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ABSTRACT

‘Any-angled’ planning has emerged as a promising approach to finding short paths through a
terrain that has obstacles. Phi* (2009) is the foundation of Incremental Phi* which handles
terrains where obstacles are not known ahead of time and therefore have to be discovered
during the path planning process (dynamic single pair shortest path). This technical note
explores the following refinements to speed up Phi*: Bounds Known, Integer operations only,
Expensive Last testing, Lazy evaluation and Angle Propagation. Expensive Last reduces
runtime by roughly 5 percent. Expensive Last with Angle Propagation performs line-of-sight
testing in constant time and reduces runtime by roughly 15–30 percent. Integer avoids floating
point errors that could compromise the paths found by Phi*. The findings will be useful to
developers and users of dynamic path planning algorithms in two-dimensional terrains.
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Speeding Up Phi*: Refined Foundations for Dynamic
Path Planning at Any Angle

Executive Summary

The work in this report is part of an investigation into a new approach to finding short paths
through a terrain that has obstacles. These so-called any-angled pathfinding algorithms could
be used to guide aircraft or watercraft through anti-access/area-denied environments. While
the algorithms typically do not obtain the shortest (optimal) path, they can obtain good (near-
optimal) results, quite quickly, on computers that are cheap and widely available. Moreover
the entry cost to learning and developing the algorithms is low: when undergraduate students
first study pathfinding it is through the A* algorithm, and the first any-angled algorithm
differs from A* by less than 10 lines of code. Finally the algorithms are still in their early
phases of development and thus there is considerable potential for growth. The nearer term
applications of any-angled path finding include algorithms for navigating entities in simulated
environments, and for navigation of robotic and uninhabited vehicles.

The report focusses on improvements to the algorithm Phi*. The heritage of Phi* is as follows:
A* finds a shortest path from a start to a goal through a terrain in which the obstacles are
known ahead of time. The terrain is typically modelled as a two-dimensional array of cells
that are either accessible or blocked as this model is supported by readily-available data sets.
But the textbook application of A* under this terrain model causes ‘digitization bias’ in which
the path is artificially constrained to following the edges of a cell or stepping diagonally across
them. Basic Theta* introduces a clever trick that significantly reduces ‘digitization bias’ with
at-most a small increase in runtime. Phi* extends from Basic Theta* by recording information
so that if new obstacles are discovered then the previously-planned paths can be reused to find
paths around those obstacles. The overall framework for planning the paths as the terrain
changes is Incremental Phi* where Phi* is invoked whenever obstacles are discovered.

The extensions to Phi* that were explored are Bounds Known, Integer operations only, Ex-
pensive Last testing, Lazy evaluation and Angle Propagation. Prior to the investigation, each
extension was hypothesized to improve the performance of Phi* but whether this was true, and
the magnitude of improvement, were both unknown. The investigation found that Expensive
Last reduces runtime by roughly 5 percent. Expensive Last with Angle Propagation performs
line-of-sight testing in constant time and reduces runtime by roughly 15–30 percent. Integer
avoids floating point errors that could compromise the paths found by Phi*.

Overall the performance gain from the proposed improvements is disappointing, and not of the
magnitude that was anticipated or that would make new implementations of Phi* worthwhile.
The report is being released so that the approach is documented and the results are available
to aid future research into dynamic path planning, even if the results are negative.
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1. Introduction

We study the problem of finding a short path that a vehicle can traverse from a start to a goal
when motion is constrained to a two-dimensional surface and there are obstacles that must be
discovered and avoided (a subset of dynamic single pair shortest path). A military example is
to extricate a watercraft from a minefield when the mines have to be localized as the watercraft
moves. Similar problems arise in mobile robotics and in the realistic-looking routing of entities
in computer games. We assume the following: first, that the terrain has been discretized into a
two-dimensional array of accessible and blocked cells (a binary occupancy grid – Figure 1.a into
Figure 1.b). The cells’ corners are declared to be the vehicle’s feasible locations. Second, that
if a line-of-sight between feasible locations passes only through accessible cells then the vehicle
can traverse that line-of-sight in the original terrain. Third, that when travelling in accessible
terrain, the vehicle can move at the same speed in any direction (motion is isotropic). Finally,
we assume that the vehicle’s dimensions and turning circle are small compared to the cells so
it can ‘squeeze through the diagonal’ between cells that touch at corners but not faces.

Unfortunately, while it is easy to represent terrain as a two-dimensional array of accessible
and blocked cells, the search within this representation for a shortest path from start to goal
is not trivial. The true shortest paths between any two locations are the ones that minimize
the travelling cost between them (this holds for any locations in the terrain, not just the
feasible ones). In isotropic terrain, travelling cost is directly proportional to path length. If
the locations have line-of-sight then the true shortest path between them is along that line-
of-sight. So to approximate a true shortest path from a start to a goal, it is sufficient to find
a feasible location near to the start, a feasible location near the goal and obtain a shortest
vertex path between those two locations. Here, a vertex path is a path through the visibility
graph on the feasible locations; by definition, vertices are adjacent in the visibility graph if
they have line-of-sight to each other (Figure 1.c). Thus in principle, to obtain a shortest vertex
path we need only search the visibility graph of feasible locations, but in practice, the graph
is expensive to compute and too large to search by brute force.

It is therefore common to consider the paths through the grid graph on the feasible locations,
declaring vertices as adjacent if they share an accessible cell (same edge or diagonally across).
Hence in a grid path, each step is along the edge of an accessible cell or diagonally across one;
this is equivalent to 8-connected motion (Figure 1.d). Grid paths suffer from ‘digitization bias’
[Tsitsiklis 1995]: even if two locations have line-of-sight, the minimum travelling cost between
them can still be greater than the distance along the line-of-sight.

