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ABSTRACT

This technical note considers a sensor that alternates randomly between working and broken
versus a target that reluctantly gives away glimpses as a homogenous Poisson process. Over
any interval of time, the sensor has a probability of detecting n glimpses, of detecting the
k-th glimpse, and of detecting the k-th glimpse when there are n glimpses in that interval.
We devise closed-form approximations to the distributions for those probabilities, prove that
the approximations become perfect as the time interval becomes infinitely long (asymptotic
distributions, pointwise convergence), and compare the approximations with empirical results
obtained from simulations.

RELEASE LIMITATION

Approved for Public Release

UNCLASSIFIED



UNCLASSIFIED

Produced by

Joint and Operations Analysis Division
506 Lorimer St,
Fishermans Bend, Victoria 3207, Australia

Telephone: 1300 333 362

c© Commonwealth of Australia 2018
April, 2018

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED



UNCLASSIFIED

An Intermittent Sensor versus a Target that Emits
Glimpses as a Homogenous Poisson Process

Executive Summary

The work in this report was motivated by studies of operations to understand the performance
that may be required from future systems; for example, unmanned aerial vehicles hunting for
time-sensitive targets and submarines standing off from counter-detection. When collapsed to
their essentials, the operations could be modelled in terms of a sensor that alternates between
working and broken at random times, and is looking for a target that reluctantly gives away
glimpses as a homogenous Poisson process. We refer to this situation as the intermittent sensor
homogenous glimpses model.

In studies of such operations, the key measures of performance include the probability of de-
tecting n glimpses, of detecting the k-th glimpse, and of detecting the k-th glimpse when there
are n glimpses in the time interval. This report establishes that if we accept the intermittent
sensor homogenous glimpses model then the measures of performance have approximations
that are easy to calculate, and the approximations are close to reality when the time interval
is long. So while the model is evidently an abstraction of real life, it can be sufficiently valid
for a first, ‘back of the envelope’ analysis. Moreover the approximations provide insight into
how performance will behave overall, something that can be difficult to obtain from stochastic
simulation only.

The results can be applied to analysis of operations whenever the intermittent sensor homogen-
ous glimpses model is a valid abstraction of the operation being studied. The analysis proves
that the approximations become perfect in the technical sense of ‘pointwise convergence’ and
uses simulation to compare the approximations with reality. The report will be of interest
to analysts who are considering the intermittent sensor homogenous glimpses model for their
work.
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Notation

Detection of glimpses
[0, τ ] Time interval
U Cumulative duration that the sensor is working during [0, τ ]

µU Mean of U
σ2
U Variance of U
z Mean time between glimpses from the target
ζ Mean rate at which the target gives away glimpses = 1

z

ζ̂ Upper bound on ζ
Sensor reliability

Wk Time to failure on the kth cycle
µF Mean of sensor’s times to failure
σ2

F Variance in times to failure
Bk Time to repair the failure in the kth cycle
µR Mean of times to repair the sensor
σ2

R Variance in times to repair
c Calculation parameter (Lemma 2)
w Calculation parameter (Lemma 2)

Measures of performance during an interval [0, τ ]

Pn Probability of detecting n glimpses
P k Probability of detecting the k-th glimpse
P kn Probability of detecting the k-th glimpse given n glimpses

Conventional formalisms
R Real numbers
P(·) Probability of ·
E(·) Expected value of ·
N (µ, σ2) Normal distribution with mean µ and variance σ2

lnN (µ, σ) Log-normal distribution from N (µ, σ2)

H(·;µ, σ) Cumulative distribution function for N (µ, σ2)

h(·;µ, σ) Probability density function for N (µ, σ2)

W (·) Lambert-W function
Notation specific to Section 3

hn(·) Probability mass function for Poisson distribution
^
pn Maximum value attained by hn(·)
κn(·) Conversion function

Notation specific to Section 4
g(·) Rate of reward
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1. Introduction

This report originated in studies of operations to understand the performance that may be
required from future systems; for example, unmanned aerial vehicles hunting for time-sensitive
targets [1] and submarines standing off from counter-detection [3]. When collapsed to their
essentials, the operations could be modelled in terms of a sensor that alternates between
working and broken at random times, and is looking for a target that gives away glimpses as a
homogenous Poisson process. We refer to this situation as the intermittent sensor homogenous
glimpses model.

In studies of such operations, the key measures of performance are based on the probability
of detecting the target with the sensor over some interval of time. This report obtains ap-
proximations to those measures of performance that are easy to calculate, and proves that the
approximations are close to reality when the time interval is long. So while the intermittent
sensor homogenous glimpses model is evidently an abstraction of real life, it can be sufficiently
valid for a first, ‘back of the envelope’ analysis. Moreover the approximations provide in-
sight into how performance will behave overall, something that can be difficult to obtain from
stochastic simulation only.

This report presents the intermittent sensor homogenous glimpses model and calculations
arising from it as a reference for future work. It is aimed at analysts who are contemplating
the model for their studies of operations. Section 2 works through the model and its validity.
Section 3 considers the probability of detecting n glimpses during an interval of time, and in
particular the case n = 0 (target not detected). Section 4 looks at the probability of detecting
the k-th glimpse during an interval of time and of detecting the k-th glimpse when there are
n during that interval. We conclude with advice on how analysts can apply the findings.

2. Intermittent Sensor Homogenous Glimpses

The intermittent sensor homogenous glimpses model consists of a sensor that is working
or broken under an alternating renewal process versus a target that reluctantly gives away
glimpses as a homogenous Poisson process (Figure 1). In detail:

• At any point in the time interval [0, τ ], the sensor is either working or broken. It alternates
between those two states in cycles where a cycle is a duration spent working followed by
a duration spent broken.

