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EXECUTIVE SUMMARY

The patrol boat scheduling problemwith complete coverage (PBSPCC) is concerned with scheduling

a minimum size fleet of resource-constrained vessels to provide ongoing continuous coverage over

a set of maritime patrol regions. The problem is complicated by the necessity for patrol vessels

to visit replenishment stations (ports) on a regular basis for mandatory resource replenishment.

This problem, which is applicable to maritime border protection and surveillance operations, has its

origins in fleet sizing questions raised by the Royal Australian Navy (RAN) and has been a subject of

interest for the authors since 2008.

While we have focussed on solution techniques for the PBSPCC, most notably integer linear

programming (ILP) with column generation based branch-and-bound approaches, the unique

nature of the problem, and the fact that it is clearly not an instance of, nor reducible from,

the travelling salesman problem (TSP) or indeed truck scheduling problems, raises the question

of how computationally difficult the PBSPCC is. In a recent paper published in Naval Research

Logistics (NRL), we answered this question and demonstrated that the PBSPCC and its associated

computational problems are indeed𝒩𝒫-hard. Specifically we showed:

• The PBSPCC that takes a patrol network and a vessel class, and finds the minimum size fleet

of that class which provides complete coverage of that network is𝒩𝒫-hard.

• The PBSPCC decision problem, which takes a patrol network, a fixed fleet of vessels of the

same class, and determines whether that fleet can provide complete coverage of the network

is𝒩𝒫-hard.

• For a given polynomial 𝑝 uniformly larger than 3𝑛(𝑛 + 1), the 𝑝-bounded cyclic PBSPCC

decision problem, which is a variant of the PBSPCC decision problem where the length of

cycles in any schedule that provides complete coverage of a patrol network (of size 𝑛) is

bounded by 𝑝(𝑛), is𝒩𝒫-complete.

Tomeet the editorial requirements for publication, the authors’ NRL paper only included descriptive

outlines of the main proofs of these assertions. This decision was taken with the view to make the

arguments more comprehensible and intuitive for the journal’s readership. However, an obvious

deficiency in this style of presentation is that it lacks the formalism and rigour usually expected of

mathematical proofs. The purpose of this Technical Note, therefore, is to complement the authors’

NRL paper by presenting the complexity proofs with full mathematical rigour.
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GLOSSARY

ILP Integer linear programming

𝒩𝒫 Non-deterministic polynomial-time

NRL Naval Research Logistics

PBSPCC Patrol boat scheduling problem with complete coverage

RAN Royal Australian Navy

TSP Travelling salesman problem

VRP Vehicle routing problem
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NOTATION

ℕ Set of natural numbers

ℤ Set of integers

ℤ Set of non-negative integers modulo 𝑛

𝐺 = (𝑉, 𝐸) A graph with vertices 𝑉 and edges 𝐸

𝜋 Path in a graph

𝑃 Set of patrol regions

𝑄 Set of ports

𝑁 = (𝑉, 𝐸, 𝑃, 𝑄) Patrol network with 𝑃 ∪ 𝑄 = 𝑉 and 𝑃 ∩ 𝑄 = ∅

size(𝑁) The size of 𝑁, equal to |𝑉| + |𝐸|

𝒯 Transformation of a graph into a patrol network

𝑇ா Patrol vessel endurance

𝑇ோ Patrol vessel replenishment time

𝑑 ∶ 𝐸 → ℕ Transit time of a vessel along an edge of 𝑁

ℓ = (𝑇ா, 𝑇ோ, 𝑑) Vessel performance

𝜆 ∶ ℤ → 𝑉 ∪ 𝐸 A route in 𝑁

𝛬 A collection of feasible routes on 𝑁
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1. INTRODUCTION

In 2008 the authors were supporting a patrol vessel acquisition decision for the Royal Australian

Navy (RAN). At that time, a key question was how to determine the minimum number of patrol

vessels required to maintain a continuous presence in a fixed set of pre-defined patrol regions.

To address the client’s initial and subsequent requirements, the authors developed a range of

approaches to examine this problem. These approaches included simple Excel spreadsheets that

estimated the required patrol effort [12], pure linear programming approaches that placed hard

lower bounds on the size of any fleet that couldmeet the continuous presence requirement [12, 14],

and ultimately, stochastic simulation models that examined the performance of a fleet [15].

While undertaking this work, the authors became aware of the computational difficulty and

uniqueness of the problem. On the one hand, the problem seemed like a set partitioning or

assignment problem as all the vessels were supposed to be at each patrol region at each moment

in the planning horizon. On the other hand, the problem appeared to possess characteristics

resembling a vehicle routing problem (VRP) in that each vessel needed to return to port regularly

to refuel, replenish and provide crew layover. The replenishment aspect complicated the problem

and made it unlike any problem that the authors were originally able to find in the literature. There

were analogues, like patrol car scheduling, where highway patrol vehicles cover accident hotspots

at fixed times of the day [8, 9, 10, 1, 5], but at the time there was nothing directly equivalent to the

continuous presence requirement. It was only relatively recently that a similar problem emerged,

in which, for reasons such as disaster relief, a network of drones is required to provide continuous

Wi-Fi coverage to an area [11].