We thus consider approaches that can find good approximations to the true shortest paths. Of
particular interest are any-angled approaches that look for short vertex paths. Nash, Koenig
& Likhachev (2009) proposed Incremental Phi* for dynamic planning of short paths at any
angle from a start to a goal. Incremental Phi* is built on Phi* which plans a short path in the
terrain as perceived at some time. Incremental Phi* iteratively calls Phi* when the knowledge
about the terrain is updated. Meanwhile Phi* is designed so that previously-planned paths
can be used when planning new ones, rather than replanning afresh on each update. Phi* does
not guarantee a shortest vertex path as it does not search the entire visibility graph. However
it does consider all possible grid paths. Consequently the path it finds will be no longer than
the shortest grid path and could well be shorter.
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(a) (b)

(c) (d)

Figure 1: Representing the terrain to find short paths:
a) Locations are either habitable or not (white is accessible, black is forbidden).
b) Discretize into a two-dimensional array of accessible and blocked cells.
c) Vertex paths proceed along feasible locations that have line-of-sight.
d) Grid paths suffer from ‘digitization bias’.
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This article examines a number of refinements to speed up Phi*. The proposed extensions are
novel or implement ideas that have been mentioned as possibilities but have yet to be tested (in
these latter cases, we provide references to the original proposals). This article will be useful
to readers who are considering Incremental Phi* as a potential solution to their dynamic path
planning problems.

Notation: sx, sy denote the x, y coordinates of location s with respect to whichever coordinate
system is in use. Unless stated otherwise, we will choose coordinate systems that have their
origin at a cell corner, with axes that are parallel with the cells’ edges and that make the cells
of unit size. uv denotes the line segment connecting u with v, −→uv denotes the vector from u
to v. We use short-circuit evaluation: If x is false then x and y evaluates to false without
evaluating y. Likewise if x is true then x or y evaluates to true without evaluating y. Function
and procedure names are presented as FunctionName, variable names as variableName.

2. Original Formulations

2.1. Basic Theta*

Basic Theta* derives from A*. They are framed inside Algorithm 1, for planning a path
from a start to a goal across a static terrain that has been discretized into a rectilinear grid
of accessible and blocked cells. Recall that A* solves the single-pair shortest path problem
for any given (static) graph. We focus on the grid graph of 8-connectedness. We make this
specialization by declaring v as adjacent to u if it is visible and 8-connected to u (line 22). In
this context, we have A* for grid paths at Algorithm 2. As noted above, grid paths suffer from
‘digitization bias’ (Figure 1). In principle we could reduce the ‘digization bias’ by applying
A* to the visibility graph, but said approach is impractical.

Basic Theta* diverges from A* by changing ComputeCost, as seen at Algorithm 3. When we
call ComputeCost in A*, we know that we can reach vertex v from vertex u; indeed u is the
predecessor of v in a path to v. The question is whether u is the predecessor of v in a shortest
path to v. If going via u yields a shorter path to v than via the currently-assigned predecessor
then we will accept that path.

In Basic Theta*, ComputeCost tests for whether we can bypass u and come directly from its
predecessor p. This situation arises when p has line-of-sight to v (the line-of-sight test) and
going via p yields a shorter path than via the currently-assigned predecessor (the shortening
test). If we can bypass u then ‘digitization bias’ will be reduced.
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Algorithm 1: Static path planning in 8-connected grids (Definitions at Table 1).
1 Main()
2 Initialize()
3 ComputeShortestPath()
4 if g(sGoal) ̸=∞ then
5 return ‘Path found’
6 else
7 return ‘No path found’

8 Initialize()
9 open← ∅

10 closed← ∅
11 InitializeVertex(sStart)
12 InitializeVertex(sGoal)
13 g(sStart)← 0
14 cameFrom(sStart)← sStart
15 open.InsertWithPriority(sStart, g(sStart) + h(sStart))

16 ComputeShortestPath()
17 while open.SmallestPriority() < g(sGoal) + h(sGoal) do
18 u← open.PopMinimumElement()
19 closed.Add(u)
20 ExpandVertex(u)

21 ExpandVertex(u)
22 foreach v ∈ VerticesVisibleAnd8ConnectedTo(u) do ˙‘Expand’ u into {v}.
23 if v ̸∈ closed then
24 if v ̸∈ open then
25 InitializeVertex(v)

26 UpdateVertex(v, u) ˙Update v given u.

27 UpdateVertex(v, u)
28 gOld ← g(v)
29 ComputeCost(v, u)
30 if g(v) < gOld then
31 if v ∈ open then
32 open.Remove(v)

33 open.InsertWithPriority(v, g(v) + h(v))

4
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Algorithm 2: A*.
1 InitializeVertex(s)
2 g(s)←∞
3 cameFrom(s)← ∅
4 ComputeCost(v, u)
5 if g(u) + c(u, v) < g(v) then ˙Go via u.
6 g(v)← g(u) + c(u, v)
7 cameFrom(v)← u

Algorithm 3: Basic Theta*.
1 ComputeCost(v, u)
2 p← cameFrom(u)
3 if LineOfSight(p, v) then
4 if g(p) + c(p, v) < g(v) then ˙Path 2: Bypass u.
5 g(v)← g(p) + c(p, v)
6 cameFrom(v)← p

7 else
8 if g(u) + c(u, v) < g(v) then ˙Path 1: Go via u.
9 g(v)← g(u) + c(u, v)

10 cameFrom(v)← u

UNCLASSIFIED
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Table 1: Definitions for algorithms.

