
UNCLASSIFIED

Cards Reference Manual

Daniel Finch 1, Paul Berry 1 and Zane Van de Meulen-Graaf 2

1 National Security and ISR Division
2 Simbiant Pty Ltd

Defence Science and Technology Group

DST-Group–TN–1803

ABSTRACT

This document describes the use and design of the software tool Cards. Cards is a user interface
for structured parameter inputs, and is easily customised to suit a wide variety of software
and hardware systems.

RELEASE LIMITATION

Approved for Public Release

UNCLASSIFIED

UNCLASSIFIED

Produced by

National Security and ISR Division
PO Box 1500
Edinburgh, South Australia 5111, Australia

Telephone: 1300 333 362

© Commonwealth of Australia 2018
August, 2018

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

UNCLASSIFIED

Cards Reference Manual

Executive Summary

Cards is a user interface and visualisation tool for structured parameter data, such as inputs
into scientific simulation software. Cards provides a generic interface that allows data to be
defined in a tree structure of parameters, avoiding the need for complex custom input files or
user interfaces. It is easily customised to suit a wide variety of software and hardware systems
due to its flexible schema design and use of the Python language. It is hoped that by adopting
Cards, significant effort and expense can be saved by reducing the need to develop custom
GUIs.

Cards provides input checking, and stores a history of runs to aid to the user in simulation data
management. Additionally, the concept of common projects is introduced to allow multiple
software systems to be executed using a single set of parameter inputs. Plotting functions can
be added to Cards easily, and use of the in-built integration with SIMDIS provides visualisation
of inputs and outputs from the system.

This document describes the use of Cards and how it may be readily extended to support
other systems.

UNCLASSIFIED

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED

UNCLASSIFIED

Authors

Daniel Finch
National Security and ISR Division

Daniel Finch works in radar modelling and analysis in the
National Security and ISR Division of DST. He joined DST
in 2003 after completing degrees in Mathematics and Electrical
Engineering at the University of Wollongong. In 2012 he
completed a Master of Sciences at Adelaide University. His
specialisation includes radar performance simulation and
modelling.

Paul Berry
National Security and ISR Division

Paul works in the National Security and ISR Division of DST
and has interests in estimation, optimisation and control applied
to microwave radar engineering. He has a PhD in Theoretical
Fluid Mechanics from UCL, University of London and
previously worked in research laboratories in the UK’s energy in-
dustry on problems of computational physics and power
system optimisation and control.

Zane Van de Meulen-Graaf
Simbiant Pty Ltd

Zane Van de Meulen-Graaf received a Bachelor of Mathematical
and Computer Sciences (Honours) in Applied Mathematics from
the University of Adelaide in 2008. He has worked as a
contractor at DST since 2010 in various software-related roles,
using a variety of languages and tools, including C++, Python,
Go, and Java. He is currently working on high-performance,
real-time signal capture and analysis software in C++.

UNCLASSIFIED

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED

UNCLASSIFIED

Contents

1 INTRODUCTION TO CARDS . 1
1.1 Getting Started . 2
1.2 Functional Overview . 3
1.3 Parameter Data Structure . 3

2 CREATING AND RUNNING PROJECTS. 6
2.1 Creating a New Project . 6
2.2 Setting and Modifying Parameters . 7
2.3 Paths . 8
2.4 Running a Project . 8

3 ADDITIONAL FEATURES . 8
3.1 Run History . 8

3.1.1 Searching . 9
3.1.2 Results . 9

3.2 Common Projects . 10
3.2.1 Overview. 10
3.2.2 Limitations of Common Parameters . 10
3.2.3 Creating a Common Project . 11

3.3 Plotting . 13
3.4 SIMDIS Visualisation. 13

4 EXTENDING CARDS . 14
4.1 Adding a System. 14

4.1.1 Creating the System Class . 15
4.1.2 Registering the Class . 16
4.1.3 Setting a System Path . 16

4.2 Schema Generation. 17
4.2.1 Structure . 17
4.2.2 Creating a Schema . 18

4.3 Managing Units . 18
4.3.1 Adding a New Quantity . 20
4.3.2 Extending Existing Quantities . 21

4.4 Plot Addition . 21
4.4.1 The Plotting Interface . 21
4.4.2 Registering Plots . 22
4.4.3 The Plotting Pipeline. 22

5 ARCHITECTURE AND DEVELOPMENT ROADMAP . 23
5.1 Technology Selection . 23
5.2 Project Data Definition and Management . 24
5.3 Future Development . 24

UNCLASSIFIED

UNCLASSIFIED

6 REFERENCES . 26

APPENDIX A: REQUIRED PACKAGES . 27

APPENDIX B: DATA-TYPES, SCHEMA AND UNITS. 29
B.1 Summary of types . 29
B.2 Additional Properties . 30
B.3 XML Data Structure . 30
B.4 Units . 30
B.5 Unit Errors . 32

APPENDIX C: EXAMPLE CODE FOR PROP. 33
C.1 System Definition. 33
C.2 Plotting . 34
C.3 Schema . 35

Figures

1 Cards GUI with project open for example system . 2
2 Relationship between elements of Cards . 4
3 Example parameters in UML class style . 4
4 Possible parameter structures . 6
5 Common project example . 11
6 Common project parameter mapping UI . 12
7 Example plot produced by the Cards using the matplotlib Python library 13
8 Example SIMDIS display . 14
9 Cards schema editor . 19
10 Suggested plotting pipeline . 22

Tables

1 Columns of the parameter table . 7
2 Available properties for each data type . 30
3 XML attributes for schema and project files grouped by parameter data type 31
4 Predefined units in Cards . 32

UNCLASSIFIED

UNCLASSIFIED

Glossary

Backend Software written for Cards to translate parameters for a system

DST Group Defence Science and Technology Group

GPARM Radar simulation software created by DST

GUI / UI (Graphical) User Interface

MATLAB A numerical computing environment and programming language

Miranda Radar analysis tool developed by DST

Model A collection of parameters to represent a specific item or function-
ality

Parameter A named item that is used to take on a value or create the structure
of the inputs

Project A collection of parameter values used to run a system plus any
outputs from the run

Python A programming language

Schema Definition of the parameters for a model, including name, data
type and restrictions

SIMDIS 3D visualisation tool developed by U.S. Naval Research Laboratory

System The software or hardware process executed by Cards

System inputs Inputs in the format accepted by the system, as opposed to the
Cards format

UNCLASSIFIED

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

1. Introduction to Cards

Cards is a generic graphical user interface (GUI) that can be customised to command a wide
variety of non-interactive software or hardware systems. Such systems are widespread in
scientific and research organisations such as the Defence Science and Technology (DST) Group,
and often require a large number of inputs to operate. These systems subsequently require
their own GUI to be crafted or are configured using complex text files. Cards attempts to
solve this problem by providing a generic interface that allows data to be defined in a tree
structure of parameters. Values for the parameters can be manipulated by the user within
Cards, then effortlessly passed to the target system in the required data format.

Cards was conceived as a tool to assist in radar analysis and modelling with the aim of
integrating analysis, simulation & visualisation tools into a single interactive environment;
allowing the analyst to use multiple tools without having to re-enter or convert input data.
The design of Cards was influenced by the Miranda [1] and GPARM [2] radar models developed
by DST.

While the main focus of Cards is to provide a unified GUI, it provides a number of other useful
functions with regards to simulation:

Input checking of the user-entered data for each parameter. This provides type-checking
(i.e. enforced data types) and the option for limits to be placed on values. Units can be
specified for numeric data types. This checking reduces the amount of input validation
required at the system level and improves usability.