In the years that followed the original client work the authors chose to focus onwhat became known

as the patrol boat scheduling problemwith complete coverage (PBSPCC). This is a narrower problem

where we consider a homogeneous fleet of vessels over a network of ports and patrol regions and

determine the existence and properties of a schedule that provides complete coverage of the patrol

regions, either indefinitely or over a fixed time horizon. The PBSPCC became the focus of the second

author’s PhD research which concluded in 2017 [2] and developed effective column generation

techniques to compute such schedules [4, 3]. A key question that arose during this academic study

was concerned with the computational complexity of the PBSPCC. Intuitively the problem appeared

to be𝒩𝒫-hard, however, demonstrating this was not easy as the problem was not equivalent to,

nor reducible from, the travelling salesman problem (TSP) or truck scheduling problems – the usual

impetus to return to base for replenishment is constrained by the requirement to be present in

each patrol area at each point in time rather than simply visiting a city or making a delivery to a

customer.
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Recently, the authors were able to show that the PBSPCC is indeed 𝒩𝒫-hard by providing a

transformation to/from the Hamiltonian graph decision problem, and published this work in Naval

Research Logistics (NRL) [13]. Specifically, the authors showed that:

• The PBSPCC that takes a patrol network and a vessel class, and finds the minimum size fleet

of that class which provides complete coverage of that network is𝒩𝒫-hard.

• The PBSPCC decision problem, which takes a patrol network, a fixed fleet of vessels of the

same class, and determines whether that fleet can provide complete coverage of the network

is𝒩𝒫-hard.

• For a given polynomial 𝑝 uniformly larger than 3𝑛(𝑛 + 1), the 𝑝-Bounded Cyclic PBSPCC

decision problem, which is a variant of the PBSPCC decision problem where the length of

cycles in any schedule that provides complete coverage of a patrol network (of size 𝑛) is

bounded by 𝑝(𝑛), is𝒩𝒫-complete.

To meet the editorial requirements for publication, the NRL paper [13] only included descriptive

outlines of the main proofs of these assertions. This decision was taken with the view to make the

arguments more comprehensible and intuitive for the journal’s readership. However, an obvious

deficiency in this style of presentation is that it lacks the formalism and rigour usually expected of

mathematical proofs. The purpose of this Technical Note, therefore, is to complement the authors’

NRL paper by presenting the complexity proofs with full mathematical rigour.

This technical note should be read in conjunction with the authors’ NRL paper [13]. We will take the

introductory, motivational and explanatory material presented as read, and include only the main

definitions and subsequent results and proofs, which we present in full.

OFFICIAL
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2. PRELIMINARIES

For a graph 𝐺 = (𝑉, 𝐸), we use the definitions of a Hamiltonian circuit, whether the graph is

Hamiltonian, and the Hamiltonian graph decision problem (GT37 in [6]) as per Definitions 5.1 and

5.2 of [13] and note that [7] shows that this is𝒩𝒫-complete.

For a graph 𝐺 = (𝑉, 𝐸), we use the definitions of a path, patrol network 𝑁 = (𝑉, 𝐸, 𝑃, 𝑄), 𝑃

patrol regions, 𝑄 ports, ℓ = (𝑇ா, 𝑇ோ, 𝑑) vessel performance, 𝑇ா endurance, 𝑇ோ replenishment time,

𝑑 ∶ 𝐸 → ℕ transit time, (𝑁, ℓ) patrolled network, the passage at time 𝑡, ℓ-feasible, a collection 𝛬

covers (𝑁, ℓ), the size of a complete cover, cyclic routes and the order of those cyclic routes as in

Definitions 4.1 through 4.12 of [13].

For clarity we will repeat the definitions of the three computational problems revisited in this

technical note (refer to Definitions 4.10 and 4.13 in [13]):

Definition 2.1. The patrol boat scheduling problem with complete coverage (PBSPCC) is a

computational problem which takes as input (𝑁, ℓ), a patrolled network, and finds a cover of

minimum cardinality.

Definition2.2. ThePBSPCCdecision problem is a computational problemwhich takes as input (𝑁, ℓ)

a patrolled network and a𝑚 ∈ ℕ and determines whether (𝑁, ℓ) has a complete cover of cardinality

𝑚.

Definition 2.3. Let 𝑝 ∶ ℕ → ℕ be an increasing polynomial function. The 𝒑-bounded cyclic PBSPCC

decision problem is a computational problem which takes as input a patrolled network (𝑁, ℓ), an

integer𝑚 and determines whether there is a patrol cover of (𝑁, ℓ) of size𝑚, which is cyclic of order

𝑘 for some 𝑘 ≤ 𝑝(size(𝑁)), where size(𝑁) = |𝑉| + |𝐸|.

When exploring a full formal proof, the concept of a route in a patrol network (Definition 4.5 in [13])

is a key definition, and an activity at a point in a route is key to the subsequent technical propositions,

so we repeat the definition here:

Definition 2.4. Let 𝑁 = (𝑉, 𝐸, 𝑃, 𝑄) be a patrol network. We call 𝜆 ∶ ℤ → 𝑉 ∪ 𝐸 a route in 𝑁 if and

only if, for all 𝑡 ∈ ℤ, one of the following holds:

1. 𝜆(𝑡) ∈ 𝜆(𝑡 + 1) ∈ 𝐸,

2. 𝜆(𝑡 + 1) ∈ 𝜆(𝑡) ∈ 𝐸,

3. 𝜆(𝑡), 𝜆(𝑡 + 1) ∈ 𝐸 and 𝜆(𝑡) ∩ 𝜆(𝑡 + 1) ≠ ∅, or
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4. 𝜆(𝑡 + 1) = 𝜆(𝑡).