Inputs
sStart Start vertex
sGoal Goal vertex
c(u, v) Distance from u to v along their line-of-sight
h(v) Heuristic estimate of cost to travel from v to

sGoal

Outputs
g(·) Travelling costs from sStart to u, for each u
cameFrom(·) Predecessor of u in the shortest path that was

found from sStart to u, for each u

Working variables
open Priority queue of vertices that are open
closed Set of vertices that are closed

Methods for sets
Add(x) Store x

Methods for priority queues
InsertWithPriority(x, priority) Store x with the specified priority
PopMinimumElement() Retrieve the item that has the lowest priority

and remove it from the queue
Remove(x) Remove x from the queue
SmallestPriority() Retrieve the value of the lowest priority
Enqueue(x) Store x at the tail of the queue
Dequeue() Retrieve the item at the head of the queue and

remove it from the queue
Methods for geometry
VerticesVisibleAnd8ConnectedTo(u) Locations that are visible and 8-connected to u
LineOfSight(p, v) True if and only if p has line-of-sight to v

6
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2.2. Phi*

Now suppose that the terrain is dynamic: cells can change from being accessible to blocked (we
leave aside the case of cells changing from blocked to accessible). The changes could invalidate
the paths that were planned from the start to the goal. While we could replan the paths from
afresh whenever the terrain changes, our intuition is that paths need only be replanned from
the places where they changed.

Phi* extends Basic Theta* to handle dynamic terrain. Phi* is shown at Algorithm 4 and
Figure 2 shows an example of Phi* in use. When framed inside Algorithm 5 for dynamic path
planning, Phi* becomes Incremental Phi*. As Incremental Phi* only plans ‘incrementally’, it
can be much faster than the naive approach of replanning afresh [Nash, Koenig & Likhachev
2009]. For this article, we take the framework as given and focus on Phi*.

The insight behind Phi* is that disruptions to grid paths are easily detected. Moreover by
constraining its search, Phi* can use those disruptions to replan its vertex paths.

Algorithm 4: Phi*.
1 InitializeVertex(s)
2 g(s)←∞
3 cameFrom(s)← ∅
4 localFrom(s)← ∅
5 antic(s)← −∞
6 clock(s)← ∞
7 ComputeCost(v, u)
8 p← cameFrom(u)
9 ϕ← AngleToFrom(−→pv, −→pu)

10 if ϕ ∈ [antic(u), clock(u)] and OffGrid(−→pv) and LineOfSight(p, v) then
11 if g(p) + c(p, v) < g(v) then ˙Path 2: Bypass u.
12 g(v)← g(p) + c(p, v)
13 cameFrom(v)← p
14 localFrom(v)← u
15 C ← Vertices4ConnectedTo(v)
16 α← min

s∈C
AngleToFrom(−→ps, −→pv)

17 ω ← max
s∈C

AngleToFrom(−→ps, −→pv)

18 antic(v)← max(α, antic(u)− ϕ)
19 clock(v)← min(ω, clock(u)− ϕ)

20 else
21 if g(u) + c(u, v) < g(v) then ˙Path 1: Go via u.
22 g(v)← g(u) + c(u, v)
23 cameFrom(v)← u
24 localFrom(v)← u
25 antic(v)← −45◦
26 clock(v)← 45◦
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a)

b)

Figure 2: Pathfinding with Phi*: The start is at the top-left corner, the goal is at the bottom-
right corner, accessible cells are white, blocked cells are black. a) A shortest grid path
found by A* searching the grid graph. b) A vertex path found by Phi*. The pictures
show the path and algorithm end states where ‘*’ marks a location that was closed
and ‘o’ marks a location that was still open. The vertex path has less ‘digitization
bias’ than the grid path.
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Algorithm 5: Dynamic path planning (Incremental Phi*). The presentation here uses
recursion; see Nash et al. (2009) for the original formulation using while loops.

1 Main()
2 Initialize()
3 while true do
4 ComputeShortestPath()
5 Wait for cells to become blocked
6 foreach newly blocked cell c do
7 foreach corner s of c do
8 if (s ∈ open or s ∈ closed) and s ̸= sStart then
9 ClearSubtree(s)

10 ClearSubtree(s)
11 over ← ∅ ˙Vertices where g-values are over-estimated.
12 ReinitializeNodes(s, over)
13 FinishExpansions(over)

14 ReinitializeNodes(s, over)
15 over.Enqueue(s)
16 InitializeVertex(s)
17 if s ∈ open then
18 open.Remove(s)

19 if s ∈ closed then
20 closed.Remove(s)

21 foreach v ∈ VerticesVisibleAnd8ConnectedTo(s) do
22 if localFrom(v) = s then
23 ReinitializeNodes(v, over)

24 FinishExpansions(over)
25 if over ̸= ∅ then
26 v ← over.Dequeue()
27 foreach u ∈ VerticesVisibleAnd8ConnectedTo(v) do
28 if u ∈ closed then
29 UpdateVertex(v, u)

30 FinishExpansions(over)

UNCLASSIFIED
9



DST-Group–TN–1805

UNCLASSIFIED

2.2.1. Detecting Disruptions to Paths

Suppose that a cell in the terrain becomes blocked. To detect whether a vertex path has been
disrupted, we have to ascertain whether the cell is on a line-of-sight between two points on
that path. This test is likely to be expensive, so we wish to avoid it. But for grid paths,
detecting a disruption is easy – we need only look at whether the corners of the cell are on
the path. For by definition, if a grid path passes through a cell then at least one of the cell’s
corners is on that path.