Run History that keeps metadata about runs that have been performed through Cards.
This metadata is easily searchable, and provides additional utility by allowing input
parameter files from multiple runs to be compared, leading to simple and fast checks
regarding parameter variations between runs.

Common Projects that allow multiple systems to be controlled from a single set of inputs.
This can be useful when attempting to compare the performance of two or more systems.

Plots can be produced both pre-run and post-run, depending on the system being used.

SIMDIS Visualisation of a given scenario. SIMDIS [3] enables two and three-dimensional
interactive graphical display of data and can be used to help verify that the scenario
geometry is correct.

This document describes version 16.06 of Cards, released in June 2016. Section 2 gives an
overview of the basic usage of Cards, and further functionality is described in Section 3.
Details of extending Cards to work with new systems, including creating schemas and adding
units, is detailed in Section 4.

UNCLASSIFIED
1

DST-Group–TN–1803

UNCLASSIFIED

1.1. Getting Started

Cards is written in Python, and is hence cross-platform. PythonXY 2.7.6.0 was used in the
development and testing of Cards, however any Python 2.7 distribution should be suitable.
The list of packages required by Cards is given in Appendix A. More information about Python
can be found at the Python website www.python.org/.

Once Python is installed and the Cards files1 extracted to a suitable location, Cards can be
launched by using the command

python -m cards
from the command line within the Cards root directory. This will open the main GUI, an
example of which is shown in Figure 1.

The GUI has three key areas: i) the left navigation pane displays the parameter hierarchy as
a tree, ii) a parameter pane on the right displays the child parameters of the branch currently
selected in the navigation pane, and iii) a log pane at the bottom. The use of the GUI will be
described in more detail in Section 2.

Figure 1: Cards GUI with project open for example system

1Cards is distributed as a zip file containing the Python source and other resource files. Requests for copies
of Cards should be made to the author in the first instance.

2
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

1.2. Functional Overview

Cards performs a number of functions as outlined in Section 1, but its core purpose is data
input and system execution.

Systems are the end software that consume the data defined in Cards, and may be executables,
MATLAB functions or remote processes. Cards’ responsibility is to:

1. present a set of parameters to the user for data entry via the GUI

2. transform the parameter inputs into the format required by the system

3. invoke the code to execute the system with these inputs

4. report any execution errors

5. log history on success.

In Cards this process is termed a run.

Parameters required by each system are defined in a series of schema files. These files are
interpreted by Cards and used to populate the navigation and parameter panes of the GUI.
The user can then enter values for each parameter, which are later stored as part of a project.

Projects are a collection of files describing the user inputs and any subsequent outputs from
running the system. Projects can be saved, closed and reopened within Cards, allowing inputs
to be edited and runs to be repeated. A project has a single target system2, e.g. a Miranda
project cannot be used to run GPARM.

To perform a run, the user’s inputs must first be translated to the format3 expected by the
system. This task is performed by the backend class. Once this is done the system inputs are
transferred to the system for processing, and any outputs are copied into the project. The
relationship between these items is shown diagrammatically in Figure 2.

1.3. Parameter Data Structure

The parameter data structure is an important aspect of Cards. A hierarchical structure is
used, with a tree branching from a root element to its child elements. The terms parent, child,
and sibling are used to describe the relationship between elements. This is combined with
polymorphism (sub-typing) to achieve a dynamic structure. This structure nomenclature is
further described with references to the parameter set for the fictional PROP system para-
meters shown in Figure 3.

2Unless it has been created as a Common project, which will be described in Section 3.2.
3This may be a file format e.g. XML, CSV, MATLAB (.mat), or serialised into a memory buffer for

transmission to the system.

UNCLASSIFIED
3

DST-Group–TN–1803

UNCLASSIFIED

Figure 2: Relationship between elements of Cards, showing the schema, project, Cards UI,
backend and the system

Figure 3: Example parameter structure for Cards based on the demonstration PROP system.
The relationship is shown using the UML class style. Models are shown in the two-
part boxes with names in bold text at the top, and parameters in the lower part of the
box. Parameter names are followed by their data type and restrictions. Branch Para-
meters are shown using the composition (filled diamond) connection. The model type
is shown in the single box, and the model options are shown using an implementation
(dotted) connection.

4
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

Model A model is the basic building block used to form the tree structures within Cards.
Models have a model name, a model type, and zero or more child parameters. In the
example parameter structure Quick Prop, Gaussian and From file are all models.

Parameters A parameter is a child of a model. There are broadly two types of parameters:
branch parameters, which may have their own children; and leaf parameters, which take a
value but do not have any children. In the example figure, pol and Beamwidth are two of
the leaf parameters, while Antenna and Refractivity Profile are branch parameters. Leaf
parameters provide input validation and, for some data types, can have units. Branch
parameters are shown in the navigation pane of the GUI, while the leaf parameters of
the selected branch are shown in the parameter pane.

Data type All parameters have a name and a data type, the full list of data types is given in
Appendix B. In the figure the data type of each parameter is shown after the parameter
name.

Component This is a data type that acts as a slot (or interface) that other models connect
to. The models that may be connected are defined via the model type. In the ex-
ample structure the parameter Antenna is a component, with restriction to model type
prop_antenna; and the user has the choice between two models for this model type.
Components are a type of branch parameter but do not have their own pre-defined
children, rather they take the children from the connected model.

Struct This is the second type of branch parameter, and provides an alternate way of creating
a nested parameter structure. Structs have their own pre-defined child parameters which
cannot be altered. In the example, Refractivity Profile is a struct with three child
parameters.

Duplicates Branch parameters may be duplicated (cloned) if this functionality is permitted
by the schema. Duplicating a parameter creates another instance of that parameter in
the navigation pane. This can be used to define an additional set of inputs, for example
multiple refractivity profiles at different ranges in the PROP system. To differentiate
between duplicates, each instance is given a unique ‘branch name’ that can be set by the
user.

Using the abstract parameter structure it becomes possible for the user to generate a variety
of valid data sets via model selection and duplication. This is a key capability of Cards and
allows the parameters to be described in a way that is easier for a user to understand. Using
the options from Figure 3, a user may construct the example parameter sets shown in Figure 4.
This demonstrates that the parameters presented to the user in Cards need not be a one-to-one
mapping to the system inputs. The backend is capable of performing pre-processing on the
inputs, and is not simply parameter mapping.

UNCLASSIFIED
5

DST-Group–TN–1803

UNCLASSIFIED

Figure 4: Two possible parameter structures based on the demonstration PROP system using
a file/folder representation. The two structures have different models selected for the
Antenna parameter, and the second has a duplicate of the Refractivity Profile.

2. Creating and Running Projects

The steps involved in using Cards are: creating a project, setting parameter values, and
running the project. The following sections provide more information on each of these steps.

2.1. Creating a New Project

Projects are the mechanism by which Cards groups inputs and their outputs from runs. A
project is targeted at a single system4, which cannot be changed once the project is created.

Projects are created and loaded from the main Cards window via the File menu. Creating
a new project will launch a dialog box requesting a project name and system selection. The
project name is a label to help identify the project. It can be changed later and need not be
unique (although this is a good idea), and does not relate to file or directory names when the
project is saved. The project name and system will be displayed at the top of the navigation
pane once the project has been created.

4Unless it is a common project.

6
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

Projects consist of multiple files and are hence saved as a directory. When saving a project it
is a good idea to create a new directory, otherwise existing project files may be overwritten
without warning.

2.2. Setting and Modifying Parameters

Once a project has been created, a root parameter with the same name as the target system
will be added to the navigation pane. To select a model, right click on the parameter and
choose an item from the Select Model list. When this is done the navigation and parameter
panes will be updated with the child parameters of that model.