Wewill nowmake two elementary observations about how routes in patrol networks behave.

Proposition 2.1. Let 𝜆 be a route in a patrol network 𝑁 and suppose that we have 𝑡 ∈ ℤ such that

𝜆(𝑡) ∈ 𝑉. Then:

1. 𝜆(𝑡 + 1) = 𝜆(𝑡) or 𝜆(𝑡 + 1) ∈ 𝐸, and

2. 𝜆(𝑡 − 1) = 𝜆(𝑡) or 𝜆(𝑡 − 1) ∈ 𝐸.

Proof. Under the hypotheses of this proposition, only conditions 1. and 4. from Definition 2.4 hold

in the definition of a route, giving us Item 1 of Proposition 2.1. However, if we apply Definition 2.4

at time 𝑡 − 1, we see that only conditions 2. and 4. hold, giving us Item 2 of Proposition 2.1.

Proposition 2.2. Let 𝜆 be a route in a patrol network 𝑁. Then the following two statements hold:

(∀𝑡 ∈ ℤ) [𝜆(𝑡) ∈ 𝑃 ⟹ 𝜆(𝑡 + 1) ∉ 𝑄 and 𝜆(𝑡) ∉ 𝑄 and 𝜆(𝑡 − 1) ∉ 𝑄] ,

(∀𝑡 ∈ ℤ) [𝜆(𝑡) ∈ 𝑄 ⟹ 𝜆(𝑡 + 1) ∉ 𝑃 and 𝜆(𝑡) ∉ 𝑃 and 𝜆(𝑡 − 1) ∉ 𝑃] .

Proof. Let 𝑡 ∈ ℤ and suppose that 𝜆(𝑡) ∈ 𝑃. Since𝑃 and𝑄 are disjoint sets, then we have 𝜆(𝑡) ∉ 𝑄.

Also, by Proposition 2.1, 𝜆(𝑡 + 1) = 𝜆(𝑡) ∈ 𝑃 or 𝜆(𝑡 + 1) ∈ 𝐸. In both cases this shows that

𝜆(𝑡 + 1) ∉ 𝑄. Similarly 𝜆(𝑡 − 1) = 𝜆(𝑡) or 𝜆(𝑡 − 1) ∈ 𝐸, so in both cases 𝜆(𝑡 − 1) ∉ 𝑄. A

symmetrical argument shows that the second statement of the proposition also holds.

We use the transformation𝒯(⋅) from Section 5 of [13] which takes a graph 𝐺 = (𝑉, 𝐸) and expands

it into a patrol network 𝑁ᇱ = (𝑉ᇱ, 𝐸ᇱ, 𝑃, 𝑄), where 𝑃 = 𝑉, 𝑄 = 𝐸, 𝑉ᇱ = 𝑃 ∪ 𝑄 and:

𝐸ᇱ = {{𝑥, 𝑒} ∣ 𝑥 ∈ 𝑒 ∈ 𝐸} ,

and a patrol problem (𝑁ᇱ, ℓ), where ℓ = (3𝑛 + 2, 1, 𝑑) and 𝑑 is uniformly 1 on 𝐸ᇱ. Figure 1 is an

illustration of this transformation.

We conclude this section by noting that our definition of ℓ-feasible routes in a patrol network 𝑁ᇱ

implies that a vessel will visit a port in any time window of length 3(𝑛 + 1) time units.

Proposition 2.3. For 𝜆, an ℓ-feasible route in𝑁ᇱ, and 𝑡 ∈ ℤ, there exists a 𝑡ᇱ ∈ ℤ such that 𝑡 < 𝑡ᇱ ≤

𝑡 + 3(𝑛 + 1), and 𝜆(𝑡ᇱ) ∈ 𝑄.
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Transformation

Figure 1 A simple graph 𝐺 (left) and its transformation 𝑁ᇱ (right). Patrol regions are represented by solid

circles, and the ports are represented by squares.

Proof. Consider the time since a replenishment of length 1 at time 𝑡 + 3(𝑛 + 1):

𝑘 ∶= min {𝑡 + 3(𝑛 + 1) − 𝑗 ∣ 𝑗 ∈ ℤ, 𝑗 ≤ 𝑡 + 3(𝑛 + 1) and 𝜆(𝑗) ∈ 𝑄} .

Since 𝜆 is ℓ-feasible, 𝑘 ≤ 3𝑛 + 2. Let 𝑡ᇱ witness that 𝑘 is the minimum. Therefore:

• 𝑡 + 3(𝑛 + 1) − 𝑡ᇱ = 𝑘 ≤ 3𝑛 + 2, so 𝑡 + 1 ≤ 𝑡ᇱ, and therefore 𝑡 < 𝑡ᇱ,

• 𝑡ᇱ ≤ 𝑡 + 3(𝑛 + 1), and

• 𝜆(𝑡ᇱ) ∈ 𝑄, as required.
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3. EQUIVALENCE

In this section we revisit the two main lemmata of [13] that had both been substantially abridged

during the peer reviewprocess preceding that paper’s publication inNaval Research Logistics. These

lemmata show that for a graph 𝐺 = (𝑉, 𝐸) with |𝑉| = 𝑛:

• If𝐺 is Hamiltonian then𝒯(𝐺) has a complete cover of size𝑛+1 (Lemma3.1 below and Lemma

5.1 in [13]).