• The target gives away glimpses as a homogenous Poisson process with mean time between
glimpses z. If a glimpse arrives when the sensor is working then the glimpse will be
detected, but if the sensor is broken then the glimpse will be missed. We put ζ = 1

z as
the mean glimpse rate (mean rate at which the target gives away glimpses).

• Let Wk denote the duration that the sensor is working on the kth cycle. The durations
W1,W2, . . . are positive, and are identically distributed with mean µF and variance σ2

F

where µF and σF are both finite and positive.

UNCLASSIFIED
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Intermittent Sensor 

• Times to failure : mean 𝜇𝐹 var 𝜎𝐹
2  

Times to repair : mean 𝜇𝑅 var 𝜎𝑅
2  

(All parameters finite)  

• Uptime 𝑈 during 0, 𝜏  with 𝜏 → ∞ 
 

Target cedes glimpses 

• Poisson process at rate 𝜁  
(homogenous) 

Sensor is 
Working 

 

Uptime 𝑼 

Sensor is 
Broken 

Target cedes glimpses  
as Poisson process at rate 𝜁  

𝜇𝐹, 𝜎𝐹
2 𝜇𝑅, 𝜎𝑅

2 

Figure 1: The intermittent sensor homogenous glimpses model.

• Likewise let Bk denote the duration that the sensor is broken on the kth cycle. The
durations B1, B2, . . . are positive, and are identically distributed with mean µR and
variance σ2

R where µR and σR are both finite and positive.

• The cycle durations {Wk + Bk : k = 1, 2, . . . } are mutually independent. To be clear,
Bk is allowed to depend on Wk.

In any given application, it will be necessary to check that the model is valid abstraction of
reality as opposed to being a ‘strawman’. Working through the assumptions:

• That the sensor is either working or broken is a gross simplification of the real world.
An accurate model would vary z with the distance of the sensor to the target, the
target’s susceptibility to detection (its signature), the environment, and other factors.
The assumption of z constant (a homogenous Poisson process) can nonetheless provide
a first-order insight into operations. The practical interest is in z large, namely a target
that is difficult to detect as it rarely gives away glimpses. Modelling targets as giving
away glimpses as a Poisson process (possibly non-homogenous) follows common practice
in studies of search and screening (see [4, 8] for example).

• In assuming that the cycle durations are mutually independent, we implicitly assume
that the sensor ‘resets’ with each cycle. The assumption is reasonable in the absence of
opposing arguments.

It is well-known [7] that an alternating renewal process will forget the state that it was in at
time t = 0, in that as time passes the probability of being in the working state approaches
the stationary probability µF

µR+µF
. Moreover the process is ordinary if it is working at t = 0

versus in equilibrium if its probability of being in the working state at t = 0 is the stationary
probability. The model itself makes no assumptions about the sensor’s state at t = 0. For
adherence to real-world conditions it is arguably more realistic to assume that the sensor is
working at the start of an operation. That said, one might assume that the sensor is allowed
to ‘run in’ a bit and hence the process can be taken as being in equilibrium.

2
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As notation, let R denote the real numbers, P(·) be ‘the probability of ·’ and E(·) be ‘the
expected value of ·’. Write N (µ, σ2) for the normal distribution with mean µ and variance σ2.
We will also use the following lemma; it establishes that if we can approximate the distribution
of a random variable then we can use that approximation to estimate the variable’s mean.

Lemma 1. Let {Fτ}τ and {Gτ}τ be sequences of cumulative distribution functions, and
{XFτ }τ and {XGτ }τ be the corresponding sequences of random variables. Suppose that for
all τ , XFτ and XGτ are both continuous and non-negative, and E(XFτ ) and E(XGτ ) are both
finite. Suppose further that for all x ≥ 0, ε > 0 there exists τ ′ > 0 such that if τ > τ ′

then |Fτ (x)−Gτ (x)| < ε. Then for all ε′ > 0 there exists τ ′ > 0 such that if τ > τ ′ then
|E(XFτ )− E(XGτ )| < ε′.

Proof. See Appendix.

3. Detecting n Glimpses

This section considers the probability Pn of detecting n glimpses during the time interval [0, τ ].
As notation for this section, let lnN (µ, σ) denote the log-normal distribution associated with
N (µ, σ2). If Y ∼ N (µ, σ2) then we write N (y;µ, σ) = P(Y ≤ y). Similarly if X ∼ lnN (µ, σ)
then lnN (y;µ, σ) = P(Y ≤ y). Our analysis hinges on the following lemma.

Lemma 2 (Uptime is asymptotically normal). Let U be the uptime, namely the cumulative
duration that the sensor is working during an interval [0, τ ]. Then as τ → ∞, the quantity
U − µU
σU

converges in distribution to N (0, 1) where

µU = cτ

σ2
U = 2c(1− c)wτ

c =
µF

µR + µF

w =
µ2

Rσ
2
F + µ2

Fσ
2
R

2µRµF(µR + µF)

Proof. As µF, µR, σF, σR are all finite, we may apply the classic finding in reliability theory
[6]. Result then follows from algebraic manipulations that assume µF, µR > 0.

In short, U is asymptotically normal. Meanwhile, the target is giving away glimpses as a
homogenous Poisson process at rate ζ. Hence the number of glimpses during the time interval
will be a random variable that we can calculate as ζU and that random variable will also be
asymptotically normal. We formalize this idea in the following two lemmas as the stepping
stone to the main results for this section.