The parameter pane is organised as a table with six columns and a row for each leaf parameter.
A description of each column is given in Table 1. Parameters are always shown in alphabetical
order5, and receive an initial default value defined by the schema.

Table 1: Columns of the parameter table

Column Name Editable Description

Name 7 The name of the parameter
Value 3 User entered data
Units 3a Drop-down box of options
Description 7 A short summary of what this parameter does
Type 7 The data type e.g. ‘double’, ‘string’
User Description 3 This is an optional free-text area. The user may add

any comments here
a only if type is a numeric quantity and unit type is specified in the schema

When modifying parameters with units it is advisable to set the unit to the desired quantity
first. Cards will automatically convert the existing data value to the new unit selected in
the drop-down box. To modify a value, double-click on the cell containing that value. These
inputs are type checked, so Cards will reject an input such as “hi” for a Double type, and
revert to the previous value.

Hovering over a branch parameter will reveal its data type, branch name and other relevant
information. If duplication of a branch parameter is permitted a Duplicate menu item will
become available in its context menu. Likewise it is possible to remove a duplicate by selecting
Remove Duplicate. The only limit placed on the number of instances of a duplicable parameter
is a minimum of one.

To search for a specific parameter name, use the Search box above the parameter pane. Any
matches will be highlighted firstly in the navigation pane, signifying that some parameter
name under that branch matches, and then in the parameter pane when one of the matching
branches is selected. Note that branch parameter names are not searched.

5This is regardless of the order that parameters appear in the schema.

UNCLASSIFIED
7

DST-Group–TN–1803

UNCLASSIFIED

2.3. Paths

Before Cards can be used to run a project it must know where the executable for the system
is located. This can be set by via the File → Paths menu, with the UI showing two tabs:
Executable Paths and Schema Paths. Executable paths contains a user-settable path for each
system, as well as a Diff Tool Directory path (see Section 3.1.2). Schema paths are configured
when adding systems or expanding existing systems, and are described in Section 4. Path
information is stored independently of projects, hence should only need to be configured once.

2.4. Running a Project

Prior to executing a project it must first be saved, it is not possible to run an unsaved project.
Note that Cards will automatically re-save the project each time the user initiates a run. The
Run menu within the main Cards UI is used to initiate a run. While the project is running,
the user may continue to use the GUI and modify parameters in preparation for the next run
without affecting the current run. However the Run menu option will be disabled until the
current run has completed.

Whilst the system is executing a small window will remain open showing a stylised radar
display. Once the system has finished executing, Cards will close this window and information
about the output path will be printed in the log pane6. If the run failed, information about
the cause will be shown in the log pane.

Cards allows the user to terminate a run before it has completed. This is done via the Run
→ Stop menu and will result in a “run aborted by user” message in the log. For systems using
an executable (e.g. .exe file), this should not cause any issues; however for MATLAB based
systems this should be used with some caution as the MATLAB engine may not be given a
chance to properly shut down.

3. Additional Features

3.1. Run History

Being able to reproduce results is incredibly important when simulating. Without such cap-
ability, it is impossible to perform any kind of validation of the model, greatly reducing the
confidence that it is correct. Across many runs of a system, it can become difficult to re-
member which parameters were used for a specific run, and where those files are now located.
Provenance of results is very important, hence it is essential to have a good data management
plan. To assist with this, Cards integrates run history. This is basic metadata that is cap-
tured about every successful run on a given computer. This is performed automatically and
is transparent to the user.

6The log pane should be visible at the bottom of the Cards window. It may however be hidden or revealed
via the View menu

8
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

3.1.1. Searching

The run history may be searched on the following fields:

Date ranges Filter runs by the date range on which they were executed.

System(s) Which system(s) were used to perform the run. Note that selecting no system is
equivalent to selecting all systems.

Project Name The name of the project that was used to run the system.

Parameter search This will search the run history for a matching parameter name with
value equal to or within a range specified by the user. Care should be taken when
using this search as units cannot be specified for numeric values, and all strings are case
sensitive.

Any combination of these fields can be used to define the search, unused fields should be left
empty.

3.1.2. Results

Runs matching the sarch criteria will be listed in a results window with basic information
about each run. The user can interact with these results in a number of ways via the context
menu:

Remove Run This will remove the run from the run history database. This will not remove
any files associated with the run.

Save Parameter File Will save the inputs that were used to generate the run to a user
selected location in the Cards XML format. This can be useful for quickly viewing the
inputs rather than recreating the project.

Open Output Location This will open the computer’s file manager application to the pro-
ject directory for that run, if the folder still exists. Note that subsequent runs of the
project may have replaced the output files.

Recreate a project This will create a new project that can be opened in Cards so the run
can be repeated.

Diff Parameter Files If exactly two runs are selected, a comparison on the parameters can
be performed. An external program is used for comparisons; for Windows WinMerge7

and TortoiseMerge8 are supported. The desired tool must be installed on the user’s
system and the Diff Tool Directory path, discussed in Section 2.3, must be configured
prior to performing a comparison.

7http://winmerge.org
8https://tortoisesvn.net/TortoiseMerge.html

UNCLASSIFIED
9

DST-Group–TN–1803

UNCLASSIFIED

3.2. Common Projects

Common projects are designed to simplify the process of executing multiple systems using a
single set of parameters. Whereas a normal project can only target a single system, common
projects can target many systems. To achieve this, the common project is composed of: a
base project for each system, a set of common parameters, and a mapping of these common
parameters to those in each base project.

Common projects can also be used to create an alternate input parameter set for a single
system. This can be a useful way of limiting the number of parameters that a user may edit,
without the need to modify the backend for the system.

3.2.1. Overview

To understand what a common project does, consider the following simple example where
we wish to run two similar models (System A and our fictional PROP system), to compare
their performance. As shown in Figure 5 we want to allow the user to specify the height and
polarisation parameters only. To do this, a project for each system must first be created such
that the desired scenario is represented. These become the base projects.

After the base projects are created the desired common parameters must be defined and
mapped back to parameters in the base projects. It is these common parameters that the
user will enter data for; in this example they have been called Height and Polarisation. The
mappings of these parameters are shown in the figure.

Once the parameters and mappings have been defined, a common project must be generated.
This project can then be opened and edited in Cards much like any other project. When the
user runs the project, the entered values for the common parameters are merged back into
the base projects, creating a complete parameter set for each system. These merged projects
are then run (in parallel if possible) and the outputs saved into the common project. Plotting
options for both systems will be available under the Plot menu, however there is currently no
mechanism to produce a combined plot or perform other processing of the different system
results.

3.2.2. Limitations of Common Parameters

There are a small number of limitations associated with common project parameters. Firstly,
due to the parameter mapping process, typically only one parameter in the base project can
be mapped to each common parameter9. That is, there is an assumption of independence
between the parameter selected from the base project, and other parameters within that base
project. Secondly, it is not possible to modify the common value input before it is merged
into the base process. This may be an issue for say the string input parameter Polarisation
from the previous example. If system A expects ‘Vertical’ for vertical and PROP expects
‘V’ then this cannot be done in Cards. Finally, the common project cannot have any branch
parameters, as the mapping required for this is too difficult.

9There is an exception if the parameters in the base project have identical names

10
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

Figure 5: Common project example

3.2.3. Creating a Common Project

This section will step through the process of using Cards to create and run a common project.
As identified earlier, the common project requires a base project for each system to be executed.
These should be created in the normal way using Cards and saved to suitable locations.