• If 𝒯(𝐺) has a cover of size 𝑛 + 1 then this naturally gives rise to a Hamiltonian circuit on 𝐺

(Lemma 3.2 below and Lemma 5.2 in [13]).

Lemma 3.1. If 𝐺 = (𝑉, 𝐸) is a Hamiltonian graph with |𝑉| = 𝑛 ≥ 2, then 𝒯(𝐺) has a patrol cover

of size 𝑛 + 1 which is cyclic of order at most 3𝑛(𝑛 + 1).

Proof. Let 𝜋 ∶ ℤ → 𝑉 define a path such that the sequence:

⟨𝜋(0), 𝜋(1), … , 𝜋(𝑛 − 1), 𝜋(0)⟩

forms a Hamiltonian circuit on 𝐺 and therefore witnesses that 𝐺 is Hamiltonian. We may extend 𝜋

to a function 𝜋 ∶ ℤ → 𝑉 by setting 𝜋(𝑚) = 𝜋(𝑚 mod 𝑛). Because 𝜋 gives the Hamiltonian circuit,

𝜋 is surjective (onto) and

(∀𝑚 ∈ ℤ) [{𝜋(𝑚), 𝜋(𝑚 + 1)} ∈ 𝐸] .

Define 𝑥 ∶ ℤ → 𝑄 by

𝑥(𝑚) ∶= {𝜋(𝑚), 𝜋(𝑚 + 1)} .

That is, 𝑥(𝑚) is the port in 𝒯(𝐺) between 𝜋(𝑚) and 𝜋(𝑚 + 1). We then define 𝑤, 𝑦 ∶ ℤ → 𝐸ᇱ as

follows:

𝑤(𝑚) ∶= {𝜋(𝑚), 𝑥(𝑚)} ,

𝑦(𝑚) ∶= {𝑥(𝑚), 𝜋(𝑚 + 1)} .

The layout of 𝑤, 𝑥, and 𝑦 is given in Figure 2.

𝜋(𝑚) 𝜋(𝑚 + 1)𝑥(𝑚)

𝑤(𝑚) 𝑦(𝑚)

Figure 2 Illustration of defined values 𝑤(𝑚), 𝑥(𝑚) and 𝑦(𝑚).
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Thus, ⟨𝜋(𝑚), 𝑤(𝑚), 𝑥(𝑚), 𝑦(𝑚), 𝜋(𝑚 + 1)⟩ is a partial route in𝑁ᇱ, that is, 𝜋(𝑚) ∈ 𝑤(𝑚), 𝑥(𝑚) ∈

𝑤(𝑚), 𝑥(𝑚) ∈ 𝑦(𝑚) and 𝜋(𝑚+1) ∈ 𝑦(𝑚), therefore satisfying the conditions imposed on a route

at each element of the sequence. Note also that because 𝜋 cycles,𝑤, 𝑥, and 𝑦 cycle as well, that is,

for all𝑚 ∈ ℤ we have 𝑤(𝑚) = 𝑤(𝑚 mod 𝑛), 𝑥(𝑚) = 𝑥(𝑚 mod 𝑛), and 𝑦(𝑚) = 𝑦(𝑚 mod 𝑛).

Wewill now string these partial routes together tomake a ℓ-feasible route 𝜆with periodicity 3𝑛(𝑛+

1), where a vessel stays at each patrol region 𝜋(𝑚) for 3𝑛 time units and spends the subsequent 3

time units transiting to the next node in the Hamiltonian circuit.

Define 𝑐 ∶ ℤ → ℤ and 𝛿 ∶ ℤ → ℤଷ(ାଵ) by:

𝑐(𝑡) ∶= 
𝑡

3(𝑛 + 1)
 ,

𝛿(𝑡) ∶= 𝑡 mod 3(𝑛 + 1).

Therefore, for all 𝑡 ∈ ℤ, we have 𝑡 = 3(𝑛+1)𝑐(𝑡)+𝛿(𝑡), and if 𝑡 +1 is not a multiple of 3(𝑛+1),

we have 𝛿(𝑡 + 1) = 𝛿(𝑡) + 1. We require each route 𝜆 that we are constructing to move on to a

new patrol region every 3(𝑛 + 1) time units. Thus, we have two cycles at work: the larger cycle of

moving around the patrol network and the shorter cycle of what happens at a patrol region and its

subsequent transition or replenishment. The function 𝑐 will count larger cycles, giving us the node

in the Hamiltonian cycle, and 𝛿will count where we are in the smaller cycle of patrolling andmoving

on to the next patrol region.

Formally we define 𝜆 ∶ ℤ → 𝑉ᇱ ∪ 𝐸ᇱ as follows:

𝜆(𝑡) =

⎧
⎪

⎨
⎪
⎩

𝜋(𝑐(𝑡)) if 𝛿(𝑡) < 3𝑛,

𝑤(𝑐(𝑡)) if 𝛿(𝑡) = 3𝑛,

𝑥(𝑐(𝑡)) if 𝛿(𝑡) = 3𝑛 + 1,

𝑦(𝑐(𝑡)) if 𝛿(𝑡) = 3𝑛 + 2.