Lemma 3.
∣∣P(U ≤ u)−N (u;µU , σ

2
U )
∣∣ =

∣∣P(−ζU ≤ −ζu)−N (−ζu;−ζµU , ζ2σ2
U )
∣∣.

Proof. See Appendix.

UNCLASSIFIED
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Lemma 4 (Number of glimpses is asymptotically normal). For any u ∈ R, ε > 0 :

1. There exists τ ′ > 0 such that if τ > τ ′ then
∣∣P(ζU ≤ ζu)−N (ζu; ζµU , ζ

2σ2
U )
∣∣.

2. There exists τ ′ > 0 such that if τ > τ ′ then
∣∣P(−ζU ≤ −ζu)−N (−ζu;−ζµU , ζ2σ2

U )
∣∣.

Proof. Take Lemma 2 and unpack the definition of convergence in distribution: for any u ∈ R,
ε > 0 there exists τ ′ > 0 such that if τ > τ ′ then∣∣∣∣P(U − µUσU

≤ u− µU
σU

)
−N (u; 0, 1)

∣∣∣∣ < ε

By properties of the normal distribution this holds if and only if∣∣P(U ≤ u)−N (u;µU , σ
2
U )
∣∣ < ε

Hence for result (1) we apply properties of the normal distribution to get∣∣P(ζU ≤ ζu)−N (ζu; ζµU , ζ
2σ2
U )
∣∣ < ε

Meanwhile for result (2) we apply Lemma 3 to get∣∣P(−ζU ≤ −ζu)−N (−ζu;−ζµU , ζ2σ2
U )
∣∣ < ε

3.1. Detecting Zero Glimpses

The following result deduces that the distribution of P0 approaches log-normal as τ →∞.

Proposition 1. Set µ = −ζµU , σ2 = ζ2σ2
U . For any 0 ≤ p ≤ 1, ε > 0 there exists τ ′ > 0 such

that if τ > τ ′ then
∣∣P(P0 ≤ p)− lnN (p;µ, σ2)

∣∣ < ε.

Proof. Suppose ε > 0. Given p, construct u = −1
ζ ln(p) so p = e−ζu. By Lemma 4 there exists

τ ′ > 0 such that if τ > τ ′ then∣∣P(−ζU ≤ −ζu)−N (−ζu;µ, σ2)
∣∣ < ε

Now P0 = P(Zero glimpses acquired during [0, τ ]) = e−ζU . Moreover the function exp(·) is
strictly increasing so −ζU ≤ −ζu if and only if P0 ≤ p. Hence P(P0 ≤ p) = P(−ζU ≤ −ζu)
so if τ > τ ′ then ∣∣P(P0 ≤ p)−N (ln p;µ, σ2)

∣∣ < ε

or equivalently

|P(P0 ≤ p)− lnN (p;µ, σ)| < ε

We immediately obtain an approximation to the expected value of P0 that becomes perfect as
τ →∞.

4
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a)

b)

Figure 2: Approximation to distribution of P0 vs empirical distribution from simulations.
Times to fail follow Exp(0.3), times to repair follow Exp(0.7), a) z = 150, τ = 30.
b) z = 70, τ = 600.

a)

b)

Figure 3: Approximation to distribution of P0 vs empirical distribution from simulations.
Times to fail follow lnN (0.4, 1), times to repair are uniformly distributed on [2, 4],
a) z = 150, τ = 30. b) z = 70, τ = 600.
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a)

b)

c)

d)

e)

f)

g)

h)

Figure 4: Approximation to distribution of P0 vs empirical distribution from simulations.
Times to fail follow lnN (0.4, 1), times to repair are uniformly distributed on [2, 4],
z = 150, a) τ = 10. b) τ = 50. c) τ = 100. d) τ = 200. e) τ = 400. f) τ = 800. g)
τ = 1600. h) τ = 2000.
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Corollary 1. Put

ντ = exp (ζcτ(ζ(1− c)w − 1))

Then |E(P0)− ντ | → 0 as τ →∞ provided ζ ≤ ζ̂ where

ζ̂ =
1

2(1− c)w

Proof. Let X ∼ lnN (µ, σ). Lemma 1 finds that |E(P0)− E(X)| → 0 as τ →∞. We then use
known properties of the log-normal distribution to calculate

E(X) = eµ+σ2/2 = exp
(
−ζcτ + ζ2c(1− c)wτ

)
= exp (ζcτ(ζ(1− c)w − 1))

We now describe why the caveat ζ ≤ ζ̂ is required. Observe that exp(·) is an increasing
function and f(ζ) = ζcτ(ζ(1−c)w−1) is a positive quadratic with inflection point ζ̂. Hence f
is decreasing on ζ ≤ ζ̂, but increasing thereafter. But in reality, we should have E(X)→ 0 as
ζ →∞: if the target is giving away a huge number of glimpses then it is bound to be acquired
by the sensor, whereby P0 → 0 surely and hence X → 0 surely. Thus we use the caveat to
constrain ζ to the domain on which f is decreasing.

Remark. The approximation to E(P0) provided by Corollary 1 is an easily-calculated measure
of performance for the sensor. Indeed 1− P0 is the probability of detecting the target.

The underlying issue that leads to the caveat is that we have taken limits in a non-commutative
order. The quantity ζu corresponds physically to the number of glimpses given away by the
target during u. As ζ →∞, we should see ζu→∞ surely, but instead we are tied to a normal
distribution with mean µ→ −∞ and deviation σ →∞. The correct treatment takes ζ →∞
first, and then τ → ∞. The caveat is for mathematical correctness. The practical interest is
in ζ small, wherein the target gives away glimpses rarely.