In detail: Recall that at any given time, s ∈ closed if A* has found a shortest path to s.
Likewise s ∈ open if it is adjacent to a vertex in closed (s is one step away from a closed
vertex). Thus s ∈ open∪ closed if and only if it is on a path from start to goal. Meanwhile for
each s, g(s) is the distance from the start to s along the shortest known path. Now suppose
that A* is applied to a grid graph. If cell c changes from/to being blocked then the paths that
are affected can be identified by retrieving s ∈ c∩ (open∪ closed). We reset the computations
for those locations (remove s from both open and closed, then reinitialize g(s)) and for all
locations on paths leading away from those locations.

2.2.2. Constraining the Search

Recall that Basic Theta* uses cameFrom(s) to store a vertex path to s. Phi* does the same, and
then adds localFrom(s) to store a local parent path to s. The local parent path is constructed
as a grid path (line 14, noting that v is adjacent to u in the grid graph).

Phi* constrains its search so that if a local parent path is disrupted then the resetting of
computations (see above) will cause an appropriate replanning of the vertex paths. The
constraint is enforced by angle bounds that restrict the directions taken by segments in the
vertex paths, thereby keeping the vertex paths close to the associated local parent paths.
Formally, let C(s) denote the cells traversed by the ray into s from its predecessor (the ray
from cameFrom(s) to s). Then Phi* guarantees that for each cell in C(s), at least one corner
of the cell is contained by the local parent path to s.

How the angle bounds are applied: Let p be the predecessor of u. If we are proposing to travel
directly from u to v then Phi* requires that the angle from −→pu to −→pv is within bounds (it is
contained by the interval [antic(u), clock(u)]). This angle-in-bounds test sits alongside the
line-of-sight test that Basic Theta* imposed. The ray from p to v must also be off the grid,
defined as not being a multiple of 45◦. The off-grid test saves time that is otherwise wasted
by line-of-sight tests [Nash, Koenig & Likhachev 2009]; in effect, we are checking that the ray
from p to v is not a grid path. The tests use

AngleToFrom(V⃗ , U⃗) ∆
= arcsin

⎛⎝ U⃗xV⃗y − V⃗xU⃗y√
U⃗2
x + U⃗2

y

√
V⃗ 2
x + V⃗ 2

y

⎞⎠
OffGrid(V⃗ ) ∆

=
⏐⏐⏐V⃗x

⏐⏐⏐ ̸= ⏐⏐⏐V⃗y

⏐⏐⏐ ̸= 0

In our presentation of Phi* we test for angle-in-bounds, and then for off-grid, and then for

10
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line-of-sight. Doing so executes the tests in order of increasing cost (we will take this idea
further in one of our refinements).

How the angle bounds are calculated: To complete Phi*, we must calculate the angle bounds
for v (lines 15–19). The bounds must ultimately ensure that if a line segment is allowed from
p to some location s then for each cell in C(s), at least one corner of the cell is contained by
the local parent path to s. We present a new proof of correctness that will underpin one of
the refinements to Phi* and that is perhaps of interest in its own right.

Suppose that we have reached line 15. Then −→pv is off the grid so we may choose a right-handed
coordinate system with origin at p such that 0 <

|vy |
vx

< 1. We have C as the vertices that
are 4-connected to v, a so-called crossbar centred on v. Write C = {v(N), v(S), v(E), v(W )} for
North, South, East and West of v in the assumed coordinate system (where North aligns with
the positive y axis and East with the positive x axis). We first show that the calculations for
α and ω need only consider v(N) and v(S).

Lemma 1. ω = AngleToFrom(
−−−→
pv(N), −→pv) and α = AngleToFrom(

−−−→
pv(S), −→pv).

Proof. We have that for any s

AngleToFrom(−→ps, −→pv) = AngleToFrom(−→ps, x axis)− AngleToFrom(−→pv, x axis)

So to calculate ω, it is sufficient to find s ∈ C that maximizes AngleToFrom(−→ps, x axis).
Indeed we need only consider the gradient of −→ps, namely sy

sx
. Now

argmax

{
v
(N)
y

v
(N)
x

,
v
(S)
y

v
(S)
x

,
v
(E)
y

v
(E)
x

,
v
(W )
y

v
(W )
x

}

= argmax

{
vy + 1

vx
,
vy − 1

vx
,

vy
vx + 1

,
vy

vx − 1

}
= argmax

{
vy
vx

+
1

vx
,
vy
vx
− 1

vx
,
vy
vx

(
vx + 1− 1

vx + 1

)
,
vy
vx

(
vx − 1 + 1

vx − 1

)}
= argmax

{
vy
vx

+
1

vx
,
vy
vx
− 1

vx
,
vy
vx
− 1

vx

(
vy

vx + 1

)
,
vy
vx

+
1

vx

(
vy

vx − 1

)}
Then consider the two cases for vy:

• vy > 0. We have 0 <
|vy |
vx

< 1 so vy ≤ vx − 1 and thus vy
vx−1 ≤ 1.

• vy < 0. Again 0 <
|vy |
vx

< 1 so 0 < −vy < vx < vx + 1 and thus −vy
vx+1 ≤ 1.

Either way v
(N)
y

v
(N)
x

has the largest gradient and we choose v(N) to calculate ω. The same argument
retrieves α when seeking the minimum.

We now confirm that if a line segment emanates from p then it will pass through a cell that
contains v.

UNCLASSIFIED
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Proposition 1 (The calculated angle bounds are correct). Suppose that antic(·), clock(·)
allow a ray from p to some location s. Let C(s) denote the cells traversed by the line segment
from p to s. Then for each cell in C(s), at least one corner of the cell is contained by the local
parent path to s.

Proof. Choose a coordinate system with origin at p such that sx > 0. Let c be any cell in
C(s). Then in our coordinate system, we can take c as having x coordinates from x − 1 to x
for some 0 < x ≤ sx. The local parent path from p to s is 8-connected so there exists v in the
local parent path to s having vx = x. Now Phi* guarantees that ps intersects v(S)v(N). So c
has either v(S)v or vv(N) as an edge, and consequently has v as a corner.

