtain from stochastic simulation only. Previous literature has considered in-
termittent search in which the searcher has phases of slow motion in which it can detect the
target, and phases of fast motion when it cannot detect the target [3]. Intermittency can
arise from many causes, for example: from motion of the sensor platform [9] (see discussion
on ‘terrain masking’), obscurants in the environment [2] [12], or by deliberately turning the
sensor off and on to avoid counter-acquisition [20]. The report diverges from research into
adaptive sensing [5] in which sensor resources are actively managed to achieve a sensor task.
In an adaptive sensing context, one might intermittently change the sensor from one mode to
another so that the performance of the sensor is maximized. In this report, the sensor is inter-
mittently alternating between working and broken states for reasons that are not controllable
and have to be coped with.

The novel contribution of this report is in the calculation of closed-form approximations to
the probabilities of detecting n glimpses during an interval of time, detecting the k-th glimpse
during an interval of time, and detecting the k-th glimpse when there are n during that interval.
The report is aimed at analysts who are contemplating the intermittent sensor homogenous
glimpses model for their studies of operations. It provides a consolidated presentation of the
model and calculations arising from it as a reference for future work. Section 2 works through
the model and its validity. Section 3 considers the probability of detecting n glimpses during
an interval of time, and in particular the case n = 0 (target not detected). Section 4 looks at
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the probability of detecting the k-th glimpse during an interval of time and of detecting the
k-th glimpse when there are n during that interval. We conclude with advice on how analysts
can apply the findings.

2. Intermittent Sensor Homogenous Glimpses

2.1. Model

The intermittent sensor homogenous glimpses model consists of a sensor that is working
or broken under an alternating renewal process versus a target that reluctantly gives away
glimpses as a homogenous Poisson process (Figure 1). In detail:

• The target gives away glimpses as a homogenous Poisson process with mean time between
glimpses z. If a glimpse arrives when the sensor is working then the glimpse will be
detected, but if the sensor is broken then the glimpse will be missed. We put ζ = 1

z as
the mean glimpse rate (mean rate at which the target gives away glimpses).

• At any point in the time interval [0, τ ], the sensor is either working or broken. The work-
ing durations W1,W2, . . . ,Wk, ... are alternated with the broken durations B1, B2, . . . ,
Bk, . . . where {(Wk, Bk) : k = 1, 2, . . . } is a sequence of mutually independent, identically
distributed, non-negative, vector random variables that are drawn from a non-degenerate
bivariate distribution. Note that the cycle durations {Wk +Bk : k = 1, 2, . . . } are mutu-
ally independent so we have an alternating renewal process. To be explicit, each broken
duration Bk is allowed to depend on the working duration Wk for the k-th cycle.

• Let ρ denote the correlation of Bk with Wk (for all k as {(Wk, Bk)} are identically
distributed). Note that if the sequences {Wk} and {Bk} are independent then ρ = 0
(the converse is not necessarily true).

• We assume that the mean µF and variance σ2
F of the working durations are finite and

positive. Likewise the mean µR and variance σ2
R of the broken durations are assumed to

be finite and positive. These assumptions will be used in the proof of Lemma 1.

• The calculations that consider the k-th glimpse (Section 4) will further assume that
E(W 3

k ) < ∞ and E(B3
k) < ∞; that is, the working and broken durations have finite

skewness (in addition to having finite mean and variance). This assumption will be used
in the proof of Lemma 2, which is used by the calculations about the k-th glimpse.

In any given application, it will be necessary to check that the model is valid abstraction of
reality as opposed to being a ‘strawman’. Working through the assumptions:

• That the sensor is either working or broken is a gross simplification of the real world.
An accurate model would vary z with the distance of the sensor to the target, the
target’s susceptibility to detection (its signature), the environment, and other factors.
The assumption of z constant (a homogenous Poisson process) can nonetheless provide
a first-order insight into operations. The practical interest is in z large, namely a target

2
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Intermittent Sensor 

• Times to failure : mean 𝜇𝐹 var 𝜎𝐹
2  

Times to repair : mean 𝜇𝑅 var 𝜎𝑅
2  

(All parameters finite)  

• Uptime 𝑈 during 0, 𝜏  with 𝜏 → ∞ 
 

Target cedes glimpses 

• Poisson process at rate 𝜁  
(homogenous) 

Sensor is 
Working 

 

Uptime 𝑼 

Sensor is 
Broken 

Target cedes glimpses  
as Poisson process at rate 𝜁  

𝜇𝐹, 𝜎𝐹
2 𝜇𝑅, 𝜎𝑅

2 

Figure 1: The intermittent sensor homogenous glimpses model.
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Figure 2: A realization of the intermittent sensor homogenous glimpses process consists of
durations in which the sensor is alternately working (shown as shaded rectangles)
and then broken (unshaded unrectangles), and a set of glimpses that are reluctantly
given away by the target (marked as vertical line segments). If a glimpse arrives at
a time when the sensor is working then it is detected. Otherwise if a glimpse arrives
at a time when the sensor is broken then it is missed.
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that is difficult to detect as it rarely gives away glimpses.

• Modeling targets as giving away glimpses as a Poisson process (possibly non-homogenous)
follows common practice in studies of search and screening. Koopman [11, Section 3.2]
discusses detection when looking continuously for a target, and calls ζ the ‘instantaneous
probability density of detection’. Wagner et al. [19, Section 507] references Koopman’s
work in the discussion of ‘detection rate’ modeling under assumptions of independent
and continuous looking, with the homogenous Poisson process being referred to as the
‘constant detection rate’ model with parameter ζ.

• The model covers both passive and active sensors, in that it is only concerned with
opportunities for the sensor to see the target. For passive sensors, the target might
be continuously emitting a signal that is broken up stochastically by the environment,
or randomly emitting bursts of detectable energy. Active sensors can be thought of as
‘pinging’ (illuminating) the environment with energy and listening for the backscatter.
Again, the backscattered energy will be broken up stochastically by the environment.
That said, if the ‘pings’ come at discrete times then it may be more appropriate to apply
a discrete model of target detection; see [11, Section 3.2] and [19, Section 502–504].