The Common Schema Editor is used to define the parameters and their mappings to the base
projects. This may be launched via the Schema menu in the main Cards UI. The Add project
button is used to select the base projects. Each base project will be represented as a column
in the editor, with the project name as a header. The desired common parameter names are
then entered in the first column and base project mappings in the remaining cells. Using our
earlier example projects, the UI will resemble Figure 6.

UNCLASSIFIED
11

DST-Group–TN–1803

UNCLASSIFIED

Figure 6: Common project parameter mapping UI

In the bottom right-hand corner is a Validate button that is used to perform a number of
checks on the entered mappings. The validation firstly ensures all parameter names exist in
the base project; from the previous example, project1 would be checked to ensure that the
parameters named H and P exist. If any of these parameters are not found, validation will
fail and the cell will be highlighted in red. Note that parameter names are case sensitive.

The second stage of the validation is a check for ambiguous parameters. It is possible for the
base project to contain two or more parameters with the same name, either through duplication
of a branch, or across unrelated branches. In this case Cards needs assistance from the user to
correctly resolve the parameter, and will highlight the parameter in yellow. Right-clicking over
any highlighted parameter will bring up a list of ‘fully resolved names’ that may be selected
to disambiguate the mapping10 Ambiguous parameters will only trigger a warning; it will not
stop the schema from validating. If the parameter name is left ambiguous, Cards will map to
all instances, and each of these parameters will be updated with the given value.

The final check performed during validation is to ensure that the data types and unit type
(if defined) of the parameters from the corresponding base projects are identical. From the
previous example, this will check that the data type and unit type of parameter ‘H’ in project1
is the same as ‘hgt’ in project2.

Once the common schema has been validated, the user can then generate a new project. To
do this, use the menu item File → Generate Common Project. Following this, the schema UI
may be closed and the new project loaded in the main UI as per normal.

10The format of a fully resolved name will be of the form <parameter>@<branch name>.<parameter>.
Branch names can be set via the context menu in the navigation pane of the UI.

12
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

3.3. Plotting

There are two types of plots that can be produced from Cards: pre-process and post-process.
The pre-process plots are those that can be produced using only the input data for the system.
These plots can be created at any time, and may be useful as a check of the input values. The
post-process plots use the outputs of the system, and can only be produced once the project
has been run.

The plot production is defined as part of the backend class for each system, hence the plots
available will vary between systems. The process of adding new plots for a system is described
in Section 4.4 and uses the matplotlib [4] Python library. Figure 7 shows an example of the
quality of plots possible in Cards.

Figure 7: Example plot produced by the Cards using the matplotlib Python library

3.4. SIMDIS Visualisation

SIMDIS [3] is a two and three-dimensional interactive visualisation tool developed by the U.S.
Naval Research Laboratory. A plugin for SIMDIS is included with Cards that enables data
from Cards to be sent to SIMDIS, allowing users to update parameters and see the changes
reflected immediately in SIMDIS. This can be used to verify the scenario geometry is correct.
An example screen shot of SIMDIS is shown in Figure 8.

To enable a platform to be displayed in SIMDIS, the Cards schema must be configured with
appropriate tags which provide a mapping of the Cards parameters to those expected by
SIMDIS. This will typically be performed by the schema developer, and is not described
further here.

Prior to using SIMDIS, users must ensure that SIMDIS 9 is installed and registered on their
computer. The SIMDIS directory must be added to the path environment variable. Once a
suitable Cards project has been created and populated with values, SIMDIS can be launched
using the Visualisation menu. Within SIMDIS, the Cards plug-in must be installed using the

UNCLASSIFIED
13

DST-Group–TN–1803

UNCLASSIFIED

Figure 8: Example SIMDIS display showing a single airborne transmitter and ground based
target. SIMDIS enables the addition of range and angle information to the display
as shown. Low resolution map shown, but higher resolution may be used.

plug-in manager11 . Once the plug-in is successfully installed, the SIMDIS eye will reposition
itself to be above Adelaide, Australia. With SIMDIS running, users can modify the tagged
parameters in Cards and view the changes in SIMDIS.

4. Extending Cards

4.1. Adding a System

This section is designed to highlight the key steps necessary to integrate a new system into the
Cards framework. Cards was designed with flexibility in mind, and this process is intended to
be as painless as possible.

The broad steps needed to integrate a new system are:

1. Create a backend class for the new system derived from the System interface

2. Register the new class with the system manager

3. Set a system path

4. Create a set of schemas.

11This may need to be done every time SIMDIS is launched as it appears to lose this setting

14
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

The remainder of this section describes the first three steps using our exemplar PROP system.
The files to be created or modified will all typically sit under the backends directory, except for
config.py which is directly under cards itself. The schema generation is described in Section 4.2.

4.1.1. Creating the System Class

The first step in integrating a new system into Cards is to create a system backend class.
There are no restrictions on the name of the class; however this name will be used by Cards as
the system name in most cases. Using the PROP example, the current convention would be
to create a module named prop.py in the backends directory12, and within this module create
a class called PROP.

Cards defines an abstract class in backends/system.py called System. In order for the system
being integrating into Cards to work it must derive from this class. The System interface
defines an abstract property and two abstract methods, in addition to this, the new class must
have an __init__ method that takes project_directory as an optional argument. The role
of these properties and methods are discussed in the following paragraphs. A skeleton of the
PROP class is provided in Appendix C.

system_name

This method should return a string containing the name of the system. In the majority of the
Cards code the system name is derived from the name of the class rather than this method.
To avoid confusion it is best practice to ensure the string returned by this method matches
the class name.

export

The export method is responsible for transforming the Cards parameter structure to the system
input representation. This format is entirely dictated by the system and assumed to be known
to the developer. This method is called following some basic sanity checks on the data when
the user initiates a run or chooses to export via the File menu. For systems that accept inputs
via file, the export method will save the file to the project directory. The two arguments are:

root_parameter is the root parameter as shown in the GUI’s navigation pane. Whilst only
this parameter is passed, it contains all the parameter information through its children.

project_directory is the full path to a project directory to which the system input file(s)
will be exported.

run

The run method is called by Cards to execute the system once the data has been exported.
The parameters are:

system_directory is the directory defined by the user in the path setup. This is the directory
12module names should always be lower case

UNCLASSIFIED
15

DST-Group–TN–1803

UNCLASSIFIED

that contains the executable code for the system.

project_directory is the full project path. It is recommended that any input files are saved
in this directory during export.

enable_run_signal is a signal that will re-enable the Run menu in the main Cards UI. To
allow multiple parallel runs of the system, simply emit the signal as soon as the run
function is entered, otherwise it should be emitted once execution has completed.

log_run_signal is another signal. It is used to log a successful run into the run history.

stop_signal will be emitted on if the user elects to stop a run before it is complete.

finish_func is an optional function that will be run on completion. This is typically unused
except for the Common system, and can be safely ignored.

It is advisable to have run spawn off a separate thread that performs the run, and then returns.
This is to stop the UI from blocking, preventing the user from using Cards until the run is
complete.

There are two helper classes available, RunExecutable and RunMatlab that may be used to
perform the majority of the repetitive setup and teardown. Information on the use of these
classes is contained within the files executable.py and matlab.py in the backends directory.

4.1.2. Registering the Class

Registering the class is a simple process to let Cards know about the new system. This
is achieved by importing SysManager from backends/system_manager.py and inserting the
statement @SysManager.register directly above the new class defined in Section 4.1.1. Fi-
nally, in backends/__init__.py, add the module that the new class lives under to the import
list.