3. Refinements Exploiting Geometry

We consider two refinements to Phi* that exploit the geometry of ϕ. We will need

sign(x) ∆
=

⎧⎪⎨⎪⎩
1 if x > 0

−1 if x < 0

0 if x = 0

3.1. Bounds Known

While Phi* calculates α and ω as the minimum/maximum angle over four points, Lemma 1
provides those angles directly. We use this information in Bounds Known Phi*, as shown at
Algorithm 6: BoundingPoints infers a right-handed coordinate system with origin at p that
makes the gradient to v less than 1. Thus v(N) and v(S) can be located as per Lemma 1. We
then use sign(·) to convert back to global coordinates.

3.2. Integer Operations Only

Integer Phi* reformulates the angle-in-bounds test to use integer operations only, as shown at
Algorithm 7 (the calculations for distance are still floating point). Nash et al. (2009) postulated
that doing so would reduce runtime. The key is to keep the vectors that underpin ϕ and test
for vectors being anti/clockwise from each other using

ClockFrom(V⃗ , U⃗) ∆
= U⃗xV⃗y − V⃗xU⃗y ≥ 0

AnticFrom(V⃗ , U⃗) ∆
= U⃗xV⃗y − V⃗xU⃗y ≤ 0

Accordingly, we initialize antic(·), clock(·) as vectors for −45◦, 45◦. Note that (−y
x ) is clock-

wise 90◦ from ( xy ), so ( x−y
y+x ) is clockwise 45◦ from ( xy ). Likewise for anticlockwise.

12
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Algorithm 6: Bounds Known Phi*.
1 ComputeCost(v, u)
2 p← cameFrom(u)
3 ϕ← AngleToFrom(−→pv, −→pu)
4 if ϕ ∈ [antic(u), clock(u)] and OffGrid(−→pv) and LineOfSight(p, v) then
5 if g(p) + c(p, v) < g(v) then ˙Path 2: Bypass u.
6 g(v)← g(p) + c(p, v)
7 cameFrom(v)← p
8 localFrom(v)← u

9 [v(A), v(C)]← BoundingPoints(v, p)

10 α← AngleToFrom(
−−−→
pv(A), −→pv)

11 ω ← AngleToFrom(
−−−→
pv(C), −→pv)

12 antic(v)← max(α, antic(u)− ϕ)
13 clock(v)← min(ω, clock(u)− ϕ)

14 else
15 if g(u) + c(u, v) < g(v) then ˙Path 1: Go via u.
16 g(v)← g(u) + c(u, v)
17 cameFrom(v)← u
18 localFrom(v)← u
19 antic(v)← −45◦
20 clock(v)← 45◦

21 BoundingPoints(v, p)
22 σx ← sign(vx − px)
23 σy ← sign(vy − py)
24 if |vy − py| < |vx − px| then
25 v(A) ← v − ( 0

σx
)

26 v(C) ← v + ( 0
σx

)

27 else if |vy − py| > |vx − px| then
28 v(A) ← v + ( σy

0 )

29 v(C) ← v − ( σy

0 )

30 else
˙OffGrid guarantees that we do not reach this point.

31 return [v(A), v(C)]

UNCLASSIFIED
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Algorithm 7: Integer Phi*.
1 ComputeCost(v, u)
2 p← cameFrom(u)
3 if ClockFrom(−→pv, antic(u)) and AnticFrom(−→pv, clock(u)) and OffGrid(−→pv) and

LineOfSight(p, v) then
4 if g(p) + c(p, v) < g(v) then ˙Path 2: Bypass u.
5 g(v)← g(p) + c(p, v)
6 cameFrom(v)← p
7 localFrom(v)← u

8 [v(A), v(C)]← BoundingPoints(v, p)

9 α←
−−−→
pv(A)

10 ω ←
−−−→
pv(C)

11 if ClockFrom(α, antic(u)) then
12 antic(v)← α
13 else
14 antic(v)← antic(u)

15 if AnticFrom(ω, clock(u)) then
16 clock(v)← ω
17 else
18 clock(v)← clock(u)

19 else
20 if g(u) + c(u, v) < g(v) then ˙Path 1: Go via u.
21 g(v)← g(u) + c(u, v)
22 cameFrom(v)← u
23 localFrom(v)← u

24 antic(v)←
(
x+ y
y − x

)
25 clock(v)←

(
x− y
y + x

)

14
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4. Refinements Focussed on Line-of-Sight Testing

We look at three ways of reducing the number of line-of-sight tests or their cost. While they
can be applied to any of the algorithms given above, we apply them to Bounds Known Phi*
for definiteness and for reasons that arose during experiments (Section 5).

4.1. Expensive Testing Last

Expensive Last Phi* performs the shortening test before the line-of-sight test, as shown at
Algorithm 8. The following result proves that we will get the same paths, faster.

Proposition 2. Under the same conditions, Algorithm 8 will execute the same code as Al-
gorithm 3 but with potentially fewer tests for line-of-sight.

Proof of Proposition 2. In three steps:

1. If g(p) + c(p, v) ≥ g(v) then g(u) + c(u, v) ≥ g(v).

Proof. g(u) + c(u, v) = g(p) + c(p, u) + c(u, v) ≥ g(p) + c(p, v) ≥ g(v).

2. Under the same conditions, Algorithm 8 will execute the same code as Algorithm 6.

Proof. Lines 6–13 and 16–20 are the same in both algorithms. Then Table 2 shows that
under the same conditions, the algorithms call the same lines.

3. Algorithm 8 can potentially make fewer tests for line-of-sight:

Proof. Line-of-sight testing only occurs if the other tests succeed.