• In assuming that the cycle durations are mutually independent, the sensor is implicitly
assumed to ‘reset’ with each cycle. The assumption is reasonable in the absence of
opposing arguments.

The model makes no assumptions about the sensor’s state at time t = 0. Indeed it is well-
known [18] that an alternating renewal process will forget the state that it was in at time
t = 0, in that as time passes the probability of being in the working state approaches the
stationary probability µF

µR+µF
. For completeness, we note that an alternating renewal process is

said to be ordinary if it the process is working at t = 0 versus in equilibrium if its probability
of being in the working state at t = 0 is the stationary probability. In a real-world operation,
it is arguably more realistic to assume that the sensor is working at the start of an operation.
That said, one might assume that the sensor is allowed to ‘run in’ a bit and hence the process
can be taken as being in equilibrium.

The analysis in this report only requires the means and variance of the durations spent working
Wk and broken Bk, and does not require their actual distributions. But as an aid to future
investigations, the following observations are made about potential distributions for Wk and
Bk: For ‘back of the envelope’ work, one might assert that either or both of the durations
follow exponential distributions as it has the well-known property of being memoryless. If
the times to failure are based on failures in equipment or materials then one might adopt
the exponential distribution [14], the Weibull distribution [10], or the Birnbaum-Saunders
distribution [15, 8.1.6.6]. On the other hand, log-normal distributions may be justifiable given
(for example) their utility in modeling the ability of sensors to see through the water [4].
Finally, uniform distributions or triangular distributions could be applied in situations where
the sensor is exposed for a duration that has a fixed cut-off time.

4
UNCLASSIFIED



UNCLASSIFIED
DST-Group–TN–1765

2.2. Foundation calculations

Throughout this report, let R denote the real numbers, P(·) be ‘the probability of ·’ and E(·)
be ‘the expected value of ·’. Write N (µ, σ2) for the normal distribution with mean µ and
variance σ2.

Our interest is in glimpses that arrive when the sensor is working. Hence we focus on the
sensor’s uptime U during a given time interval [0, τ ]. Some classic results in reliability theory
[16] [17] establish that under the assumptions made about the dependence between {Wk} and
{Bk} (the durations that that the sensor is working and broken), the U is asymptotically
normal — intuitively, U is approximately normal for any τ and the approximation becomes
perfect as τ →∞.

Lemma 1 (Uptime is asymptotically normal). Let U be the uptime, namely the cumulative
duration that the sensor is working during an interval [0, τ ]. Then as τ → ∞, the quantity
U − µU
σU

converges in distribution to N (0, 1) where

µU = cτ

σ2
U = 2c(1− c)wτ

c =
µF

µR + µF

w =
µ2

Rσ
2
F + µ2

Fσ
2
R − 2ρµRµFσRσF

2µRµF(µR + µF)

Proof. If the sequences {Wk} and {Bk} are independent then the result follows immediately
from [16, Example 1]. Otherwise let F be the joint (bivariate) distribution for Bk withWk (for
all k as {(Wk, Bk)} are identically distributed). Now F is non-degenerate by assumption and
Bk and Wk have finite variance for all k. Therefore F is contained in the normal domain of
attraction of a bivariate normal distribution [1] and the result follows by [17, Example 3].

It will also be useful to think of the sensor as accumulating a reward when it is working.

Lemma 2 (Accumulated reward is asymptotically normal). LetXt denote the sensor’s state at
time t wherein Xt = 0 if the sensor is broken and Xt = 1 if it is working. Given g : [0, 1]→ R,
put Q =

∫ τ
0 g(t/τ)Xt dt (reward the sensor at rate g(t/τ) if it is working at time t), and set

µQ = ḡµU

σ2
Q = γσ2

U

where ḡ =
∫ 1

0 g(x) dx, γ =
∫ 1

0 (g(x))2 dx, and µU , σ2
U are provided by Lemma 1. Suppose that

all of the following conditions are satisfied:

• E(W 2
k ) + E(B2

k) > 0, E(W 3
k ) <∞,E(B3

k) <∞, for all k.

• −∞ < ḡ <∞, 0 < γ <∞, and |
∫ 1

0 g(x)g′(x) dx| <∞.
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Then as τ →∞, the quantity
Q− µQ
σQ

converges in distribution to N (0, 1).

Proof. See [7].

Remark. To approximate U by a normal distribution we need only obtain the parameters µU ,
σ2
U . Likewise to approximate Q by a normal distribution we need only obtain the parameters
µQ, σ2

Q which are fully determined by the reward rate g and the values µU , σ2
U . Moreover under

our assumptions about the dependence between the durations spent workingWk versus broken
Bk, the values µU , σ2

U are fully determined by the means and variances of those durations (µF,
µR, σ2

F, σ
2
R) and the coefficient ρ. All other information about the distributions of Wk or Bk

is ignored.

The following lemma is for technical purposes. It establishes that for certain random variables,
if we can approximate the distribution of the variable then we can use that approximation to
estimate the variable’s mean.

Lemma 3. Let {Fτ}τ and {Gτ}τ be sequences of cumulative distribution functions, and
{XFτ }τ and {XGτ }τ be the corresponding sequences of random variables. Suppose that for
all τ , XFτ and XGτ are both continuous and non-negative, and E(XFτ ) and E(XGτ ) are both
finite. Suppose further that for all x ≥ 0, ε > 0 there exists τ ′ > 0 such that if τ > τ ′

then |Fτ (x)−Gτ (x)| < ε. Then for all ε′ > 0 there exists τ ′ > 0 such that if τ > τ ′ then
|E(XFτ )− E(XGτ )| < ε′.

Proof. See Appendix.

3. Detecting n Glimpses

This section considers the probability Pn of detecting n glimpses during the time interval [0, τ ].
A practical application is in operations in which a searcher has to see a required number of
glimpses before they can take some action. Consider, for example, an aircraft that is hunting
for a surface-to-air missile battery by listening for its radar emissions. The radar emissions
can be treated as opportunities to glimpse the battery. A single glimpse may be enough
to infer that the battery is nearby, but multiple glimpses may be needed if the battery is
to be classified, localized, and hence attacked. As notation for this section, let lnN (µ, σ)
denote the log-normal distribution associated with N (µ, σ2). If Y ∼ N (µ, σ2) then we write
N (y;µ, σ) = P(Y ≤ y). Similarly if X ∼ lnN (µ, σ) then lnN (y;µ, σ) = P(Y ≤ y).