Figures 2 through 4 compare Proposition 1’s approximation to the distribution of P0 with
empirical results from simulation. Each simulation run represented the sensor working inter-
mittently during some interval [0, τ ]. The sensor had probability µF

µR+µF
of being working at

time t = 0 (simulation of the equilibrium process). A total of 4,000,000 runs were generated,
and then P0 was estimated 50,000 times. Each estimate used 600 of the runs, in sampling
without replacement. Each figure shows the empirical cumulative distribution function from
the 50,000 estimations, compared with the proposed approximation.

The simulations show agreement between the approximation and empirical values for E(P0)
(Corollary 1). The distributions for P0 match our intuitions: when τ = 0 we have P0 = 0 and
as τ → ∞ we have P0 → 1 surely. While there is discrepancy between the approximate and
empirical distributions, it disappears as τ →∞.
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3.2. Detecting One or More Glimpses

The following result establishes that when n ≥ 1 the distribution of Pn can be thought of as
approaching ‘Lambert W -normal’ as τ →∞. For any positive integer n and 0 ≤ p ≤ 1 put

κn(p) = −(n!p)1/n

n

Let h be the probability mass function for the Poisson distribution, namely

hn(λ) = e−λ
λn

n!

It is readily shown that hn(λ) attains its maximum value of

^
pn = e−n

nn

n!

when λ = n, and is increasing if λ < n and decreasing if λ > n (Appendix, Lemma 7). The
function has two pre-images, namely

h−1
0,n(p) = −nW0(κn(p))

h−1
−1,n(p) = −nW−1(κn(p))

respectively mapping from [0,
^
pn] to [0, n] and from [0,

^
pn] to [n,∞), where W0, W−1 are the

Lambert W function on its 0, −1 branches (Appendix, Lemma 8).

Proposition 2. Set µ = −ζµU , σ2 = ζ2σ2
U and

Fτ (p) = 1−N
(
W0(κn(p)); 1

nµ,
1
n2σ

2
)

+N
(
W−1(κn(p)); 1

nµ,
1
n2σ

2
)

For any 0 ≤ p ≤ 1, ε > 0 there exists τ ′ > 0 such that if τ > τ ′ then |P(Pn ≤ p)− Fτ (p)| < ε.

Proof. Suppose ε > 0. Given p, construct u0 = 1
ζh
−1
0,n(p), u−1 = 1

ζh
−1
−1,n(p) so p = hn(ζu0) and

p = hn(ζu−1). By Lemma 4 there exists τ ′0 > 0 such that if τ > τ ′0 then∣∣P(ζU ≤ ζu0)−N (ζu0; ζµU , ζ
2σ2
U )
∣∣ < 1

2ε

and likewise there exists τ ′−1 > 0 such that if τ > τ ′−1 then∣∣P(ζU ≤ ζu−1)−N (ζu−1; ζµU , ζ
2σ2
U )
∣∣ < 1

2ε

Put τ ′ = max(τ ′0, τ
′
−1). Now Pn = P(n glimpses acquired during [0, τ ]) = hn(ζU). Moreover

hn(·) is increasing on [0,
^
pn] and decreasing on [

^
pn,∞) so Pn ≤ p if and only if ζU ≤ ζu0 or

ζU ≥ ζu−1. Hence P(Pn ≤ p) = P(ζU ≤ ζu0) + P(ζU ≥ ζu−1) so if τ > τ ′ then∣∣∣P(Pn ≤ p)− (N (h−1
0,n(p); ζµU , ζ

2σ2
U ) + 1−N (h−1

−1,n(p); ζµU , ζ
2σ2
U ))
∣∣∣ < ε

or equivalently∣∣P(Pn ≤ p)−
(
1−N

(
W0(κn(p)); 1

nµ,
1
n2σ

2
)

+N
(
W−1(κn(p)); 1

nµ,
1
n2σ

2
))∣∣ < ε

As before, we get an approximation to the expected value of ^pn that becomes perfect as τ →∞.
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a)

b)

Figure 5: Approximation to distribution of Pn vs empirical distribution from simulations.
Times to fail follow Exp(0.3), times to repair follow Exp(0.7), z = 150, τ = 30
a) n = 1. b) n = 2.

a)

b)

Figure 6: Approximation to distribution of Pn vs empirical distribution from simulations.
Times to fail follow Exp(0.3), times to repair follow Exp(0.7), z = 150, τ = 600 a)
n = 7. b) n = 16.
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a)

b)

Figure 7: Approximation to distribution of Pn vs empirical distribution from simulations.
Times to fail follow lnN (0.4, 1), times to repair are uniformly distributed on [2, 4],
z = 150, τ = 30 a) n = 1. b) n = 2.

a)

b)

Figure 8: Approximation to distribution of Pn vs empirical distribution from simulations.
Times to fail follow lnN (0.4, 1), times to repair are uniformly distributed on [2, 4],
z = 150, τ = 600 a) n = 8. b) n = 9.
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a)

b)

c)

d)

e)

f)

g)

h)

Figure 9: Approximation to distribution of P1 vs empirical distribution from simulations.
Times to fail follow lnN (0.4, 1), times to repair are uniformly distributed on [2, 4],
z = 150, a) τ = 10. b) τ = 50. c) τ = 100. d) τ = 150. e) τ = 700. f) τ = 1000.
g) τ = 1500. h) τ = 2000.
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Corollary 2. Put

ντ =
^
pn −

∫ ^
pn

0
Fτ (p) dp

Then |E(Pn)− ντ | → 0 as τ →∞.