4.2. Lazy Evaluation

Lazy Phi* applies lazy evaluation. Nash et al. (2009) proposed lazy evaluation as an idea for
future research into Phi* and subsequently developed it as an extension to Basic Theta* [Nash,
Koenig & Tovey 2010]. Recall that in Bounds Known Phi*, ComputeCost tests for a path to
v directly from p, bypassing u. The tests are applied immediately after v has been expanded
from u. Lazy evaluation assumes that the direct path exists, and checks this assumption as
late as possible – namely, just before u is expanded, as shown at Algorithm 9.

If the assumption was invalid then the path to u is repaired. The repairs infer a path to u
by considering the vertices that are 8-connected to u and closed. In general there will exist
at least one such vertex, namely the one(s) that opened u when they were expanded (the
exception is when sStart is being expanded).

UNCLASSIFIED
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Algorithm 8: Expensive Last Phi*.
1 ComputeCost(v, u)
2 p← cameFrom(u)
3 ϕ← AngleToFrom(−→pv, −→pu)
4 if ϕ ∈ [antic(u), clock(u)] and OffGrid(−→pv) and g(p) + c(p, v) < g(v) and

LineOfSight(p, v) then ˙Path 2: Bypass u.
5 ˙Blank line inserted to align with Bounds Known Phi*.
6

7

8

9 ˙Lines 6–13 are as for Bounds Known Phi*.
10

11

12

13

14 return

15 if g(u) + c(u, v) < g(v) then ˙Path 1: Go via u.
16

17

18 ˙Lines 16–20 are as for Bounds Known Phi*.
19

20

Table 2: Logic tree for Algorithm 6 and Algorithm 8.

p has line-of-sight to v,
ϕ is in bounds and
−→pv is off grid

g(p) + c(p, v) < g(v) g(u) + c(u, v) < g(v)
Lines

executed

T
T T 6–13

F 6–13

F F

F
T T 16–20

F

F F

Note: If g(p) + c(p, v) ≥ g(v) then g(u) + c(u, v) ≥ g(v) (see text).
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After repairs, u may no longer be the vertex with the smallest priority. This motivates the
Lazy-R variant in which u is only expanded if it is a vertex with the smallest priority.

4.3. Angle Propagation

Angle Propagating Phi* uses angle propagation to perform line-of-sight testing in constant
time. Nash et al. (2007) introduced angle propagation to make Basic Theta* faster, then
Nash et al. (2009) proposed that it be used in Phi*. Our development here is novel. The key
is to use induction: suppose that a given line segment has line-of-sight. Then suppose that a
new line segment has the same start as that line segment and is in the same direction ‘up to
suitable bounds’. To test for line-of-sight along the new segment, we only have to check the
cells that are different. As ‘suitable bounds’, we use the anticlockwise and clockwise angles
that we are already maintaining for Phi*.

Angle Propagating Phi* is shown at Algorithm 10: Define V(s, p) as the last cell(s) traversed
by −→ps (if s and p have the same x coordinate or the same y coordinate then there are two such
cells, otherwise there is one). Construct

LastAccessible(s, p) ∆
= true if and only if V(s, p) is accessible

LastBlocked(s, p) ∆
= not LastAccessible(s, p)

Then Angle Propagating Phi* diverges from Bounds Known Phi* as follows:

• Tests that V(v, p) is accessible at line 4. Where previous algorithms used LineOfSight,
we now have LastAccessible. This implements the idea of only testing the new cells
on a line-of-sight.

• Modifies BoundingPoints (compare with original at Algorithm 6). Recall the guarantee
made by Bounds Known Phi*: if cameFrom(v) = p for some location v then rays eman-
ating from p will intersect v(A)v(C). Now for line-of-sight purposes, if we are to allow
line segments to intersect vv(A) then the cells abutting vv(A) must both be accessible. If
either cell is inaccessible then we must constrain the rays. The same holds for vv(C).

• New initial values for the angle bounds, replacing the original ±45◦. We are proposing
to allow rays to emanate from u towards v. The intervening cell must be accessible if
these rays are to be valid.

UNCLASSIFIED
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Algorithm 9: Lazy Phi*.
1 ComputeShortestPath()
2 while open.SmallestPriority() < g(sGoal) + h(sGoal) do
3 u← open.PopMinimumElement()
4 p← cameFrom(u)
5 s← localFrom(u)
6 ϕ← AngleToFrom(−→pu, −→ps)
7 if ϕ ̸∈ [antic(s), clock(s)] or not OffGrid(−→pu) or not LineOfSight(p, u) then
8 RepairCameFrom(u)
9 { continue } ˙Lazy-R.

10 closed.Add(u)
11 ExpandVertex(u)

12 ComputeCost(v, u)
13 if g(p) + c(p, v) < g(v) then ˙Path 2: Bypass u.
14

15

16

17 ˙Lines 14–21 are as for Bounds Known Phi*, lines 6–13.
18

19

20

21

22 RepairCameFrom(u)
23 if closed = ∅ then
24 p← sStart ˙ϕ is ill-defined when sStart is opened, causes a false alarm.
25 else
26 C ← closed ∩ VerticesVisibleAnd8ConnectedTo(u)
27 p← argmin

s∈C
g(s) + c(s, u) ˙Path 1: Infer p.