Lemma 1 established that the uptime U during time interval [0, τ ] is asymptotically normal.
Meanwhile, the target is giving away glimpses as a homogenous Poisson process at rate ζ.
Hence the number of glimpses during the time interval will be a random variable that we can
calculate as ζU and that random variable will also be asymptotically normal. We formalize
this idea in the following two lemmas as the stepping stone to the main results for this section.

Lemma 4.
∣∣P(U ≤ u)−N (u;µU , σ

2
U )
∣∣ =

∣∣P(−ζU ≤ −ζu)−N (−ζu;−ζµU , ζ2σ2
U )
∣∣.

6
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Proof. See Appendix.

Lemma 5 (Number of glimpses is asymptotically normal). For any u ∈ R, ε > 0 :

1. There exists τ ′ > 0 such that if τ > τ ′ then
∣∣P(ζU ≤ ζu)−N (ζu; ζµU , ζ

2σ2
U )
∣∣.

2. There exists τ ′ > 0 such that if τ > τ ′ then
∣∣P(−ζU ≤ −ζu)−N (−ζu;−ζµU , ζ2σ2

U )
∣∣.

Proof. Take Lemma 1 and unpack the definition of convergence in distribution: for any u ∈ R,
ε > 0 there exists τ ′ > 0 such that if τ > τ ′ then∣∣∣∣P(U − µUσU

≤ u− µU
σU

)
−N (u; 0, 1)

∣∣∣∣ < ε

By properties of the normal distribution this holds if and only if∣∣P(U ≤ u)−N (u;µU , σ
2
U )
∣∣ < ε

Hence for result (1) we apply properties of the normal distribution to get∣∣P(ζU ≤ ζu)−N (ζu; ζµU , ζ
2σ2
U )
∣∣ < ε

Meanwhile for result (2) we apply Lemma 4 to get∣∣P(−ζU ≤ −ζu)−N (−ζu;−ζµU , ζ2σ2
U )
∣∣ < ε

Remark. Lemma 5 establishes that P(ζU ≤ ζu) can be approximated by a normal distribu-
tion, and that the approximation improves as τ → ∞, but it does not calculate a value of τ
that will guarantee the goodness of the approximation. In technical terms, Lemma 5 estab-
lishes convergence but does not supply a rate of convergence. In particular, while Lemma 5
establishes that τ ′ exists for given u ∈ R, ε > 0, it does not calculate a value for it. At its
heart, Lemma 5 calls on Lemma 1 to obtain τ ′. So if a calculation for τ ′ is desired, it will be
necessary to replace Lemma 1 with a stronger result.

3.1. Detecting Zero Glimpses

The following result deduces that the distribution of P0 approaches log-normal as τ →∞.

Proposition 1. Set µ = −ζµU , σ2 = ζ2σ2
U . For any 0 ≤ p ≤ 1, ε > 0 there exists τ ′ > 0 such

that if τ > τ ′ then
∣∣P(P0 ≤ p)− lnN (p;µ, σ2)

∣∣ < ε.

Proof. Suppose ε > 0. Given p, construct u = −1
ζ ln(p) so p = e−ζu. By Lemma 5 there exists

τ ′ > 0 such that if τ > τ ′ then∣∣P(−ζU ≤ −ζu)−N (−ζu;µ, σ2)
∣∣ < ε

UNCLASSIFIED
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Now P0 = P(Zero glimpses acquired during [0, τ ]) = e−ζU . Moreover the function exp(·) is
strictly increasing so −ζU ≤ −ζu if and only if P0 ≤ p. Hence P(P0 ≤ p) = P(−ζU ≤ −ζu)
so if τ > τ ′ then ∣∣P(P0 ≤ p)−N (ln p;µ, σ2)

∣∣ < ε

or equivalently

|P(P0 ≤ p)− lnN (p;µ, σ)| < ε

We immediately obtain an approximation to the expected value of P0 that becomes perfect as
τ →∞.

Corollary 1. Put
ντ = exp (ζcτ(ζ(1− c)w − 1))

Then |E(P0)− ντ | → 0 as τ →∞ provided ζ ≤ ζ̂ where

ζ̂ =
1

2(1− c)w

Proof. Let X ∼ lnN (µ, σ). Lemma 3 finds that |E(P0)− E(X)| → 0 as τ →∞. We then use
known properties of the log-normal distribution to calculate

E(X) = eµ+σ2/2 = exp
(
−ζcτ + ζ2c(1− c)wτ

)
= exp (ζcτ(ζ(1− c)w − 1))

We now describe why the caveat ζ ≤ ζ̂ is required. Observe that exp(·) is an increasing
function and f(ζ) = ζcτ(ζ(1−c)w−1) is a positive quadratic with inflection point ζ̂. Hence f
is decreasing on ζ ≤ ζ̂, but increasing thereafter. But in reality, we should have E(X)→ 0 as
ζ →∞: if the target is giving away a huge number of glimpses then it is bound to be acquired
by the sensor, whereby P0 → 0 surely and hence X → 0 surely. Thus we use the caveat to
constrain ζ to the domain on which f is decreasing.

Remark. The approximation to E(P0) provided by Corollary 1 is an easily-calculated measure
of performance for the sensor. Indeed 1− P0 is the probability of detecting the target.

The underlying issue that leads to the caveat is that we have taken limits in a non-commutative
order. The quantity ζu corresponds physically to the number of glimpses given away by the
target during u. As ζ →∞, we should see ζu→∞ surely, but instead we are tied to a normal
distribution with mean µ→ −∞ and deviation σ →∞. The correct treatment takes ζ →∞
first, and then τ → ∞. The caveat is for mathematical correctness. The practical interest is
in ζ small, wherein the target gives away glimpses rarely.