4.1.3. Setting a System Path

Cards assumes that all systems require a path setting that informs the backend where the
system code and/or executable can be found. This is the system_directory argument passed
to the run() method. This user defined setting is stored within the path_preferences.cfg file
and accessed by the PathManager class.

Adding an entry to the .cfg file for the new system involves creating a new <name> = <value>
line below the [ExePaths] section. If the system does not require a path the <value> may
be left empty.

To enable Cards to associate an entry in the .cfg file with a system, the config.py file needs to
be updated. This requires an addition to the SYSTEM_TO_DIRECTORY map located under the
Directory Configuration section. The new entry should have the system name as the key and
<name> used in the .cfg file as the value.

16
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

The modifications to the .cfg and config.py files for the PROP system are shown below

[ExePaths]
miranda_dir = C:\miranda
prop_directory =

SYSTEM_TO_DIRECTORY = {'Miranda ':'miranda_dir ', 'Common ': '',
'PROP': 'prop_directory '}

To enable a user to modify the path preference via the UI requires modifications to ui/paths.py
and the associated view using Qt Designer software. These modifications are beyond the scope
of this document.

4.2. Schema Generation

4.2.1. Structure

Cards is designed to be a front-end for various systems with disparate parameter sets. As such,
a method of defining the set of input parameters for each system in a standardised format is
required. This is the role of the schema. Further to this, schemas enable a number of other
useful features such as input validation, unit restrictions, and parameter descriptions.

New schemas are required to be created when a system is integrated into Cards for the first
time. It may also be possible to extend the functionality, or improve the usability of an existing
system by creating new schemas.

This section covers the basics of defining a schema, but not how Cards should translate this
information into the system input. This translation is performed in the Cards backend class
for the system (in the export method), and is beyond the scope of this document. Examples
of how this may be achieved can be found in the existing backend classes.

A schema is a description of zero-or-more parameters, and a separate schema must be defined
for each model; hence a system may require many schemas to be defined. Each parameter
within a schema must have a unique name, a data type and a description. Depending on the
data type of the parameter, a number of other properties may be specified in the schema. The
list of available data types is provided in Appendix B.

Schemas are saved as XML files and are typically kept in a subdirectory of cards/schemas/.
They may however be placed in any directory so long as that directory is added to the schema
path, which may be edited using the paths UI. Cards will recursively scan subdirectories of
all items on the path for schema files; however it will not allow you to add paths that do not
contain any schema files.

UNCLASSIFIED
17

DST-Group–TN–1803

UNCLASSIFIED

4.2.2. Creating a Schema

A Schema Editor UI is provided in Cards to simplify the process of creating and editing
schemas. An example of this UI is shown in Figure 9 and can be accessed by selecting Schema
→ Edit Schema from the main UI menu.

The region at the top of the UI is the model identification area, and below that is the parameter
definition area. The model identification consists of:

Model Type specifies the model type of this model. This should match the ‘Model Type’
property of any parent parameters. To create a root model, the value should be set to
the system name.

Model Name specifies the name of the model, and will be shown under the select model
context menu in the main UI when a user is editing a project.

The parameter definition area is composed of the parameter table and a set of controls for
adding, removing and modifying parameters. The parameter table shows all parameters cur-
rently added to the schema. There are five columns in the table: Name, Default Value, Units,
Description, and Type. Any of these properties may be edited within the table, however it
may be easier to use the Modify tab located below the table13. A Search Parameter Name
control above the table allows a basic search over all the names of parameters that have been
added to the current schema. Anything that matches will be highlighted.

The Insert Item drop-down located below the parameter table is where the data type of a new
parameter is selected. Once the data type is selected the name and other properties of the new
parameter can be entered using the Insert tab. The new parameter is added to the parameter
table by clicking the Add Row button. The Add Child button is used if the new parameter is
to be added as a child of a struct parameter that has been selected in the parameter table.

4.3. Managing Units

Cards was created with a mechanism to allow conversion between different units. Support
for common physical quantities and units is built into Cards, with a full list available in
Appendix B.4. However, in the event that a desired unit (or quantity) is not provided then
these units can be easily added.14

A full example of how this can be achieved is shown in the following sections. All the unit
additions are contained in the file cards/conversion_additions.py, with the modifications to
sit in the add_conversions method.

13The data type may be modified in the parameter table via the context menu.
14This capability may also be useful if the default range of units does not naturally align with a parameter,

e.g. having km as a unit for the thickness of paper.

18
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

Figure 9: Cards schema editor showing the ‘Quick PROP’ model for the example PROP sys-
tem.

UNCLASSIFIED
19

DST-Group–TN–1803

UNCLASSIFIED

4.3.1. Adding a New Quantity

In Cards a physical quantity is called a unit type and specifies a set of units that can be con-
verted between. For example angle is a unit type, with units of degrees, radians, milliradians,
etc. The unit conversion is performed as a two step process in Cards, with the canonical unit
acting as the intermediary. The selection of the canonical unit is something of an arbitrary
choice; however it will affect the function transforms to be defined.

When adding a new unit type, the name of the type, a set of units and the canonical unit
must all be defined. This is achieved using the add_unit_set function, which takes these three
items as arguments. Using density as an example, with units of kg/m3 and g/cm3, plus g/m3

as the canonical unit, this looks like

density = add_unit_set('density', 'g/m3', ('kg/m3', 'g/cm3'))

Once the list of units has been set we proceed by defining the conversion between them. This
is where the canonical representation comes into play; we only need to define a conversion
function and its inverse between the canonical unit to each of the units in the set. These con-
versions are registered using two methods on the quantity object: add_cannonical_to_other
and add_other_to_cannonical. Each of these functions take two parameters: the name of
the unit to convert from or to, and the function to do the conversion.

Consider the conversion from g/m3 to kg/m3. This is from the canonical unit to another unit,
and the formula for converting is to divide the value by 1000. This can be defined in code as15

density.add_cannonical_to_other('kg/m3', lambda x: x / 1e3)

To finalise the definitions a call to the finish function is added. Internally, this performs a
number of checks to make sure everything is as it should be. If everything has gone well, when
Cards is restarted a message should appear in the log window: INFO: User unit conversions
successfully loaded. In the case that an error is detected the message ERROR: Some user
defined unit conversion(s) failed! will be logged along with some diagnostic messages.
A description of these errors is contained in Section B.5.

The complete code for adding the example density unit type is shown below.

def add_conversions ():
density = add_unit_set('density ', 'g/m3', ('kg/m3', 'g/cm3'))
density.add_cannonical_to_other('kg/m3', lambda x: x / 1e3)
density.add_cannonical_to_other('g/cm3', lambda x: x / 1e6)
density.add_other_to_cannonical('kg/m3', lambda x: x * 1e3)
density.add_other_to_cannonical('g/cm3', lambda x: x * 1e6)
density.finish ()
return True

15The Python lambda form has been used to construct an anonymous function.

20
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

4.3.2. Extending Existing Quantities

This is the process of adding a unit to a pre-existing quantity (unit type) within Cards. The
steps for adding this unit are similar to those for defining a new quantity, with the code
inserted into the same method and an identical interface used. The one difference is the use
of the method extend_unit_set to define the new unit. This function takes the two inputs:
the unit type, and a list of the new units.

Consider the example where we wish to include turn as an angle unit (where 1 turn = 360
degrees). As before, we have two conversion functions to define: one to convert from the
canonical unit for angles (degrees) to turns, and one to convert from turns to degrees. The
methods to register these conversion is the same as for adding new units. The following code
shows the complete definition, including a call to finish.

angles = extend_unit_set('angle', ['turn'])
angles.add_cannonical_to_other('turn', lambda x: x / 360.0)
angles.add_other_to_cannonical('turn', lambda x: x * 360.0)
angles.finish ()

4.4. Plot Addition

This section is designed to provide a brief description of the process for incorporating new
plots into Cards. There are a small number of plots already included in Cards; however the
goal when designing the current plotting code was to provide an interface and some simple
helper classes to make incorporation of new plots as easy as possible.