To see that 𝜆 is a route, we note that 𝜆 is constant on the first 3𝑛 time units in each smaller cycle,

that is, 𝜆(𝑡) = 𝜋(𝑐(𝑡)) = 𝜋(𝑚) for some𝑚 ∈ ℤ if 𝛿(𝑡) < 3𝑛. Now suppose that 𝛿(𝑡) = 3𝑛 − 1.

Then 𝑐(𝑡 + 𝑖) = 𝑐(𝑡) = 𝑚 for 𝑖 = 1, 2, 3, and 𝑐(𝑡 + 4) = 𝑐(𝑡) + 1 = 𝑚 + 1. Thus at time points

⟨𝑡, 𝑡 + 1, 𝑡 + 2, 𝑡 + 3, 𝑡 + 4⟩, 𝜆moves through the following:

⟨𝜋(𝑚), 𝑤(𝑚), 𝑥(𝑚), 𝑦(𝑚), 𝜋(𝑚 + 1)⟩ ,

which, as we saw, was constructed to be a partial route in𝑁ᇱ. The route 𝜆 has exactly 1 time unit on

each transition edge, which is defined to have a distance of 1 unit and matches the defined vessel

speed of 1 distance unit per time unit.
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To see that 𝜆 is ℓ-feasible, note that it goes into port 𝑥(𝑐(𝑡)) every time 𝛿(𝑡) = 3𝑛 + 1, and this

happens exactly once (for one time unit) in every 3(𝑛 + 1)-long cycle. Hence, it is spending 3𝑛 + 2

time units away from port where it had a replenishment of length 1, which is exactly the defined

vessel endurance.

We note that 𝜆 satisfies the following property:

(∀𝑡, 𝑘 ∈ ℤ) [𝜆(𝑡) = 𝜆(𝑡 + 3𝑛(𝑛 + 1)𝑘)] ,

that is, 𝜆 is cyclic of order 3𝑛(𝑛 + 1). This is because 𝜋 is cycling with a period 𝑛 and 𝑐 is defined to

increment every 3(𝑛 + 1) time steps so together they repeat with a period of 3𝑛(𝑛 + 1).

Now, for 𝑖 ∈ ℤ, we define 𝜆 ∶ ℤ → 𝑉ᇱ ∪ 𝐸ᇱ by 𝜆(𝑡) = 𝜆(𝑡 + 3𝑛𝑖). Then the set 𝛬 ∶= {𝜆 ∣ 𝑖 ∈ ℤ}

has exactly (𝑛 + 1)members because for all 𝑡 ∈ ℤ:

𝜆ା(ାଵ)(𝑡) = 𝜆(𝑡 + 3𝑛(𝑖 + (𝑛 + 1)𝑘)),

= 𝜆((𝑡 + 3𝑛𝑖) + 3𝑛(𝑛 + 1)𝑘),

= 𝜆(𝑡 + 3𝑛𝑖),

= 𝜆(𝑡).

Therefore 𝜆 = 𝜆ା(ାଵ). In addition, the members of 𝛬 are cyclic of order 3𝑛(𝑛 + 1). Since 𝜆 is

ℓ-feasible, all the 𝜆 in 𝛬 are ℓ-feasible. Hence, we will have shown that 𝒯(𝐺) can be covered by

𝑛 + 1 = |𝑉| + 1 vessels if we can show that 𝛬 hits every node in 𝑃 = 𝑉 at every time point.

Let 𝑡 ∈ ℤ and 𝑣 ∈ 𝑃 (where 𝑃 = 𝑉 and |𝑉| = 𝑛). Since 𝜋 defines a Hamiltonian circuit on

𝐺 = (𝑉, 𝐸), there is an𝑚 ∈ ℤ such that 𝜋(𝑚) = 𝑣. Let

𝑖 = ቜ
3(𝑛 + 1)𝑚 − 𝑡

3𝑛
ቝ ,

𝛿 = 3𝑛𝑖 − (3(𝑛 + 1)𝑚 − 𝑡).

Thus 0 ≤ 𝛿 < 3𝑛, and

𝑡 + 3𝑛𝑖 = 3(𝑛 + 1)𝑚 + 𝛿, with 0 ≤ 𝛿 < 3𝑛.

So 𝜆(𝑡) = 𝜆(𝑡 + 3𝑛𝑖), and we claim that 𝜆(𝑡 + 3𝑛𝑖) = 𝜋(𝑚) = 𝑣. To calculate the value of

𝜆(𝑡 + 3𝑛𝑖) note that:
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𝑐(𝑡 + 3𝑛𝑖) = 
𝑡 + 3𝑛𝑖

3(𝑛 + 1)
 ,

= 
3(𝑛 + 1)𝑚 + 𝛿

3(𝑛 + 1)
 ,

= 𝑚,

since 𝛿 < 3𝑛 < 3(𝑛 + 1), and 𝛿(𝑡 + 3𝑛𝑖) = 𝛿 < 3𝑛. Thus:

𝜆(𝑡) = 𝜆(𝑡 + 3𝑛𝑖),

= 𝜋(𝑐(𝑡 + 3𝑛𝑖)),

= 𝜋(𝑚),

= 𝑣.

Lemma 3.2. If 𝐺 = (𝑉, 𝐸) is a graph with |𝑉| = 𝑛 ≥ 2 and 𝒯(𝐺) has a patrol cover of size 𝑛 + 1,

then 𝐺 is Hamiltonian.