Figures 3–5 compare Proposition 1’s approximation to the distribution of P0 with empirical
results from simulation. We inspect a range of values for τ to gain assurance that the approx-
imation does indeed improve as τ → ∞. We consider three different cases of distributions
for times to fail and repair to give some assurance that the results hold in all cases. Each
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Empirical Approximation

Figure 3: Approximation to distribution of P0 vs empirical distribution from simulations.
Times to fail follow an exponential distribution with mean 0.3, times to repair follow
an exponential distribution with mean 0.7, z = 150, a) τ = 10. b) τ = 50. c)
τ = 100. d) τ = 200. e) τ = 400. f) τ = 800. g) τ = 1600. h) τ = 2000.
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Figure 4: Approximation to distribution of P0 vs empirical distribution from simulations.
Times to fail follow the log-normal distribution lnN (0.4, 1), times to repair are uni-
formly distributed on [2, 4], z = 150, a) τ = 10. b) τ = 50. c) τ = 100. d) τ = 200.
e) τ = 400. f) τ = 800. g) τ = 1600. h) τ = 2000.
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Figure 5: Approximation to distribution of P0 vs empirical distribution from simulations.
Times to fail follow the Birnbaum-Saunders distribution with β = 3, γ = 3, times to
repair follow a triangular distribution on [3, 8] with peak at 7, z = 150, a) τ = 10.
b) τ = 50. c) τ = 100. d) τ = 200. e) τ = 400. f) τ = 800. g) τ = 1600. h)
τ = 2000.
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simulation run represented the sensor working intermittently during some interval [0, τ ]. The
sensor had probability µF

µR+µF
of being working at time t = 0 (simulation of the equilibrium

process). A total of 4,000,000 runs were generated, and then P0 was estimated 50,000 times.
Each estimate used 600 of the runs, in sampling without replacement. Each figure shows the
empirical cumulative distribution function from the 50,000 estimations, compared with the
proposed approximation.

The distributions for P0 match our intuitions: when τ = 0 we have P0 = 0 and as τ → ∞
we have P0 → 1 surely. While there is discrepancy between the approximate and empirical
distributions, it disappears as τ →∞.

3.2. Detecting One or More Glimpses

The following result establishes that when n ≥ 1 the distribution of Pn can be thought of as
approaching ‘Lambert W -normal’ as τ →∞. For any positive integer n and 0 ≤ p ≤ 1 put

κn(p) = −(n!p)1/n

n

Let h be the probability mass function for the Poisson distribution, namely

hn(λ) = e−λ
λn

n!

It is readily shown that hn(λ) attains its maximum value of

^
pn = e−n

nn

n!

when λ = n, and is increasing if λ < n and decreasing if λ > n (Appendix, Lemma 8). The
function has two pre-images, namely

h−1
0,n(p) = −nW0(κn(p))

h−1
−1,n(p) = −nW−1(κn(p))

respectively mapping from [0,
^
pn] to [0, n] and from [0,

^
pn] to [n,∞), where W0, W−1 are the

Lambert W function on its 0, −1 branches (Appendix, Lemma 9).

Proposition 2. Set µ = −ζµU , σ2 = ζ2σ2
U and

Fτ (p) = 1−N
(
W0(κn(p)); 1

nµ,
1
n2σ

2
)

+N
(
W−1(κn(p)); 1

nµ,
1
n2σ

2
)

For any 0 ≤ p ≤ 1, ε > 0 there exists τ ′ > 0 such that if τ > τ ′ then |P(Pn ≤ p)− Fτ (p)| < ε.

Proof. Suppose ε > 0. Given p, construct u0 = 1
ζh
−1
0,n(p), u−1 = 1

ζh
−1
−1,n(p) so p = hn(ζu0) and

p = hn(ζu−1). By Lemma 5 there exists τ ′0 > 0 such that if τ > τ ′0 then∣∣P(ζU ≤ ζu0)−N (ζu0; ζµU , ζ
2σ2
U )
∣∣ < 1

2ε

and likewise there exists τ ′−1 > 0 such that if τ > τ ′−1 then∣∣P(ζU ≤ ζu−1)−N (ζu−1; ζµU , ζ
2σ2
U )
∣∣ < 1

2ε
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Empirical Approximation

Figure 6: Approximation to distribution of P1 vs empirical distribution from simulations.
Times to fail follow an exponential distribution with mean 0.3, times to repair follow
an exponential distribution with mean 0.7, z = 150, a) τ = 10. b) τ = 50. c)
τ = 100. d) τ = 150. e) τ = 700. f) τ = 1000. g) τ = 1500. h) τ = 2000.
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Figure 7: Approximation to distribution of P1 vs empirical distribution from simulations.
Times to fail follow lnN (0.4, 1), times to repair are uniformly distributed on [2, 4],
z = 150, a) τ = 10. b) τ = 50. c) τ = 100. d) τ = 150. e) τ = 700. f) τ = 1000.
g) τ = 1500. h) τ = 2000.
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Figure 8: Approximation to distribution of P1 vs empirical distribution from simulations.
Times to fail follow the Birnbaum-Saunders distribution with β = 3, γ = 3, times to
repair follow a triangular distribution on [3, 8] with peak at 7, z = 150, a) τ = 10.
b) τ = 50. c) τ = 100. d) τ = 150. e) τ = 700. f) τ = 1000. g) τ = 1500. h)
τ = 2000.
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Put τ ′ = max(τ ′0, τ
′
−1). Now Pn = P(n glimpses acquired during [0, τ ]) = hn(ζU). Moreover

hn(·) is increasing on [0,
^
pn] and decreasing on [

^
pn,∞) so Pn ≤ p if and only if ζU ≤ ζu0 or

ζU ≥ ζu−1. Hence P(Pn ≤ p) = P(ζU ≤ ζu0) + P(ζU ≥ ζu−1) so if τ > τ ′ then∣∣∣P(Pn ≤ p)− (N (h−1
0,n(p); ζµU , ζ

2σ2
U ) + 1−N (h−1

−1,n(p); ζµU , ζ
2σ2
U ))
∣∣∣ < ε

or equivalently∣∣P(Pn ≤ p)−
(
1−N

(
W0(κn(p)); 1

nµ,
1
n2σ

2
)

+N
(
W−1(κn(p)); 1

nµ,
1
n2σ

2
))∣∣ < ε

As before, we get an approximation to the expected value of ^pn that becomes perfect as τ →∞.