28 g(u)← g(p) + c(p, u)
29 cameFrom(u)← p
30 localFrom(u)← p
31 antic(u)← −45◦
32 clock(u)← 45◦

18
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Algorithm 10: Angle Propagating Phi* (based on Expensive Last Phi*).
1 ComputeCost(v, u)
2 p← cameFrom(u)
3 ϕ← AngleToFrom(−→pv, −→pu)
4 if ϕ ∈ [antic(u), clock(u)] and OffGrid(−→pv) and g(p) + c(p, v) < g(v) and

LastAccessible(v, p) then ˙Path 2: Bypass u.
5 ˙Blank line inserted to align with Bounds Known Phi*.
6

7

8

9 ˙Lines 6–13 are as for Bounds Known Phi*.
10

11

12

13

14 return

15 if g(u) + c(u, v) < g(v) then ˙Path 1: Go via u.
16

17 ˙Lines 16–18 are as for Bounds Known Phi*.
18

19 [antic(v), clock(v)]← InitialAngleBounds(v, u)

UNCLASSIFIED
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Algorithm 10: Angle Propagating Phi* (continued).
1 BoundingPoints(v, p)
2 σx ← sign(vx − px)
3 σy ← sign(vy − py)
4 if |vy − py| < |vx − px| then
5 v(A) ← v + ( 0

−σx
)

6 v(C) ← v + ( 0
σx

)
7 if σx = σy then
8 if LastBlocked(v + ( σx

0 ), p) then
9 v

(A)
y ← vy

10 if LastBlocked(v + ( 0
σx

), p) or LastBlocked(v + ( σx
σx ), p) then

11 v
(C)
y ← vy

12 else if σx = −σy then
13 if LastBlocked(v + ( σx

0 ), p) then
14 v

(C)
y ← vy

15 if LastBlocked(v + ( 0
−σx

), p) or LastBlocked(v + ( σx
−σx

), p) then
16 v

(A)
y ← vy

17 else if |vy − py| > |vx − px| then
18 v(A) ← v + ( σy

0
)

19 v(C) ← v + (−σy

0
)

20 if σx = σy then
21 if LastBlocked(v + ( 0

σy ), p) then
22 v

(C)
x ← vx

23 if LastBlocked(v + ( σy

0 ), p) or LastBlocked(v + (
σy
σy ), p) then

24 v
(A)
x ← vx

25 else if σx = −σy then
26 if LastBlocked(v + ( 0

σy ), p) then
27 v

(A)
x ← vx

28 if LastBlocked(v + (−σy

0
), p) or LastBlocked(v + (

−σy

σy
), p) then

29 v
(C)
x ← vx

30 else
˙OffGrid guarantees that we do not reach this point.

31 return [v(A), v(C)]

20
UNCLASSIFIED



UNCLASSIFIED
DST-Group–TN–1805

Algorithm 10: Angle Propagating Phi* (continued).
1 InitialAngleBounds(v, u)
2 σx ← sign(vx − ux)
3 σy ← sign(vy − uy)
4 if σx = 0 then
5 if LastAccessible(u+ (

σy
σy ), u) then

6 antic← −45◦
7 else
8 antic← 0◦

9 if LastAccessible(u+ (
−σy

σy
), u) then

10 clock← 45◦

11 else
12 clock← 0◦

13 else if σy = 0 then
14 if LastAccessible(u+ ( σx

−σx
), u) then

15 antic← −45◦
16 else
17 antic← 0◦

18 if LastAccessible(u+ ( σx
σx ), u) then

19 clock← 45◦

20 else
21 clock← 0◦

22 else
23 if LastAccessible(v, u) then
24 antic← −45◦
25 clock← 45◦

26 else
27 antic← 0◦

28 clock← 0◦

29 return [antic, clock]
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5. Experiments

The refinements were tested on the following set of problems: the terrain was N cells × N
cells where N = 100, 200, 300, 400, 500. A set fraction of cells was blocked, and then the cells’
locations were randomized by allowing the permutations of cells to have equal probability.
The start location was one of the terrain’s four corners, and the goal location was chosen
from the opposing edges. Each algorithm was applied to 50 sample problems. The algorithms
were implemented in MATLAB using vector storage of the vertices, so retrieval of the most-
promising vertex (PopMinimumElement()) occurs in linear time. If binary heap storage were
used then retrieval would be in log time, but we note that at any given time, the number
of open vertices is quite small (on the order of 100 or so) hence log times and linear times
are approximately equal. Runtimes were measured as elapsed times using timeit following
recommended practices [McKeeman 2016].

As the algorithms all yielded paths that were the same length as the original Phi*, we con-
centrate on the reductions in runtime: Figures 3–7 plot 95 percent confidence intervals for the
mean reductions in runtime (bootstrapped from 2000 draws). Figures 8–12 plot the reductions
in the vertices that are touched vs the reductions in runtime where a vertex is touched if it is
opened or closed when an algorithm executes. We investigate how the runtime is affected by
vertices being touched by calculating the Pearson correlation coefficient R.

Bounds Known did not demonstrate a reduction in runtime. We speculate that in our imple-
mentation, calculating two angles is not much cheaper than calculating four angles and finding
their minimum and maximum. Indeed MATLAB can calculate multiple angles in a single call,
and max and min are fast, built-in functions.

The results for Integer are very surprising: the runtime increased, and Integer touched a
different number of vertices than the original Phi*. The cause was traced to floating point
errors in Phi*, with Phi* classifying vertices as out-of-bounds when Integer had them in-
bounds (or vice versa). As the reductions in runtime were moderately-well correlated with
reductions in vertices being touched (R ranging from 0.75 through 0.88), we conclude that it
is the change in vertices being touched that dominates the change in runtime.

Expensive Last demonstrated a small reduction in runtime, roughly 5 percent. The reductions
decreased as blockages increased. This decrease is to be expected as more blockages leads to
quicker line-of-sight testing and hence smaller savings from avoiding those tests. Likewise the
reductions decreased as the terrain size increased. This decrease is consistent with line-of-sight
testing being conducted between points that were further apart.