Proof. Let 𝑁ᇱ be the patrol network obtained by applying the transformation 𝒯(𝐺). As per the

hypotheses of the lemma, assume the patrol network (𝑁ᇱ, ℓ) has a patrol cover of size 𝑛 + 1 and

let 𝛬 be that cover. Now 𝑁ᇱ has |𝑃| = |𝑉| = 𝑛 patrol regions and at any one time 𝑡 ∈ ℤ, we have

𝑃 ⊆ {𝜆(𝑡) ∣ 𝜆 ∈ 𝛬}. Therefore, at time 𝑡 ∈ ℤ, we have:

| {𝜆(𝑡) ∣ 𝜆 ∈ 𝛬, 𝜆(𝑡) ∉ 𝑃} | ≤ 1.

That is, at most one 𝜆 ∈ 𝛬 can have 𝜆(𝑡) ∉ 𝑃, or in patrol operations terminology, only one vessel

can be not patrolling at any one time.

If we look at patrol activity, at any one time we will see at most one vessel doing something other

than patrolling. Weuse this observation to demonstrate that if wemonitor one non-patrolling vessel

at a time and follow the changes from one non-patrolling vessel to another, the aggregate behaviour

will be that of a virtual vessel, which traces out a Hamiltonian circuit in 𝐺. To do this, we need to

show that there must be at least one vessel not patrolling at any one time, and that when we track

the positions of each non-patrolling vessel, these will join to form a connected path in the graph.

The difficulty with this approach is that (for all we know) the virtual vessel could bounce around

going back-and-forth along a non-cyclic path in the network; it could pause, it could keep going back

to the same port for replenishment, or it could pass over ports, skipping replenishment altogether.
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Noting this possibility, we present a proof by contradiction. We will show that if any virtual vessel

fails to stick to the specified program (transit through to a port, replenish, transit to the next node

and then keep going), there will be an accruing deficit, which, at the end of 3(𝑛+1) time steps, will

entail that one vessel has exceeded its endurance threshold.

To uncover the aforementioned deficit, we construct three functions recursively:

𝛼 ∶ ℕ → ℤ,

𝛽 ∶ ℕ → 𝑄,

𝛾 ∶ ℕ → 𝛬.

The function 𝛼 gives the sequence of times when any vessel goes into replenishment, the function

𝛽 gives the replenishment port at which that happens, and 𝛾 will give the vessel that is going into

that port. Note that, in this case, all other vessels are on station in the patrol regions. As we define

these functions, we will simultaneously prove that the following condition holds at each 𝑘 ∈ ℕ:

(∀𝑡 ∈ ℤ)(∀𝜆 ∈ 𝛬) [(𝜆 ≠ 𝛾(𝑘) and 𝛼(𝑘) − 2 ≤ 𝑡 < 𝛼(𝑘 + 1)) ⟹ 𝜆(𝑡) ∉ 𝑄] .

Wewill call this the exclusivity condition at 𝑘 ∈ ℕ. Wewill also simultaneously prove that for𝑘 ∈ ℕ,

the following conditions are satisfied:

• 𝛽(𝑘) = 𝛾(𝑘)(𝛼(𝑘)),

• 𝛾(𝑘) ≠ 𝛾(𝑘 + 1),

• 𝛼(𝑘 + 1) ≥ 𝛼(𝑘) + 3.

The set 𝛬 is non-empty, so take 𝜆 to be an arbitrary element of 𝛬. We know from Proposition 2.3

that there is an 𝑡 ∈ ℤ with 0 < 𝑡 ≤ 3(𝑛 + 1) with 𝜆(𝑡) ∈ 𝑄. Now let 𝛼(1) = 𝑡, 𝛾(1) = 𝜆,

and 𝛽(1) = 𝛾(1)(𝛼(1)). Suppose that for some 𝑘 ∈ ℕ we have defined 𝛼(𝑘), 𝛽(𝑘) and 𝛾(𝑘) such

that 𝛽(𝑘) = 𝛾(𝑘)(𝛼(𝑘)). Let

𝛼(𝑘 + 1) = min {𝑡 ∈ ℤ ∣ 𝑡 > 𝛼(𝑘) and (∃𝜆 ∈ 𝛬) [𝜆 ≠ 𝛾(𝑘) and 𝜆(𝑡) ∈ 𝑄]} . (1)

We note that such a minimum exists because 𝛬 has size 𝑛 + 1 (which is at least 3), and Proposition

2.3 guarantees that any 𝜆 ∈ 𝛬 will eventually and repeatedly hit 𝑄.

Let 𝛾(𝑘 + 1) be the element of 𝛬 that witnesses 𝛼(𝑘 + 1) is the minimum described in (1), that

is, 𝛾(𝑘 + 1) takes the role of 𝜆 in (1). Then immediately we have that 𝛾(𝑘 + 1) ≠ 𝛾(𝑘) and we

can define 𝛽(𝑘 + 1) = 𝛾(𝑘 + 1)(𝛼(𝑘 + 1)). Since 𝛾(𝑘)(𝛼(𝑘)) ∈ 𝑄, Proposition 2.2 tells us that

𝛾(𝑘)(𝛼(𝑘) + 1) ∉ 𝑃, so since at most one vessel is not patrolling at any one time, we know that
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𝛾(𝑘+1)(𝛼(𝑘)+1) ∈ 𝑃. Then Proposition 2.2 tells us that 𝛾(𝑘+1)(𝛼(𝑘)+2) ∉ 𝑄. Using this fact,

and given that𝛼(𝑘+1) is minimal with 𝛾(𝑘+1)(𝛼(𝑘+1)) ∈ 𝑄, it follows that𝛼(𝑘+1) ≥ 𝛼(𝑘)+3.