Corollary 2. Put

ντ =
^
pn −

∫ ^
pn

0
Fτ (p) dp

Then |E(Pn)− ντ | → 0 as τ →∞.

Proof. Let X ∼ Fτ . Lemma 3 finds that |E(Pn)− E(X)| → 0 as τ →∞. Now it is well-known
that E(X) =

∫∞
0 (1− Fτ (p)) dp and the domain of Fτ is [0,

^
pn].

Figures 6–8 compare Proposition 2’s approximation to the distribution of Pn with empirical
results from simulation. The simulations were conducted as for the n = 0 case. The distribu-
tions for Pn match our intuitions: when τ = 0 we have Pn = 0. As τ increases, Pn initially
concentrates around the value ^

pn, but then as τ →∞ we have Pn → 1 surely. The discrepancy
between the approximate and empirical distributions disappears as τ →∞.

It is worth noting that when Pn is concentrated around ^
pn, the proposed approximation to the

distribution of Pn can take a long time to evaluate. The reason is that if p ≈ ^
pn then κn(p) ≈

−1
e but naive implementations of W can take a long time to converge to accurate answers in

this neighbourhood [13]. The issue can be addressed by using a careful implementation of W .

4. Detecting the k-th Glimpse

This section considers the probability P k of detecting the k-th glimpse during the time interval
[0, τ ] and the probability P kn of detecting the k-th glimpse given that the target gives away n
glimpses during that time interval. A practical application is in operations in which a specific
piece of intelligence is sought from a target. Consider, for example, an aircraft that is trying to
record the emissions from a surface-to-air missile radar so that in the future, if other aircraft
hear those emissions then they know to evade. To sufficiently characterize the radar, it may
be necessary to capture specific emissions within the total set that occurs over a time interval.

Our analysis hinges on the following lemma.
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Lemma 6 (Probability of seeing a given glimpse is asymptotically normal). Suppose that the
waiting time to a glimpse has probability density function f . Let Q ≡ Q(τ) be the probability
of seeing that glimpse during time interval [0, τ ]. Set

µQ = ḡµU

σ2
Q = γσ2

U

where g(s) = f(sτ) for all s ∈ [0, 1], ḡ =
∫ 1

0 g(x) dx, γ =
∫ 1

0 (g(x))2 dx, and µU , σ2
U are

provided by Lemma 1. Suppose that all of the following conditions are satisfied:

• E(W 2
k ) + E(B2

k) > 0, E(W 3
k ) <∞,E(B3

k) <∞, for all k.

• −∞ < ḡ <∞, 0 < γ <∞, and |
∫ 1

0 g(x)g′(x) dx| <∞.

Then as τ →∞, the quantity
Q− µQ
σQ

converges in distribution to N (0, 1).

Proof. During any infinitesimal interval [t, t+ δt], the glimpse will be detected at probability
f(t) · δt if the sensor is working at time t. Hence the probability of seeing the glimpse is the
accumulation of those probabilities over the full interval [0, τ ]. Algebraically, let Xt denote
the sensor’s state at time t wherein Xt = 0 if the sensor is broken and Xt = 1 if it is working.
Then Q =

∫ τ
0 f(t)Xt dt =

∫ τ
0 g(t/τ)Xt dt. Result follows from applying Lemma 2.

Remark. Lemma 6 applies to any arrival process, not just the homogenous Poisson one.
Lemma 6 establishes that P(ζU ≤ ζu) the distribution of (Q− µQ)/σQ can be approximated
by a N (0, 1),and that the approximation improves as τ →∞, but it does not calculate a value
of τ that will guarantee the goodness of the approximation. In technical terms, Lemma 5
establishes establishes that (Q− µQ)/σQ converges in distribution to N (0, 1), but does not
supply a rate of convergence. If a rate of convergence is desired then it will be necessary to
replace Lemma 2 with a stronger result.

4.1. Detecting the k-th Glimpse

We can immediately deduce an approximation to P k.

Proposition 3. To obtain an approximation to P k, apply Lemma 2 with g(s) = f(sτ ; k, ζ)
where f is the probability density function for the Erlang distribution with rate parameter λ

f(t; k, λ) =
λktk−1e−λt

(k − 1)!
where t, λ ≥ 0

Proof. The Erlang distribution provides the waiting time to the k-th arrival in a homogeneous
Poisson process on [0,∞). Result follows from Lemma 6.

Figures 9–11 compare Proposition 3’s approximation to the distribution of P k with empirical
results from simulation. The simulations were conducted as for the previous section. The
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Figure 9: Approximation to distribution of P 3 vs empirical distribution from simulations.
Times to fail follow an exponential distribution with mean 0.3, times to repair follow
an exponential distribution with mean 0.7, z = 150, a) τ = 50. b) τ = 100. c)
τ = 200. d) τ = 300. e) τ = 400. f) τ = 800. g) τ = 1600. h) τ = 6400.
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Figure 10: Approximation to distribution of P 3 vs empirical distribution from simulations.
Times to fail follow lnN (0.4, 1), times to repair are uniformly distributed on [2, 4],
z = 150, a) τ = 50. b) τ = 100. c) τ = 200. d) τ = 300. e) τ = 400. f) τ = 800.
g) τ = 1600. h) τ = 6400.
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Figure 11: Approximation to distribution of P 3 vs empirical distribution from simulations.
Times to fail follow the Birnbaum-Saunders distribution with β = 3, γ = 3, times
to repair follow a triangular distribution on [3, 8] with peak at 7, z = 150, a) τ = 50.
b) τ = 100. c) τ = 200. d) τ = 300. e) τ = 400. f) τ = 800. g) τ = 1600. h)
τ = 6400.
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discrepancy between the approximate and empirical distributions disappears as τ → ∞. In-
tuitively, and as seen in the empirical distribution, we need τ large enough to have a chance
of seeing the k-th glimpse; indeed f(t; k, ζ) attains its maximum at t = (k − 1)/ζ = (k − 1)z
(Appendix, Lemma 10). Increasing τ beyond this value will not affect the probability – for a
greater chance of seeing the glimpse, the sensor needs to be working more during [0, τ ].