The process for adding a new plot to Cards involves creating a plot class, then registering it for
the applicable systems. This is described in more detail below, along with a suggested plotting
pipeline for improving consistency and re-usability of the plot code. The code discussed in
this section lives under the plot module, which in turn sits under the main cards directory.

4.4.1. The Plotting Interface

Cards defines a pair of empty classes in plot_types.py, named PreProcess and PostProcess. A
class that is to be used for plotting must inherit from one of these two, as they tell Cards
whether a plot is available before and/or after a successful run.

For pre-process plots, the plotting class will be initialised (__init__) with two arguments:

system_name is the string name of the system requesting the plot.

root_parameter is the root parameter as shown in the GUI’s navigation pane. Whilst only
this parameter is passed, it contains all the parameter information through its children.

Once the class has been initialised, it will have plot() called on it. This method takes no
arguments, hence the data extraction should take place during initialisation.

UNCLASSIFIED
21

DST-Group–TN–1803

UNCLASSIFIED

The post process interface is simpler, with the initialisation receiving only the filename of the
output file containing the results generated from a run. The plot() function will again be
called immediately after the class has been initialised.

An example plot class is shown in Appendix C for our exemplar PROP system.

4.4.2. Registering Plots

In order for Cards to know what plots are available, they need to be registered and identify
the systems supported. The underlying mechanism for this is very similar to the way that
systems are registered, as discussed in Section 4.1. To do this, @PlotWrapper is placed above
the plotting class with the system class (not name) within parenthesis following. If the plot can
be used with multiple systems, these may be listed in the parenthesis as a comma separated
list.

Finally the Python module containing the plot class must be imported into the module-level
__init__.py that sits directly under the plot directory. This ensures that Cards will register
the plot class as soon as the plotting module is loaded.

Once the plot class is correctly registered and Cards restarted, the new plot will become
available under the Plot menu, identified by the name of the plot class.

4.4.3. The Plotting Pipeline

When it comes to plotting, there is a relatively general pipeline that can be followed for every
plot, this is shown in Figure 10. Cards does not enforce the use of this structure, only the plot
interface must be adhered to, but Cards does provide some additional help if this pipeline is
followed.

Figure 10: Suggested plotting pipeline

22
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

The first stage of the pipeline starts with either a project’s input file, or an output file. This
contains some super-set of the data required for the plot.

The second stage of the pipeline is an Extractor. For a given plot, there are usually only a
few variables of interest; hence the idea of an extractor is to take the input and extract from
this data only those variables. This decouples the rest of the pipeline from the input data
format, meaning that multiple systems potentially only need different extractors; with the
data processing and plotting code being reused across multiple systems.

Cards provides a base type CommonExtractor that can be used to aid in extraction of data for
pre-process plots from the internal Component/Leaf input representation. For post-process
plots, since all systems use different output file formats, most of this code will be specific to
each system and it is impossible to create a more generic solution.

The third stage in the pipeline is completely plot-specific. It should take the input data in the
format output by the extractor and processes it into a format suitable for plotting. This is the
“number-crunching” step, and care should be taken to prevent this blocking the UI (making it
non-responsive to the user) if this step takes significant time.

The final stage of the pipeline is the one that actually produces a plot on screen for the user.

5. Architecture and Development Roadmap

5.1. Technology Selection

Cards was designed with the following requirements

• use freely available Open-source tools

• high-level language for ease of development & maintenance by the user community

• provide good data visualisation options

• be interactive for ease of use.

Python was chosen as the language for Cards because it offers support for scientific libraries:
numpy and scipy, is freely available, and the widely used PyQt enables GUIs to be developed
easily.

Cards was designed to be deployed onto the end-user’s computer; hence the selection of a
language that transfers easy to a wide range of operating systems was important. Using
Python provides this capability, and cards requires only a few non-standard packages to be
installed as described in Appendix A.

UNCLASSIFIED
23

DST-Group–TN–1803

UNCLASSIFIED

5.2. Project Data Definition and Management

Schema files define the parameters for a model and are saved in an XML file format. When
a project is saved, the schema definition for all models employed by the project are saved as
part of the input file. This was done for simplicity, however it creates redundant data within
the input file. That is, rather than referencing the schema file for the parameter definition,
this definition is copied into the input file. Subsequently, when an existing project is opened,
the original schema files are not accessed, rather the parameter definitions are read from the
input file. A key outcome of this design is that a project’s input file closely resembles the
schema file. A brief description of the XML definition format is included in Appendix B, and
a example schema file for a PROP model is given in Appendix C.

When a project is run, the output from the system is copied into the project directory. Un-
fortunately in the current design this will result in any outputs from previous runs being over
written. The current design also introduces the possibility that the Cards input stored within
a project may not be that which produced the stored output. It is suggested that the user
employs their own data management or revision system to manage this process. This is a
shortfall in the current design that will be rectified in future releases.

Users should be aware that the run history is stored within a single database, and not with the
project. This spread of data may represent a risk when used in some environments. Alternative
mechanisms are being investigated for future releases.

5.3. Future Development

Cards is still a young product, and as such it is expected to evolve quickly as the number
of users increases and new systems are added. The list below outlines some of the planned
enhancements to Cards in no particular priority order:

• Integration with simulation management tools. The history system in Cards has a num-
ber of limitations that may be fixed by integrating data/simulation management tools
such as Sumatra.16

• Duplicated Parameters with order dependence. This is expected to allow Cards to sup-
port systems such as signal processing chains which require multiple components to be
defined in a logical order.

• Batch runs and scheduling runs. The intent is to enable multiple runs to be defined
prior to execution. The scheduling of the execution may then be handled by a workload
manager such as slurm.17

• Improvements to the UI, including a framework for providing system help documentation
to the user.

16https://pythonhosted.org/Sumatra
17https://slurm.schedmd.com/

24
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

These enhancements are expected to improve the usability and make Cards compatible with
a greater range of systems.

Acknowledgements

Thanks to project AIR 7000 for providing funding and support for this project. Thanks to
Matthew Wills and Jamie Grafton who performed the initial scoping and GUI design as part
of their Summer Vacation Student project. Thanks also to Mr Gavin Currie and Dr Luke
Rosenberg for reviewing this report.

UNCLASSIFIED
25

DST-Group–TN–1803

UNCLASSIFIED

6. References

[1] D. Finch and D. Gustainis. The Miranda modelling framework. In publication.

[2] P. E. Berry, G. Currie, and D. Yau. A generic phased array radar model for detailed radar
performance assessment. 2011. 19th International Congress on Modelling and Simulation,
Perth, Australia, 12 - 16 December 2011.

[3] Naval Research Laboratory. SIMDIS visual analysis & display. SIMDIS Web site ht-
tps://simdis.nrl.navy.mil/ Retrieved 14 January 2016.

[4] J. D. Hunter. Matplotlib: A 2D graphics environment. Computing In Science & Engin-
eering, 9(3):90–95, 2007.

26
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

Appendix A. Required Packages

The following Python packages are required by Cards. Only those packages that are not
typically provided with a standard Python distribution are listed. Note also that these packages
may have their own required packages, which are not listed here.