Lazy showed a 10 percent reduction in runtime on small terrains but the runtimes became
bigger as the terrain became larger. Runtime also increased as the blockages increased. If
the blockages are low then runtime is correlated with vertices being touched; conversely when
blockages are high then there is no change to the vertices being touched (but poorer runtime
anyway). We speculate to the cause as follows: for the original Basic Theta* to Lazy Theta*,
it was safe to assume that direct paths exist and that repairs are the exception. But Phi*
imposes angle bounds, making repairs more likely. Lazy-R had results that were qualitatively
the same as Lazy but with poorer runtimes.
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Figure 3: Runtimes for each algorithm (100 cells × 100 cells): Bounds Known (BK), Integer
(Int), Expensive Last (EL), Lazy, Lazy-R and Expensive Last with Angle Propaga-
tion (EL+AP). The chart shows a 95 percent bootstrap confidence interval for the
mean reduction in runtime from Phi*. Colours denote the fraction of cells that were
blocked.
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Figure 4: Runtimes for each algorithm (200 cells × 200 cells): Bounds Known (BK), Integer
(Int), Expensive Last (EL), Lazy, Lazy-R and Expensive Last with Angle Propaga-
tion (EL+AP). The chart shows a 95 percent bootstrap confidence interval for the
mean reduction in runtime from Phi*. Colours denote the fraction of cells that were
blocked.
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Figure 5: Runtimes for each algorithm (300 cells × 300 cells): Bounds Known (BK), Integer
(Int), Expensive Last (EL), Lazy, Lazy-R and Expensive Last with Angle Propaga-
tion (EL+AP). The chart shows a 95 percent bootstrap confidence interval for the
mean reduction in runtime from Phi*. Colours denote the fraction of cells that were
blocked.
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Figure 6: Runtimes for each algorithm (400 cells × 400 cells): Bounds Known (BK), Integer
(Int), Expensive Last (EL), Lazy, Lazy-R and Expensive Last with Angle Propaga-
tion (EL+AP). The chart shows a 95 percent bootstrap confidence interval for the
mean reduction in runtime from Phi*. Colours denote the fraction of cells that were
blocked.
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Figure 7: Runtimes for each algorithm (500 cells × 500 cells): Bounds Known (BK), Integer
(Int), Expensive Last (EL), Lazy, Lazy-R and Expensive Last with Angle Propaga-
tion (EL+AP). The chart shows a 95 percent bootstrap confidence interval for the
mean reduction in runtime from Phi*. Colours denote the fraction of cells that were
blocked.
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Runtime vs Vertices Touched for Phi* refinements − 100 x 100
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Figure 8: Runtimes vs Vertices Touched for each algorithm (100 cells × 100 cells. Colours
denote the fraction of cells that were blocked.
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Runtime vs Vertices Touched for Phi* refinements − 200 x 200

Reduction in runtime from Phi* (%)

R
ed

uc
tio

n 
in

 v
er

tic
es

 to
uc

he
d 

fro
m

 P
hi

* 
(%

)

 

 

Blocked cells
10% 20% 30% 40% 50%

−50% −25% 0% 25% 50% 75%
−50%

−25%

0%

25%

50%

75%
Expensive Last + Angle Prop

R = 0.67208

−50% −25% 0% 25% 50% 75%
−50%

−25%

0%

25%

50%

75%
Lazy−R

R = 0.57816

−50% −25% 0% 25% 50% 75%
−50%

−25%

0%

25%

50%

75%
Lazy

R = 0.73622

−50% −25% 0% 25% 50% 75%
−50%

−25%

0%

25%

50%

75%
Expensive Last

R = NaN

−50% −25% 0% 25% 50% 75%
−50%

−25%

0%

25%

50%

75%
Integer

R = 0.86631

−50% −25% 0% 25% 50% 75%
−50%

−25%

0%

25%

50%

75%
Bounds Known

R = NaN

Figure 9: Runtimes vs Vertices Touched for each algorithm (200 cells × 200 cells. Colours
denote the fraction of cells that were blocked.
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Runtime vs Vertices Touched for Phi* refinements − 300 x 300

Reduction in runtime from Phi* (%)
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Figure 10: Runtimes vs Vertices Touched for each algorithm (300 cells × 300 cells. Colours
denote the fraction of cells that were blocked.
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Runtime vs Vertices Touched for Phi* refinements − 400 x 400

Reduction in runtime from Phi* (%)
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Figure 11: Runtimes vs Vertices Touched for each algorithm (400 cells × 400 cells. Colours
denote the fraction of cells that were blocked.
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Runtime vs Vertices Touched for Phi* refinements − 500 x 500

Reduction in runtime from Phi* (%)
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Figure 12: Runtimes vs Vertices Touched for each algorithm (500 cells × 500 cells. Colours
denote the fraction of cells that were blocked.
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Angle Propagation (with Expensive Last) performed best overall: it showed a 30 percent
reduction in runtime on 100× 100 terrains, reducing to 15 percent on 500× 500 terrains. The
reduction can be accounted for as follows: Angle Propagation has a consistent reduction in
runtime over Expensive Last. Then for terrains with few blockages, there can be substantial
variation in the vertices that are touched, with a corresponding change to runtime.

6. Conclusion

Phi* can be sped up by Expensive Last evaluation with Angle Propagation. The resulting
algorithm performs its line-of-sight testing in constant time, and demonstrated a 15–30 per-
cent reduction in runtime over the original Phi* (in MATLAB). The runtime appeared to be
dominated by the number of vertices that were touched during execution (that is, the total
number of vertices that were opened over the entire runtime, not the number that were open
at any given time). The Integer variant otherwise retains interest, in avoiding floating point
errors that could cause paths to be over-constrained or under-constrained.
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