4.2. Detecting the k-th Glimpse Given n Glimpses

We now deduce an approximation to P kn . The result follows from the following lemma.

Lemma 7. The function

fn(t; k, ζ, τ) =
n!

(k − 1)! (n− k)!

tk−1

τk

(
1− t

τ

)n−k
is the probability density function for the waiting time to the k-th arrival in a Poisson process
on [0,∞) with rate parameter ζ given n glimpses during the time interval [0, τ ].

Proof. Recall that the target is giving away glimpses as a homogeneous Poisson process with
rate parameter ζ and let Tk be the time to the k-th arrival. Then Tk follows an Erlang
distribution with rate parameter ζ so

P(t ≤ Tk ≤ t+ δt) =
ζktk−1e−ζt

(k − 1)!
· δt

But to see the k-th glimpse during [0, τ ] there must be at least k glimpses during that interval.
Thus we may also write

P(t ≤ Tk ≤ t+ δt) =

∞∑
n=k

P(t ≤ Tk ≤ t+ δt|n glimpses in [0, τ ]) · P(n glimpses in [0, τ ])

=

∞∑
n=k

(
fn(t) · δt

)(
λne−λ

n!

)
where

∑∞
n=k means the infinite series as a sequence of partial sums, fn(t) ≡ fn(t; k, ζ, τ), and

we use λ = ζτ as the parameter to a Poisson distribution. Thus

ζktk−1e−ζt

(k − 1)!
=
∞∑
n=k

fn(t)
λne−λ

n!

eλ−ζt =
∞∑
n=k

fn(t)
(k − 1)!

ζktk−1

λn

n!

=
∞∑
n=0

fn+k(t)
(k − 1)!

ζktk−1

λn+k

(n+ k)!

=

∞∑
n=0

fn+k(t)
(k − 1)!

tk−1

λk

ζk
n!

(n+ k)!

λn

n!

eλ(1− tτ ) =

∞∑
n=0

fn+k(t)
(k − 1)!n!

(n+ k)!

τk

tk−1

λn

n!
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Figure 12: Predicted density of times to k-th glimpse given n glimpses during [0, τ ] vs empirical
distribution from simulations. z = 150, τ = 30 a) k = 1, n = 1. b) k = 1, n = 2.
c) k = 2, n = 2. d) k = 2, n = 3.

22
UNCLASSIFIED



UNCLASSIFIED
DST-Group–TN–1765

p

P
ro

b
a
b
il
it
y

0 0.2 0.4 0.6 0.8 1
0

0.5

1
a)

0 0.2 0.4 0.6 0.8 1
0

0.5

1
b)

0 0.2 0.4 0.6 0.8 1
0

0.5

1
c)

0 0.2 0.4 0.6 0.8 1
0

0.5

1
d)

0 0.2 0.4 0.6 0.8 1
0

0.5

1
e)

0 0.2 0.4 0.6 0.8 1
0

0.5

1
f)

0 0.2 0.4 0.6 0.8 1
0

0.5

1
g)

0 0.2 0.4 0.6 0.8 1
0

0.5

1
h)

Empirical Approximation

Figure 13: Approximation to distribution of P 1
3 vs empirical distribution from simulations.

Times to fail follow an exponential distribution with mean 0.3, times to repair
follow an exponential distribution with mean 0.7, z = 150, a) τ = 10. b) τ = 15.
c) τ = 20. d) τ = 25. e) τ = 50. f) τ = 200. g) τ = 400. h) τ = 800.
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Empirical Approximation

Figure 14: Approximation to distribution of P 1
3 vs empirical distribution from simulations.

Times to fail follow lnN (0.4, 1), times to repair are uniformly distributed on [2, 4],
z = 150, a) τ = 10. b) τ = 15. c) τ = 20. d) τ = 25. e) τ = 50. f) τ = 200. g)
τ = 400. h) τ = 800.
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Figure 15: Approximation to distribution of P 1
3 vs empirical distribution from simulations.

Times to fail follow the Birnbaum-Saunders distribution with β = 3, γ = 3, times
to repair follow a triangular distribution on [3, 8] with peak at 7, z = 150, a) τ = 10.
b) τ = 15. c) τ = 20. d) τ = 25. e) τ = 50. f) τ = 200. g) τ = 400. h) τ = 800.
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Now by the well-known expansion ex =
∑∞

n=0
xn

n! we have

eλ(1− tτ ) =
∞∑
n=0

(
1− t

τ

)n λn
n!

where again
∑∞

n=0 means the infinite series as a sequence of partial sums. The two series are
equal if and only if their terms are equal. Hence for all positive integers n we have

fn+k(t)
(k − 1)!n!

(n+ k)!

τk

tk−1
=

(
1− t

τ

)n
fn+k(t) =

(n+ k)!

(k − 1)!n!

tk−1

τk

(
1− t

τ

)n
fn(t) =

n!

(k − 1)! (n− k)!

tk−1

τk

(
1− t

τ

)n−k

Proposition 4. To obtain an approximation to P kn , apply Lemma 2 with g(s) = fn(sτ ; k, ζ, τ).

Proof. Immediate from Lemma 6.

Figure 12 checks that the waiting time to the k-th glimpse given n glimpses is indeed distributed
in the manner predicted by Lemma 7. Figures 13–15 compare Proposition 4’s approximation
to the distribution of P kn with empirical results from simulation. The simulations were con-
ducted as for the previous section. The agreement between the approximate and empirical
distributions is poor when τ is small but improves as τ →∞.

5. Conclusion

This report has studied a sensor that alternates randomly between working and broken versus
a target that reluctantly gives away glimpses as a homogenous Poisson process. Over any
interval of time [0, τ ], the sensor has probability Pn of detecting n glimpses, probability P k of
detecting the k-th glimpse, and probability P kn of detecting the k-th glimpse given n glimpses
in that interval. The probabilities can provide insight into operations; indeed 1 − P0 is the
probability of detecting the target, Pn considers the need to see the target multiple times, and
P k and P kn could apply in operations that seek to gather a targeted piece of intelligence from
an adversary asset.