Proof. Let X ∼ Fτ . Lemma 1 finds that |E(Pn)− E(X)| → 0 as τ →∞. Now it is well-known
that E(X) =

∫∞
0 (1− Fτ (p)) dp and the domain of Fτ is [0,

^
pn].

Figures 5 through 9 compare Proposition 2’s approximation to the distribution of Pn with
empirical results from simulation. The simulations were conducted as for the n = 0 case. The
approximate (Corollary 1) and empirical values for E(Pn) are close. The distributions for Pn
match our intuitions: when τ = 0 we have Pn = 0. As τ increases, Pn initially concentrates
around the value ^

pn, but then as τ → ∞ we have Pn → 1 surely. The discrepancy between
the approximate and empirical distributions disappears as τ →∞.

It is worth noting that when Pn is concentrated around ^
pn, the proposed approximation to the

distribution of Pn can take a long time to evaluate. The reason is that if p ≈ ^
pn then κn(p) ≈

−1
e but naive implementations of W can take a long time to converge to accurate answers in

this neighbourhood [5]. The issue can be addressed by using a careful implementation of W .

4. Detecting the k-th Glimpse

This section considers the probability P k of detecting the k-th glimpse during the time interval
[0, τ ] and the probability P kn of detecting the k-th glimpse given that the target gives away n
glimpses during that time interval. Our analysis hinges on the following lemma.

Lemma 5 (Accumulated reward is asymptotically normal). LetXt denote the sensor’s state at
time t wherein Xt = 0 if the sensor is broken and Xt = 1 if it is working. Given g : [0, 1]→ R,
put Q =

∫ τ
0 g(t/τ)Xt dt (reward the sensor at rate g(t/τ) if it is working at time t), and set

µQ = ḡµU

σ2
Q = γσ2

U

where ḡ =
∫ 1

0 g(x) dx, γ =
∫ 1

0 (g(x))2 dx, and µU , σ2
U are provided by Lemma 2. Suppose that

all of the following conditions are satisfied:

• E(W 2
k ) + E(B2

k) > 0, E(W 3
k ) <∞,E(B3

k) <∞, for all k.

• −∞ < ḡ <∞, 0 < γ <∞, and |
∫ 1

0 g(x)g′(x) dx| <∞.

Then as τ →∞, the quantity
Q− µQ
σQ

converges in distribution to N (0, 1).

Proof. See [2].

12
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We will use the following corollary to find the probabilities of interest.

Corollary 3. Suppose that the waiting time to a glimpse has probability density function f .
If g(s) = f(sτ) then Q approximates the probability of seeing that glimpse.

Proof. During any infinitesimal interval [t, t+ δt], the glimpse will be detected at probability
f(t) if the sensor is working at time t. Hence the probability of seeing the glimpse is the
accumulation of those probabilities over the full interval [0, τ ]. Accordingly, we construct g so
that sτ progresses across [0, τ ] as s progresses across [0, 1].

Remark. Corollary 3 applies to any arrival process, not just the homogenous Poisson one.

4.1. Detecting the k-th Glimpse

We can immediately deduce an approximation to P k.

Proposition 3. To obtain an approximation to P k, apply Lemma 5 with g(s) = f(sτ ; k, ζ)
where f is the probability density function for the Erlang distribution with rate parameter λ

f(t; k, λ) =
λktk−1e−λt

(k − 1)!
where t, λ ≥ 0

Proof. The Erlang distribution provides the waiting time to the k-th arrival in a homogeneous
Poisson process on [0,∞). Result follows from Corollary 3.

Figures 10 through 14 compare Proposition 3’s approximation to the distribution of P k with
empirical results from simulation. The simulations were conducted as for the previous section.
The approximate and empirical values for E(P k) are close. The discrepancy between the
approximate and empirical distributions disappears as τ →∞. Intuitively, and as seen in the
empirical distribution, we need τ large enough to have a chance of seeing the k-th glimpse;
indeed f(t; k, ζ) attains its maximum at t = (k − 1)/ζ = (k − 1)z (Appendix, Lemma 9).
Increasing τ beyond this value will not affect the probability – for a greater chance of seeing
the glimpse, the sensor needs to be working more during [0, τ ].

4.2. Detecting the k-th Glimpse Given n Glimpses

We now deduce an approximation to P kn . The result follows from the following lemma.

Lemma 6. The function

fn(t; k, ζ, τ) =
n!

(k − 1)! (n− k)!

tk−1

τk

(
1− t

τ

)n−k
is the probability density function for the waiting time to the k-th arrival in a Poisson process
on [0,∞) with rate parameter ζ given n glimpses during the time interval [0, τ ].
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a)

b)

Figure 10: Approximation to distribution of P k vs empirical distribution from simulations.
Times to fail follow Exp(0.3), times to repair follow Exp(0.7), z = 150, τ = 30 a)
k = 1. b) k = 2.

a)

b)

Figure 11: Approximation to distribution of P k vs empirical distribution from simulations.
Times to fail follow Exp(0.3), times to repair follow Exp(0.7), z = 150, τ = 600
a) k = 6. b) k = 9.
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a)

b)

Figure 12: Approximation to distribution of P k vs empirical distribution from simulations.
Times to fail follow lnN (0.4, 1), times to repair are uniformly distributed on [2, 4],
z = 150, τ = 30 a) k = 2. b) k = 4.

a)

b)