We now only need to prove that the exclusivity condition holds at 𝑘 ∈ ℕ. Therefore, let 𝑡 ∈ ℤ,

𝜆 ∈ 𝛬 be such that 𝜆 ≠ 𝛾(𝑘) and 𝛼(𝑘) − 2 ≤ 𝑡 < 𝛼(𝑘 + 1). We must show that 𝜆(𝑡) ∉ 𝑄. Let us

examine the following cases.

• Case 1. 𝑡 > 𝛼(𝑘). In this case we immediately know that 𝜆(𝑡) ∉ 𝑄, otherwise 𝑡 and 𝜆 would

witness that 𝛼(𝑘 + 1) is not the minimum it is defined to be.

• Case 2. 𝑡 ∈ {𝛼(𝑘) − 2, 𝛼(𝑘) − 1, 𝛼(𝑘)}. We know that 𝛾(𝑘)(𝛼(𝑘)) = 𝛽(𝑘) ∈ 𝑄, so by

Proposition 2.2, 𝛾(𝑘)(𝛼(𝑘) − 1) ∉ 𝑃. Thus as only one vessel can be not patrolling at one

time we know that 𝜆(𝛼(𝑘) − 1) ∈ 𝑃. Proposition 2.2 then tells us that 𝜆(𝑡) ∉ 𝑄 for all three

possibilities of 𝑡 in this case.

Thus, we have defined 𝛼, 𝛽 and 𝛾 satisfying our desired properties.

Claim 1. (∀𝑘 ∈ ℕ) [𝛼(𝑘 + 1) = 𝛼(𝑘) + 3] .

Proof. Assume the contrary. Thus, there is a 𝑘 ∈ ℕ such that 𝛼(𝑘 + 1) ≠ 𝛼(𝑘) + 3, but

since we know that 𝛼(𝑘 + 1) ≥ 𝛼(𝑘) + 3, we have that 𝛼(𝑘 + 1) > 𝛼(𝑘) + 3. Let 𝜆 ∈

𝛬 ⧵ {𝛾(𝑘 + 𝑖) ∣ 𝑖 ∈ ℤ}. Note that this set is not empty because 𝛬 has size 𝑛 + 1. Now by the

exclusivity condition holding at 𝑘, 𝑘 + 1,… , 𝑘 + 𝑛 − 1, we have:

(∀𝑡 ∈ ℤ) [𝛼(𝑘) − 2 ≤ 𝑡 < 𝛼(𝑘 + 𝑛) ⟹ 𝜆(𝑡) ∉ 𝑄] .

However, for all 𝑘 ∈ ℕ, 𝛼(𝑘 + 1) ≥ 𝛼(𝑘) + 3, and combining this with our assumption, we have

𝛼(𝑘 + 𝑛) > 𝛼(𝑘) + 3𝑛. So we can conclude that:

(∀𝑡 ∈ ℤ) [𝛼(𝑘) − 2 ≤ 𝑡 ≤ 𝛼(𝑘) + 3𝑛 ⟹ 𝜆(𝑡) ∉ 𝑄] .

Thus, at time 𝛼(𝑘) + 3𝑛, 𝜆’s time since replenishment is at least 𝛼(𝑘) + 3𝑛 − (𝛼(𝑘) − 3) =

3𝑛 + 3 = 3(𝑛 + 1). But 𝜆’s endurance is at most 3𝑛 + 2, so this is a contradiction to 𝜆 being

ℓ-feasible.

Claim 2. For all 𝑘 ∈ ℕ:

1. 𝛾(𝑘)(𝛼(𝑘)) ∈ 𝑄,

2. 𝛾(𝑘)(𝛼(𝑘) + 1) ∈ 𝐸ᇱ,
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3. 𝛾(𝑘)(𝛼(𝑘) + 2) = 𝛾(𝑘 + 1)(𝛼(𝑘) + 1) ∈ 𝑃,

4. 𝛾(𝑘 + 1)(𝛼(𝑘) + 2) ∈ 𝐸ᇱ,

5. 𝛾(𝑘 + 1)(𝛼(𝑘) + 3) ∈ 𝑄.

Proof. Let 𝑘 ∈ ℕ. We already know that 1. and 5. hold as we constructed 𝛾 and 𝛼 that way (noting

that 𝛼(𝑘 + 1) = 𝛼(𝑘) + 3). The other three items are obtained by noting that 𝛾(𝑘) and 𝛾(𝑘 + 1)

are distinct vessels of which only one cannot be patrolling at a time, and so they must “swap out” at

some time between 𝛼(𝑘) and 𝛼(𝑘) + 3. Given our construction of the patrol network, 𝛾(𝑘) must

transit to a patrol region at time 𝛼(𝑘) + 1 (giving us 2.), to take over patrolling at time 𝛼(𝑘) + 2

from 𝛾(𝑘 + 1), which was patrolling at time 𝛼(𝑘) + 1 (giving us 3.). Then 𝛾(𝑘 + 1) must quickly

proceed to be at a port at time 𝛼(𝑘) + 3, so it must undertake a transit at time 𝛼(𝑘) + 2 (which

gives us 4.).