The research devised closed-form approximations to the distributions of Pn, P k, P kn and proved
that the approximations become perfect as τ → ∞ where ‘perfect’ is formally interpreted as
pointwise convergence. Simulations of the equilibrium process showed that for τ finite, the
approximations’ closeness to reality can range from being poor to good (we did not obtain a
guarantee on the rate at which the error decreases as τ increases).

The results can be applied to analysis of operations whenever the intermittent sensor homo-
genous glimpses model is a valid abstraction of the operation being studied. The means of
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Pn, P k, P kn could be useful as measures of performance as they can be easily estimated from
the approximations that were obtained for those probabilities while being close to the actual
values. Moreover we have learned that the distributions of Pn, P k, P kn are each asymptotically
‘function-normal’, with a normal distribution around some function; indeed Pn is asymptotic-
ally log-normal when n = 0 and ‘Lambert W -normal’ when n ≥ 0, and P k and P kn are both
asymptotically normal. This insight can guide the design and verification of simulations when
studying the actual distributions of those probabilities.

6. Acknowledgements

The author thanks Stephen Bocquet for his feedback.

UNCLASSIFIED
27



DST-Group–TN–1765

UNCLASSIFIED

7. References

[1] Attraction domain of a stable distribution (2019) Encyclope-
dia of Mathematics, http://www.encyclopediaofmath.org/index.php?
title=Attraction_domain_of_a_stable_distribution&oldid=43641.

[2] Babaria, B. R., Alvarez, T. L., Bergen, M. T. & Servatius, R. J. (2004) Transmission of
light in a synthetic fog medium, in IEEE 30th Annual Northeast Bioengineering Confer-
ence, 2004. Proceedings of the, pp. 23–24.

[3] Bénichou, O., Loverdo, C., Moreau, M. & Voituriez, R. (2011) Intermittent search
strategies, Rev. Mod. Phys. 83, 81–129.

[4] Campbell, J. W. (1995) The lognormal distribution as a model for bio-optical variability
in the sea, Journal of Geophysical Research: Oceans 100(C7), 13237–13254.

[5] Chong, E. K. P., Kreucher, C. M. & Hero, A. O. (2008) Monte-Carlo-based partially
observable Markov decision process approximations for adaptive sensing, in 2008 9th
International Workshop on Discrete Event Systems, pp. 173–180.

[6] Hew, P. C. (2016) Processing, exploitation and dissemination: When is aided/automated
target recognition “good enough” for operational use?, in Operations Research for Un-
manned Systems, John Wiley & Sons, Ltd, pp. 139–153.

[7] Hew, P. C. (2017) Asymptotic distribution of rewards accumulated by alternating renewal
processes, Statistics & Probability Letters 129, 355 – 359.

[8] Hew, P. C. (2017) Cueing a submarine from standoff to ambush a target in an anti-
submarine environment: How often can the cue be a false alarm?, Journal of the Opera-
tional Research Society.

[9] Hewitt, W. (1993) Planting the Seeds of SEAD: The Wild Weasel in Vietnam, AD-a425
679, Air University Press.

[10] Jiang, R. & Murthy, D. (2011) A study of weibull shape parameter: Properties and
significance, Reliability Engineering & System Safety 96(12), 1619 – 1626.

[11] Koopman, B. (1946) Search and Screening, OEG report, Operations Evaluation Group,
Office of the Chief of Naval Operations, Navy Department.

[12] Li, Z., Nadon, S. & Cihlar, J. (2000) Satellite-based detection of Canadian boreal forest
fires: Development and application of the algorithm, International Journal of Remote
Sensing 21(16), 3057–3069.

[13] Moler, C. (2013) The Lambert W function, http://blogs.mathworks.com/cleve/2013/09/02/
the-lambert-w-function/.

28
UNCLASSIFIED



UNCLASSIFIED
DST-Group–TN–1765

[14] Moubray, J. (1997) Reliability-Centred Maintenance, second edn, Butterworth-
Heinemann, Oxford.

[15] NIST/SEMATECH (2018) e-Handbook of Statistical Methods, NIST.

[16] Takács, L. (1959) On a sojourn time problem in the theory of stochastic processes, Trans-
actions of the American Mathematical Society 93(3), 531–540.

[17] Takács, L. (1974) Sojourn time problems, The Annals of Probability 2(3), 420–431.

[18] Trivedi, K. S. (2002) Probability and Statistics with Reliability, Queuing, and Computer
Science Applications, second edn, John Wiley & Sons, New York.

[19] Wagner, D., Mylander, W. & Sanders, T. (1999) Naval Operations Analysis, 3rd edn,
Naval Institute Press, Annapolis, Maryland.

[20] Yang, G., Dou, L., Chen, J. & Hou, C. (2001) Synergy decision in the multi-target tracking
based on irst and intermittent-working radar, Information Fusion 2(4), 243 – 250.

UNCLASSIFIED
29



DST-Group–TN–1765

UNCLASSIFIED

This page is intentionally blank

30
UNCLASSIFIED



UNCLASSIFIED
DST-Group–TN–1765

Appendix A. Proofs of Technical Results

Lemma 3. Let {Fτ}τ and {Gτ}τ be sequences of cumulative distribution functions, and
{XFτ }τ and {XGτ }τ be the corresponding sequences of random variables. Suppose that for
all τ , XFτ and XGτ are both continuous and non-negative, and E(XFτ ) and E(XGτ ) are both
finite. Suppose further that for all x ≥ 0, ε > 0 there exists τ ′ > 0 such that if τ > τ ′

then |Fτ (x)−Gτ (x)| < ε. Then for all ε′ > 0 there exists τ ′ > 0 such that if τ > τ ′ then
|E(XFτ )− E(XGτ )| < ε′.