Figure 13: Approximation to distribution of P k vs empirical distribution from simulations.
Times to fail follow lnN (0.4, 1), times to repair are uniformly distributed on [2, 4],
z = 150, τ = 600 a) k = 12. b) k = 16.
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g)

h)

Figure 14: Approximation to distribution of P 3 vs empirical distribution from simulations.
Times to fail follow lnN (0.4, 1), times to repair are uniformly distributed on [2, 4],
z = 150, a) τ = 50. b) τ = 100. c) τ = 200. d) τ = 300. e) τ = 400. f) τ = 800.
g) τ = 1600. h) τ = 6400.
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Proof. Recall that the target is giving away glimpses as a homogeneous Poisson process with
rate parameter ζ and let Tk be the time to the k-th arrival. Then Tk follows an Erlang
distribution with rate parameter ζ so

P(t ≤ Tk ≤ t+ δt) =
ζktk−1e−ζt

(k − 1)!

But to see the k-th glimpse during [0, τ ] there must be at least k glimpses during that interval.
Thus we may also write

P(t ≤ Tk ≤ t+ δt) =

∞∑
n=k

P(t ≤ Tk ≤ t+ δt|n glimpses in [0, τ ]) · P(n glimpses in [0, τ ])

=

∞∑
n=k

fn(t)
λne−λ

n!

where
∑∞

n=k means the infinite series as a sequence of partial sums, fn(t) ≡ fn(t; k, ζ, τ), and
we use λ = ζτ as the parameter to a Poisson distribution. Thus

ζktk−1e−ζt

(k − 1)!
=
∞∑
n=k

fn(t)
λne−λ

n!

eλ−ζt =
∞∑
n=k

fn(t)
(k − 1)!

ζktk−1

λn

n!

=
∞∑
n=0

fn+k(t)
(k − 1)!

ζktk−1

λn+k

(n+ k)!

=
∞∑
n=0

fn+k(t)
(k − 1)!

tk−1

λk

ζk
n!

(n+ k)!

λn

n!

eλ(1− tτ ) =

∞∑
n=0

fn+k(t)
(k − 1)!n!

(n+ k)!

τk

tk−1

λn

n!

Now by the well-known expansion ex =
∑∞

n=0
xn

n! we have

eλ(1− tτ ) =

∞∑
n=0

(
1− t

τ

)n λn
n!

where again
∑∞

n=0 means the infinite series as a sequence of partial sums. The two series are
equal if and only if their terms are equal. Hence for all positive integers n we have

fn+k(t)
(k − 1)!n!

(n+ k)!

τk

tk−1
=

(
1− t

τ

)n
fn+k(t) =

(n+ k)!

(k − 1)!n!

tk−1

τk

(
1− t

τ

)n
fn(t) =

n!

(k − 1)! (n− k)!

tk−1

τk

(
1− t

τ

)n−k
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Figure 15: Predicted density of times to k-th glimpse given n glimpses during [0, τ ] vs empirical
distribution from simulations. z = 150, τ = 30 a) k = 1, n = 1. b) k = 1, n = 2.
c) k = 2, n = 2. d) k = 2, n = 3.
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a)

b)

Figure 16: Approximation to distribution of P k
n vs empirical distribution from simulations.

Times to fail follow Exp(0.3), times to repair follow Exp(0.7), z = 150, τ = 30 a)
k = 1, n = 2. b) k = 2, n = 3.

a)

b)

Figure 17: Approximation to distribution of P k
n vs empirical distribution from simulations.

Times to fail follow Exp(0.3), times to repair follow Exp(0.7), z = 150, τ = 600
a) k = 6, n = 9. b) k = 9, n = 13.
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a)

b)

Figure 18: Approximation to distribution of P k
n vs empirical distribution from simulations.

Times to fail follow lnN (0.4, 1), times to repair are uniformly distributed on [2, 4],
z = 150, τ = 30 a) k = 1, n = 1. b) k = 1, n = 3.

a)

b)

Figure 19: Approximation to distribution of P k
n vs empirical distribution from simulations.

Times to fail follow lnN (0.4, 1), times to repair are uniformly distributed on [2, 4],
z = 150, τ = 600 a) k = 4, n = 12. b) k = 11, n = 16.
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a)

b)

c)

d)

e)

f)

g)

h)

Figure 20: Approximation to distribution of P 1
3 vs empirical distribution from simulations.

Times to fail follow lnN (0.4, 1), times to repair are uniformly distributed on [2, 4],
z = 150, a) τ = 10. b) τ = 15. c) τ = 20. d) τ = 25. e) τ = 50. f) τ = 200. g)
τ = 400. h) τ = 800.

UNCLASSIFIED
21



DST-Group–TN–1765

UNCLASSIFIED

Proposition 4. To obtain an approximation to P kn , apply Lemma 5 with g(s) = fn(sτ ; k, ζ, τ).

Proof. Immediate from Corollary 3.

Figure 15 checks that the waiting time to the k-th glimpse given n glimpses is indeed distrib-
uted in the manner predicted by Lemma 6. Figures 16 through 20 compare Proposition 4’s
approximation to the distribution of P kn with empirical results from simulation. The simula-
tions were conducted as for the previous section. The simulations show agreement between
the approximation and empirical values for E(P kn ). The agreement between the approximate
and empirical distributions is poor when τ is small but improves as τ →∞.