• ConfigParser

• google

• matplotlib

• mlabwrap

• mpl_toolkits

• numpy

• pylab

• PyQt4

• pythoncom

• scipy

• sip

As a convenience, for computer systems where access to the Python Package Index (PyPI)
is not available, the packages not distributed with PythonXY 2.7.6 are provided under the
cards\thirdparty\ directory as required_3rdparty.7z. Simply extract this into $INSTALLDIR\Lib\site-
packages where $INSTALLDIR is the Python installation directory, by default C:\Python27.

UNCLASSIFIED
27

DST-Group–TN–1803

UNCLASSIFIED

This page is intentionally blank

28
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

Appendix B. Data-types, Schema and Units

B.1. Summary of types

Cards contains the nine data types listed below. The first six of these are basic types, and
the final three are composite types. A brief description of the validation rules is also given for
each type.

Boolean a basic type that takes on one of two values, either True or False. Any capitalisation
of the input is ignored, further it will accept any integer, with 0 being False and any any
other value being True (much like most C-based languages).

Complex a type that signifies a complex number, of the form (x + yi) (or (x + yj)). Par-
enthesis are optional; however the order of the y and i (or j) is not e.g. 3 + i4 will be
rejected.

Double representing a double precision floating point value. This will accept any floating
point number, including in scientific notation.

String for a string of characters. Input strings should not be quoted. When defining schemas,
Strings support an extra “enumeration” field. This allows the valid strings to be restricted
to a set. In the schema editor this is input as a comma separated list of values. For
example, to restrict the input to the set of strings “x”, “y”, or “z”, the input should be
x,y,z. This can be surrounded by optional square brackets ([and]), and there can be
internal spacing (so [x, y, z] will also work).

Integer a type representing an integer value. This is strict, so 1.0 is not an integer.

Path this is used for holding a file system path. This is checked when entered, and a warning
is issued if the path does not exist.

Array a type representing an array or matrix. The array is further typed with one of the
six basic data types and inputs are bound by the input rules of that type. The syntax
for Array inputs is designed to be as close as possible to the syntax for MATLAB
arrays; hence a comma separated list is used for columns, and rows are separated using
a semicolon18. For example, a 2× 2 matrix would be input as [1, 2; 3, 4].

Component a slot for a suitable model which will have its own parameters. The selected
model is considered the ‘value’ of this parameter type. Being a branch parameter, a
component will have a branch name.

Struct this acts as a container of child parameters, much like a struct or record in other
languages. A struct is the only data type not to have a value, it will however have a
branch name.

18Unlike MATLAB, the square brackets are optional, and the comma is not.

UNCLASSIFIED
29

DST-Group–TN–1803

UNCLASSIFIED

B.2. Additional Properties

Each data type has a number of additional properties that are stored within the schema or
project file. These are used to provide additional restrictions on the values that can be entered
(e.g. minimum and maximum values), units and default values.

Table 2 shows which properties are available for each data type.

Table 2: Available properties for each data type

Data type Default Units Restrictions

Boolean 3 7 None
Complex 3 3 None
Double 3 3 Optional minimum and maximum
String 3 7 Optional enumerations
Integer 3 7 Optional minimum and maximum
Path 3 7 None
Array 3 3a Base data type, optional min. and max. length
Struct 7 7 Duplicable
Component 7 7 Model type and duplicable
a only if base data type allows units

B.3. XML Data Structure

As discussed in Section 5, the XML schema and project input files are closely related. Every
parameter in these files is defined by an XML element. The data type of the parameter is used
as the element name, with all other data defined as attributes or child elements. A summary
of these attributes grouped by parameter/data type is shown in Table 3.

B.4. Units

The pre-defined unit types and their units are shown in Table 4, the first unit listed is the
canonical unit.

30
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

Table 3: XML attributes for schema and project files grouped by parameter data type

Attributes Description

All Parameters
param_name The name of the parameter.
description A short description about the parameter to help the user.
user_description A comment provided by the user about the entered value. This is

empty in the schema file.
Leaf Parameters
value The value entered by the user. In the schema this is the default value.
String
Strings have no additional attributes, but they do have enumeration child elements.
Bounded numeric data types.
min_value If non-empty, the value attribute must be ≥ than this.
max_value If non-empty, the value attribute must be ≤ than this.
Unit enabled data types
units The unit type
current_unit The unit selected by the user or default unit. The value is in this

unit.
Arrays
The element name of an array is concatenated with the base data type e.g. DoubleArray.
Values are stored in multiple value child elements
min_len If non-empty, the number of items in the array must be ≥ than this.
max_len If non-empty, the length of the array must be ≤ than this.
Branch Parameters
user_name A name given to this branch by the user to uniquely identify it from

sibling parameters with the same param_name.
duplicable Takes value 1 if the parameter may be duplicated, or 0 otherwise.
Components
model_name This is the name of the model and is empty in a schema file, except

for the root element. In a data file this indicates the model that the
user has selected to connect to the component parameter.

model_type The type of model that may connect to this parameter. In the case of
the root element this represents the model type of the defined model.

UNCLASSIFIED
31

DST-Group–TN–1803

UNCLASSIFIED

Table 4: Predefined units in Cards as presented to the user. The first unit listed in each row
is the canonical unit

Unit type Units

angle deg, rad, millirad, mil (NATO)
length/distance m, km, ft, nmi
frequency Hz, kHz, MHz, GHz, rpm
temperature K, C, F
short time s, ms, us, ns
long time s, M, H
speed m/s
absolute absolute, dB
extended absolute absolute, dB, percent, permil, basispoint
power W, kW, MW, dBW, dBmW
rotation deg/s
acceleration m/s2
dB_m dB_m
reflectivity m2

B.5. Unit Errors

In the case that an error is detected in a user defined unit addition/extension, the message
ERROR: Some user defined unit conversion(s) failed! will be logged along with some
diagnostic messages. These messages and likely causes are shown in the following paragraphs.

ERROR: <typename> already exists as a unit set!

This occurs if a unit set with typename already exists. This can be solved by renaming the
new unit type, or extending the existing type (see Section 4.3.2) as appropriate.

ERROR: <unitname> is not in the set of specified units!

This is likely because of a spelling mistake when trying to specify a conversion.

ERROR: No conversion found for <unitname> to <unitname>

This is caused by a missing conversion function. If multiple functions are missing, Cards will
only report the first missing function definition.

ERROR: <typename> is not an existing unit set!

This occurs if extending a set that doesn’t exist. Check the list of units in Table 4.

32
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

Appendix C. Example Code for PROP

C.1. System Definition

Included here is the full code for the PROP class introduced in the Section 4.1. To use this
system in Cards, prop must be added to the list of imports in backends/__init__.py.