Proof of Lemma 3. In three steps:

1. For any εF , εG > 0 there exist a > 0, n > 0 such that∣∣∣∣∣E(XFτ )−
n∑
k=1

xk (Fτ (xk)− Fτ (xk−1))

∣∣∣∣∣ < εF∣∣∣∣∣E(XGτ )−
n∑
k=1

xk (Gτ (xk)−Gτ (xk−1))

∣∣∣∣∣ < εG

where xk = k
n · a.

Proof. We have

E(XFτ ) =

∫
[0,∞)

x dF(x) dx

= lim
a→∞

lim
n→∞

n∑
k=1

xk (Fτ (xk)− Fτ (xk−1))

E(XGτ ) =

∫
[0,∞)

x dG(x) dx

= lim
a→∞

lim
n→∞

n∑
k=1

xk (Gτ (xk)−Gτ (xk−1))

Now E(XFτ ), E(XGτ ) are finite, so the limits exist and thus a, n exist by definition.

2. Let a, n > 0 and xk = k
n · a for k = 1 . . . n. For any εΣ > 0 there exists τ ′ > 0 such that

if τ > τ ′ then∣∣∣∣∣
n∑
k=1

xk (Fτ (xk)− Fτ (xk−1))−
n∑
k=1

xk (Gτ (xk)−Gτ (xk−1))

∣∣∣∣∣ < εΣ (1)

Proof. For k = 1 . . . n put εk =
εΣ

2n · xk
. Then εk > 0 so by assumption, for each k there

exists τ ′1,k such that if τ > τ ′1,k then |Fτ (xk)−Gτ (xk)| < εk and likewise there exists τ ′2,k
such that if τ > τ ′2,k then |Fτ (xk−1)−Gτ (xk−1)| < εk. Set τ ′ = max{max

(
τ ′1,k, τ

′
2,k

)
:
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k = 1 . . . n}. Then for any τ > τ ′∣∣∣∣∣
n∑
k=1

xk (Fτ (xk)− Fτ (xk−1))−
n∑
k=1

xk (Gτ (xk)−Gτ (xk−1))

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=1

xk (Fτ (xk)−Gτ (xk))−
n∑
k=1

xk (Fτ (xk−1)−Gτ (xk−1))

∣∣∣∣∣
≤

n∑
k=1

xk |Fτ (xk)−Gτ (xk)|+
n∑
k=1

xk |Fτ (xk−1)−Gτ (xk−1)|

<

n∑
k=1

xk
εΣ

2n · xk
+

n∑
k=1

xk
εΣ

2n · xk

= εΣ

3. For all ε′ > 0 there exists τ ′ > 0 such that if τ > τ ′ then |E(XFτ )− E(XGτ )| < ε′.

Proof. Choose εΣ, εF , εG > 0 such that εΣ + εF + εG = ε′. Construct a, n as per step 1
and then construct τ ′ via step 2. Then for any τ > τ ′

|E(XFτ )− E(XGτ )| ≤

∣∣∣∣∣E(XFτ )−
n∑
k=1

xk (Fτ (xk)− Fτ (xk−1))

∣∣∣∣∣+∣∣∣∣∣
n∑
k=1

xk (Fτ (xk)− Fτ (xk−1))−
n∑
k=1

xk (Gτ (xk)−Gτ (xk−1))

∣∣∣∣∣+∣∣∣∣∣E(XGτ )−
n∑
k=1

xk (Gτ (xk)−Gτ (xk−1))

∣∣∣∣∣
<εF + εΣ + εG

Lemma 4.
∣∣P(U ≤ u)−N (u;µU , σ

2
U )
∣∣ =

∣∣P(−ζU ≤ −ζu)−N (−ζu;−ζµU , ζ2σ2
U )
∣∣.

Proof. Let Y ∼ N (µU , σ
2
U ) then −ζY ∼ N (−ζµU , ζ2σ2

U ) by properties of the normal distri-
bution. Now U ≤ u, Y ≤ u if and only if −ζU ≥ −ζu, −ζY ≥ −ζu so∣∣P(−ζU ≤ −ζu)−N (−ζu;−ζµU , ζ2σ2

U )
∣∣ = |P(−ζU ≤ −ζu)− P(−ζY ≤ −ζu)|

= |(1− P(−ζU ≥ −ζu))− (1− P(−ζY ≥ −ζu))|
= |P(U ≤ u)− P(Y ≤ u)|
=
∣∣P(U ≤ u)−N (u;µU , σ

2
U )
∣∣

as required.
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Lemma 8. The function
hn(λ) = e−λ

λn

n!

attains its maximum value of
^
pn = e−n

nn

n!

when λ = n, and is increasing if λ < n and decreasing if λ > n.

Proof. We have

h′n(λ) = −e−λλ
n

n!
+ e−λ

nλn−1

n!

= e−λ
λn−1

n!
(n− λ)

hence h′n(λ) < 0 if λ < n, h′n(λ) = 0 if λ = n, and h′n(λ) > 0 if λ > n. Thus the point λ = n
is the global maximum.

Lemma 9. Given

κn(p) = −(n!p)1/n

n

the function
hn(λ) = e−λ

λn

n!

has pre-images

h−1
0,n(p) = −nW0(κn(p))

h−1
−1,n(p) = −nW−1(κn(p))

respectively mapping from [0,
^
pn] to [0, n] and from [0,

^
pn] to [n,∞), where W0, W−1 are the

Lambert W function on its 0, −1 branches.

Proof. Suppose

p = e−λ
λn

n!

then

n!p = e−λλn

(n!p)
1
n = e−

λ
nλ

κn(p) = −λ
ne
−λn

−λ
n = W (κn(p))

λ = nW (κn(p))

and result follows by applying the two branches of W .
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Lemma 10. The function

f(t) =
λktk−1e−λt

(k − 1)!
where t, λ ≥ 0

attains its maximum at t =
k − 1

λ
.

Proof. We have

f ′(t) =
λk

(k − 1)!

(
tk−1(−λe−λt) + (k − 1)tk−2e−λt

)
=
λktk−2e−λt

(k − 1)!
(k − 1− λt)

hence f ′(t) < 0 if k − 1 < λt, f ′(t) = 0 if k − 1 = λt, and f ′(t) > 0 if k − 1 > λt. Thus the
point t = (k − 1)/λ is the global maximum.
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