5. Conclusion

We studied a sensor that alternates randomly between working and broken versus a target
that reluctantly gives away glimpses as a homogenous Poisson process. Over any interval of
time [0, τ ], the sensor has probability Pn of detecting n glimpses, probability P k of detecting
the k-th glimpse, and probability P kn of detecting the k-th glimpse given n glimpses in that
interval. The probabilities can provide insight into operations; indeed 1−P0 is the probability
of detecting the target, Pn considers the need to see the target multiple times, and P k and P kn
could apply in operations that seek to gather a targeted piece of intelligence from an adversary
asset.

We devised closed-form approximations to the distributions of Pn, P k, P kn and proved that the
approximations become perfect as τ →∞ where ‘perfect’ is formally interpreted as pointwise
convergence. Simulations of the equilibrium process showed that for τ finite, the approxima-
tions’ closeness to reality can range from being poor to good (we did not obtain a guarantee
on the rate at which the error decreases as τ increases).

The results can be applied to analysis of operations whenever the intermittent sensor homo-
genous glimpses model is a valid abstraction of the operation being studied. The means of
Pn, P k, P kn could be useful as measures of performance as they can be easily estimated from
the approximations that were obtained for those probabilities while being close to the actual
values. Moreover we have learned that the distributions of Pn, P k, P kn are each asymptotically
‘function-normal’, with a normal distribution around some function; indeed Pn is asymptotic-
ally log-normal when n = 0 and ‘Lambert W -normal’ when n ≥ 0, and P k and P kn are both
asymptotically normal. This insight can guide the design and verification of simulations when
studying the actual distributions of those probabilities.
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Appendix A. Proofs of Technical Results

Lemma 1. Let {Fτ}τ and {Gτ}τ be sequences of cumulative distribution functions, and
{XFτ }τ and {XGτ }τ be the corresponding sequences of random variables. Suppose that for
all τ , XFτ and XGτ are both continuous and non-negative, and E(XFτ ) and E(XGτ ) are both
finite. Suppose further that for all x ≥ 0, ε > 0 there exists τ ′ > 0 such that if τ > τ ′

then |Fτ (x)−Gτ (x)| < ε. Then for all ε′ > 0 there exists τ ′ > 0 such that if τ > τ ′ then
|E(XFτ )− E(XGτ )| < ε′.

Proof of Lemma 1. In three steps:

1. For any εF , εG > 0 there exist a > 0, n > 0 such that∣∣∣∣∣E(XFτ )−
n∑
k=1

xk (Fτ (xk)− Fτ (xk−1))

∣∣∣∣∣ < εF∣∣∣∣∣E(XGτ )−
n∑
k=1

xk (Gτ (xk)−Gτ (xk−1))

∣∣∣∣∣ < εG

where xk = k
n · a.

Proof. We have

E(XFτ ) =

∫
[0,∞)

x dF(x) dx

= lim
a→∞

lim
n→∞

n∑
k=1

xk (Fτ (xk)− Fτ (xk−1))

E(XGτ ) =

∫
[0,∞)

x dG(x) dx

= lim
a→∞

lim
n→∞

n∑
k=1

xk (Gτ (xk)−Gτ (xk−1))

Now E(XFτ ), E(XGτ ) are finite, so the limits exist and thus a, n exist by definition.

2. Let a, n > 0 and xk = k
n · a for k = 1 . . . n. For any εΣ > 0 there exists τ ′ > 0 such that

if τ > τ ′ then∣∣∣∣∣
n∑
k=1

xk (Fτ (xk)− Fτ (xk−1))−
n∑
k=1

xk (Gτ (xk)−Gτ (xk−1))

∣∣∣∣∣ < εΣ (1)

Proof. For k = 1 . . . n put εk =
εΣ

2n · xk
. Then εk > 0 so by assumption, for each k there

exists τ ′1,k such that if τ > τ ′1,k then |Fτ (xk)−Gτ (xk)| < εk and likewise there exists τ ′2,k
such that if τ > τ ′2,k then |Fτ (xk−1)−Gτ (xk−1)| < εk. Set τ ′ = max{max

(
τ ′1,k, τ

′
2,k

)
:
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k = 1 . . . n}. Then for any τ > τ ′∣∣∣∣∣
n∑
k=1

xk (Fτ (xk)− Fτ (xk−1))−
n∑
k=1

xk (Gτ (xk)−Gτ (xk−1))

∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=1

xk (Fτ (xk)−Gτ (xk))−
n∑
k=1

xk (Fτ (xk−1)−Gτ (xk−1))

∣∣∣∣∣
≤

n∑
k=1

xk |Fτ (xk)−Gτ (xk)|+
n∑
k=1

xk |Fτ (xk−1)−Gτ (xk−1)|

<

n∑
k=1

xk
εΣ

2n · xk
+

n∑
k=1

xk
εΣ

2n · xk

= εΣ

3. For all ε′ > 0 there exists τ ′ > 0 such that if τ > τ ′ then |E(XFτ )− E(XGτ )| < ε′.

Proof. Choose εΣ, εF , εG > 0 such that εΣ + εF + εG = ε′. Construct a, n as per step 1
and then construct τ ′ via step 2. Then for any τ > τ ′

|E(XFτ )− E(XGτ )| ≤

∣∣∣∣∣E(XFτ )−
n∑
k=1

xk (Fτ (xk)− Fτ (xk−1))

∣∣∣∣∣+∣∣∣∣∣
n∑
k=1

xk (Fτ (xk)− Fτ (xk−1))−
n∑
k=1

xk (Gτ (xk)−Gτ (xk−1))

∣∣∣∣∣+∣∣∣∣∣E(XGτ )−
n∑
k=1

xk (Gτ (xk)−Gτ (xk−1))

∣∣∣∣∣
<εF + εΣ + εG

Lemma 3.
∣∣P(U ≤ u)−N (u;µU , σ

2
U )
∣∣ =

∣∣P(−ζU ≤ −ζu)−N (−ζu;−ζµU , ζ2σ2
U )
∣∣.