Remember to place this in prop.py under the backends folder ,
and to add prop to the list of imports under
backends/__init__.py

-*- coding: utf -8 -*-

#
Defence Science & Technology Group
#
Unclassified.

from __future__ import absolute_import

from datetime import datetime
import sys
import threading

from cards.utils import override
from cards.backends.system import System
from cards.backends.system_manager import SysManager

@SysManager.register
class PROP(System):

'''Test Integration System for CARDS. This is an
example of how to incorporate a new system into CARDS.
'''

def __init__(self , project_directory=None):
self._project_path = project_directory
self._thread = None

@property
def system_name(self):

return 'PROP'

@override(System)
def export(self , root_parametert , directory):

Convert input into whatever structure we want
print('Building PROP Input ')
print('Exporting PROP input to {}'.format(directory))

@override(System)
def run(self , system_directory , project_directory , enable_run_signal ,

log_run_signal , stop_signal , finish_func=None):
stop_signal.triggered.connect(self._stop)
self._thread = threading.Thread(

None , self._do_run , None ,
enable_run_signal , log_run_signal)

self._thread.start ()

UNCLASSIFIED
33

DST-Group–TN–1803

UNCLASSIFIED

def _stop(self):
self._thread.terminate ()

def _do_run(self , enable_run_signal , log_run_signal):
print('Running PROP Model')
Perform model run with the inputs that were generated
print('Emitting log signal ')
log_run_signal.emit(

'PROP', datetime.now(), 'Dummy path', True)
Re -enable the Run menu
print('Re -enabling Run menu')
enable_run_signal.emit(False)

C.2. Plotting

Import the system backend classes
from cards.backends.prop import PROP

from cards.plot.plot_manager import PlotWrapper
from cards.plot.plot_type import PreProcess

@PlotWrapper(PROP)
class AmbiguityPlot(PreProcess):

'''Generates a plot of the antenna ambiguity.'''

def __init__(self , system , root):

self._extractor = MyExtractor ()
input_data = self._extractor.extract(root)
hgt = input_data['height ']
freq = input_data['frequency ']

self._generator = MyGenerator(freq)

self._x , self._y = \
self._generator.generate_data(hgt)

def plot(self):
p = Generate2DPlot ()
p.plot(self._x , self._y ,

x_label='Time delay (us)',
y_label='Doppler shift (kHz)')

In the above, __init__ is responsible for setting up the Extractor, using it to extract the
required data, setting up and passing this data to the Data Generator and saving the data from
the generator as instance variables. These are then accessed when plot is called to generate
the final plot.

34
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TN–1803

class MyExtractor(CommonExtractor):
'''An extractor class that is used to get all of the
values from the PROP schema that are needed to
create an ambiguity plot.
'''

def __init__(self):
base_path = 'PROP'
extras = ['hgt', 'freq']
wanted = ['height ', 'frequency ']
values = {'.'.join((base_path , extra)) : want for extra ,

want in zip(extras , wanted)}
super(MyExtractor , self). __init__ (** values)

The code above is doing only one thing: it is creating a dictionary that maps hierarchical
names to the desired names. Effectively, it builds a dictionary that looks like the following:

base_path = 'PROP'
values = {base_path + 'hgt' : 'height ',

base_path + 'freq' : 'frequency '}

C.3. Schema

Listing 1: Example XML schema file
<Component param_name="" dup l i c ab l e="0" user_name=" root " use r_desc r ip t i on=""

tag="" d e s c r i p t i o n="" model_name="Quick PROP" model_type="PROP">
<Struct param_name=" Re f r a c t i v i t y P r o f i l e " dup l i c ab l e="1" use r_desc r ip t i on=""

tag="" user_name="Component" d e s c r i p t i o n=" P r o f i l e aga in s t he ight ">
<Double param_name="Range" use r_desc r ip t i on="" value=" 0 .0 " requi red_unit=""

min_value=" 0 .0 " un i t s=" length / d i s t ance " tag="" current_unit="m"
de s c r i p t i o n="Distance from antenna where t h i s p r o f i l e s t a r t s " />

<DoubleArray param_name="Refrac " use r_desc r ip t i on="" required_unit=""
d e s c r i p t i o n="The r e f r a c t i v i t y p r o f i l e " un i t s="" min_len="2"
current_unit="" max_len="20">

<value>130</ value>
<value>130</ value>

</DoubleArray>
<DoubleArray param_name="hgt" use r_desc r ip t i on="" required_unit=""
d e s c r i p t i o n="Height o f Refrac samples above ground"
un i t s=" length / d i s t anc e " min_len="2" max_len="20" current_unit="m">

<value>1000.0</ value>
<value>1000.0</ value>

</DoubleArray>
</ Struct>
<Component param_name="Antenna" use r_desc r ip t i on="" dup l i c ab l e="0"

user_name="Component" tag="" model_name="" model_type="PROP_ANTENNA"
de s c r i p t i o n="The Transmitt ing antenna pattern " />

<Double param_name="hgt" use r_desc r ip t i on="" tag="" required_unit=""
min_value=" 0 .0 " d e s c r i p t i o n="Height o f the antenna above ground"
max_value=" 1000.0 " un i t s=" length / d i s t ance " value="" current_unit="m"/>

<Double param_name=" f r e q " use r_desc r ip t i on="" tag="" required_unit=""
min_value=" 10 .0 " d e s c r i p t i o n="RF Frequency" max_value=" 20000.0 "
un i t s=" frequency " value="" current_unit="MHz"/>

UNCLASSIFIED
35

DST-Group–TN–1803

UNCLASSIFIED

<Str ing param_name="pol " use r_desc r ip t i on="" d e s c r i p t i o n=" Po l a r i s a t i o n " value="V">
<enumeration>V</enumeration>
<enumeration>H</enumeration>

</ St r ing>
</Component>

36
UNCLASSIFIED

UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY GROUP
DOCUMENT CONTROL DATA

1. DLM/CAVEAT (OF DOCUMENT)

2. TITLE

Cards Reference Manual

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED LIMITED
RELEASE USE (L) NEXT TO DOCUMENT CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

4. AUTHORS

Daniel Finch, Paul Berry and Zane Van de Meulen-Graaf

5. CORPORATE AUTHOR

Defence Science and Technology Group
PO Box 1500
Edinburgh, South Australia 5111, Australia

6a. DST GROUP NUMBER

DST-Group–TN–1803

6b. AR NUMBER

AR-017-264

6c. TYPE OF REPORT

Technical Note

7. DOCUMENT DATE

August, 2018

8. OBJECTIVE ID 9. TASK NUMBER

AIR 17/514

10. TASK SPONSOR

Director General Combat Capability - Air
Force

11. MSTC

Surveillance and Reconnaissance Systems

12. STC

Surveillance Modelling and Analysis

13. DOWNGRADING/DELIMITING INSTRUCTIONS

http://dspace.dsto.defence.gov.au/dspace/

14. RELEASE AUTHORITY

Chief, National Security and ISR Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public Release

OVERSEASENQUIRIESOUTSIDESTATEDLIMITATIONSSHOULDBEREFERREDTHROUGHDOCUMENTEXCHANGE,POBOX1500,EDINBURGH,SA5111

16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. RESEARCH LIBRARY THESAURUS

Modelling, User manuals

19. ABSTRACT

This document describes the use and design of the software tool Cards. Cards is a user interface for structured parameter inputs, and
is easily customised to suit a wide variety of software and hardware systems.

UNCLASSIFIED

	Title
	Executive Summary
	Authors
	Contents
	Figure
	Table
	Glossary
	1 Introduction to Cards
	1.1 Getting Started
	1.2 Functional Overview
	1.3 Parameter Data Structure

	2 Creating and Running Projects
	2.1 Creating a New Project
	2.2 Setting and Modifying Parameters
	2.3 Paths
	2.4 Running a Project

	3 Additional Features
	3.1 Run History
	3.2 Common Projects
	3.3 Plotting
	3.4 SIMDIS Visualisation

	4 Extending Cards
	4.1 Adding a System
	4.2 Schema Generation
	4.3 Managing Units
	4.4 Plot Addition

	5 Architecture and Development Roadmap
	5.1 Technology Selection
	5.2 Project Data Definition and Management
	5.3 Future Development

	6 References
	Appendix A: Required Packages
	Appendix B: Data-types, Schema and Units
	B.1 Summary of types
	B.2 Additional Properties
	B.3 XML Data Structure
	B.4 Units
	B.5 Unit Errors

	Appendix C: Example Code for PROP
	C.1 System Definition
	C.2 Plotting
	C.3 Schema

	Document Control Data