Proof. Let Y ∼ N (µU , σ
2
U ) then −ζY ∼ N (−ζµU , ζ2σ2

U ) by properties of the normal distri-
bution. Now U ≤ u, Y ≤ u if and only if −ζU ≥ −ζu, −ζY ≥ −ζu so∣∣P(−ζU ≤ −ζu)−N (−ζu;−ζµU , ζ2σ2

U )
∣∣ = |P(−ζU ≤ −ζu)− P(−ζY ≤ −ζu)|

= |(1− P(−ζU ≥ −ζu))− (1− P(−ζY ≥ −ζu))|
= |P(U ≤ u)− P(Y ≤ u)|
=
∣∣P(U ≤ u)−N (u;µU , σ

2
U )
∣∣

as required.
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Lemma 7. The function
hn(λ) = e−λ

λn

n!

attains its maximum value of
^
pn = e−n

nn

n!

when λ = n, and is increasing if λ < n and decreasing if λ > n.

Proof. We have

h′n(λ) = −e−λλ
n

n!
+ e−λ

nλn−1

n!

= e−λ
λn−1

n!
(n− λ)

hence h′n(λ) < 0 if λ < n, h′n(λ) = 0 if λ = n, and h′n(λ) > 0 if λ > n. Thus the point λ = n
is the global maximum.

Lemma 8. Given

κn(p) = −(n!p)1/n

n

the function
hn(λ) = e−λ

λn

n!

has pre-images

h−1
0,n(p) = −nW0(κn(p))

h−1
−1,n(p) = −nW−1(κn(p))

respectively mapping from [0,
^
pn] to [0, n] and from [0,

^
pn] to [n,∞), where W0, W−1 are the

Lambert W function on its 0, −1 branches.

Proof. Suppose

p = e−λ
λn

n!

then

n!p = e−λλn

(n!p)
1
n = e−

λ
nλ

κn(p) = −λ
ne
−λn

−λ
n = W (κn(p))

λ = nW (κn(p))

and result follows by applying the two branches of W .
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Lemma 9. The function

f(t) =
λktk−1e−λt

(k − 1)!
where t, λ ≥ 0

attains its maximum at t =
k − 1

λ
.

Proof. We have

f ′(t) =
λk

(k − 1)!

(
tk−1(−λe−λt) + (k − 1)tk−2e−λt

)
=
λktk−2e−λt

(k − 1)!
(k − 1− λt)

hence f ′(t) < 0 if k − 1 < λt, f ′(t) = 0 if k − 1 = λt, and f ′(t) > 0 if k − 1 > λt. Thus the
point t = (k − 1)/λ is the global maximum.

28
UNCLASSIFIED



UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY GROUP
DOCUMENT CONTROL DATA

1. DLM/CAVEAT (OF DOCUMENT)

2. TITLE

An Intermittent Sensor versus a Target that Emits Glimpses as a
Homogenous Poisson Process

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED LIMITED
RELEASE USE (L) NEXT TO DOCUMENT CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

4. AUTHORS

Patrick Chisan Hew

5. CORPORATE AUTHOR

Defence Science and Technology Group
506 Lorimer St,
Fishermans Bend, Victoria 3207, Australia

6a. DST GROUP NUMBER

DST-Group–TN–1765

6b. AR NUMBER

017-158

6c. TYPE OF REPORT

Technical Note

7. DOCUMENT DATE

April, 2018

8. OBJECTIVE ID

qAV22221

9. TASK NUMBER

NAV 17/525

10. TASK SPONSOR

Director General SEA1000

11. MSTC

Maritime Capability Analysis

12. STC

Maritime Systems Analysis

13. DOWNGRADING/DELIMITING INSTRUCTIONS

http://dspace.dsto.defence.gov.au/dspace/

14. RELEASE AUTHORITY

Chief, Joint and Operations Analysis Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEASENQUIRIESOUTSIDESTATEDLIMITATIONSSHOULDBEREFERREDTHROUGHDOCUMENTEXCHANGE,POBOX1500,EDINBURGH,SA5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. RESEARCH LIBRARY THESAURUS

probability theory, measures of effectiveness, sensors

19. ABSTRACT

This technical note considers a sensor that alternates randomly between working and broken versus a target that reluctantly gives away
glimpses as a homogenous Poisson process. Over any interval of time, the sensor has a probability of detecting n glimpses, of detecting
the k-th glimpse, and of detecting the k-th glimpse when there are n glimpses in that interval. We devise closed-form approximations
to the distributions for those probabilities, prove that the approximations become perfect as the time interval becomes infinitely long
(asymptotic distributions, pointwise convergence), and compare the approximations with empirical results obtained from simulations.

UNCLASSIFIED


	Title
	Imprint
	Executive Summary
	Contents
	Figure
	Notation
	1 Introduction
	2 Intermittent Sensor Homogenous Glimpses
	3 Detecting n Glimpses
	3.1 Detecting Zero Glimpses
	3.2 Detecting One or More Glimpses

	4 Detecting the k-th Glimpse
	4.1 Detecting the k-th Glimpse
	4.2 Detecting the k-th Glimpse Given n Glimpses

	5 Conclusion
	6 Acknowledgements
	7 References
	Appendix A: Proofs of Technical Results
	Distribution List
	Document Control Data