Therefore, for any 𝑘 ∈ ℕ, 𝛾(𝑘)(𝛼(𝑘) + 2) ∈ 𝑃 is connected to 𝛾(𝑘 + 1)(𝛼(𝑘 + 1) + 2) ∈ 𝑃 in 𝐺

via the edge 𝛾(𝑘 + 1)(𝛼(𝑘) + 3) ∈ 𝑄. So if we define 𝜌 ∶ ℕ → 𝑃 by:

𝜌(𝑘) ∶= 𝛾(𝑘)(𝛼(𝑘) + 2),

we get a path in 𝐺 on the nodes of 𝑉 (as we defined 𝑃 = 𝑉).

Claim 3. (∀𝑣 ∈ 𝑃) (∀𝑘 ∈ ℕ) (∃𝑖 < 𝑛) [𝜌(𝑘 + 𝑖) = 𝑣].

Proof. Let 𝑣 ∈ 𝑃, and 𝑘 ∈ ℕ. Suppose not, that is:

(∀𝑖 < 𝑛) [𝜌(𝑘 + 𝑖) ≠ 𝑣] .

Let 𝜆 ∈ 𝛬 be such that 𝜆(𝛼(𝑘)) = 𝑣, which must exist because each patrol region is covered. We

will show by induction that:

(∀𝑖 ≤ 𝑛) (∀𝑡 ∈ ℤ) [𝛼(𝑘) − 1 ≤ 𝑡 ≤ 𝛼(𝑘 + 𝑖) + 1 ⟹ 𝜆(𝑡) = 𝑣] . (2)

For the base case, that is, 𝑖 = 0, we must show that 𝜆(𝑡) = 𝑣 for 𝑡 ∈ {𝛼(𝑘) − 1, 𝛼(𝑘), 𝛼(𝑘) + 1}.

Here, we note that 𝛾(𝑘)(𝛼(𝑘)) ∈ 𝑄, so 𝜆 ≠ 𝛾(𝑘) and by Proposition 2.2 we see that 𝛾(𝑘)(𝑡) ∉ 𝑃

for 𝑡 ∈ {𝛼(𝑘) − 1, 𝛼(𝑘), 𝛼(𝑘) + 1}. This implies that 𝜆 is stuck on a patrol region and therefore

constant at 𝑣 on that same set.
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Suppose that (2) holds for some 𝑖, where 0 ≤ 𝑖 < 𝑛. Wemust show that it holds for 𝑖 +1. We know

by the inductive hypothesis that for 𝑡 ∈ ℤ such that 𝛼(𝑘)− 1 ≤ 𝑡 ≤ 𝛼(𝑘 + 𝑖), we get 𝜆(𝑡) = 𝑣. Let

us now follow through the remaining time steps.

• At time 𝑡 = 𝛼(𝑘 + 𝑖) + 1, 𝛾(𝑘 + 𝑖)(𝑡) ∈ 𝐸ᇱ, so 𝜆must stay at 𝑣.

• At time 𝑡 = 𝛼(𝑘 + 𝑖) + 2, 𝛾(𝑘 + 𝑖)(𝑡) = 𝜌(𝑘 + 𝑖) ≠ 𝑣, but 𝛾(𝑘 + 𝑖 + 1)(𝛼(𝑘 + 𝑖) + 1) =

𝛾(𝑘 + 𝑖)(𝑡) ≠ 𝑣. So we know that 𝛾(𝑘 + 𝑖 + 1) ≠ 𝜆. But 𝛾(𝑘 + 𝑖 + 1)(𝛼(𝑘 + 𝑖) + 2) ∈ 𝐸ᇱ,

so again 𝜆must stay at 𝑣.

• At time 𝑡 = 𝛼(𝑘 + 𝑖) + 3 = 𝛼(𝑘 + 𝑖 + 1), 𝛾(𝑘 + 𝑖 + 1)(𝑡) ∈ 𝑄 so we also see that 𝜆 must

stay at 𝑣.

• At time 𝑡 = 𝛼(𝑘 + 𝑖 + 1) + 1, 𝛾(𝑘 + 𝑖 + 1)(𝑡) ∈ 𝐸ᇱ so yet again 𝜆must stay at 𝑣, completing

the induction.

We can now conclude that 𝜆(𝑡) = 𝑣 ∉ 𝑄 for the whole time interval 𝛼(𝑘) − 1 to 𝛼(𝑘 + 𝑛) + 1 =

𝛼(𝑘) + 3𝑛 + 1, inclusive. But this time interval has size 𝛼(𝑘) + 3𝑛 + 1 − (𝛼(𝑘) − 2) = 3𝑛 + 3, a

period bigger than 3𝑛 + 2 (the endurance of 𝜆), contradicting 𝜆 being ℓ-feasible.

Claim 4. 𝜌 ∶ ℕ → 𝑃 is cyclic of order 𝑛, i.e.,

(∀𝑘 ∈ ℕ) [𝜌(𝑘 + 𝑛) = 𝜌(𝑘)] .

Proof. Suppose not, i.e., that there is some 𝑘 ∈ ℕwith 𝜌(𝑘+𝑛) ≠ 𝜌(𝑘). Now 𝜌(𝑘+1), … , 𝜌(𝑘+𝑛)

covers all of 𝑃 by Claim 3, so for some 𝑖 ∈ ℕ, 0 < 𝑖 ≤ 𝑛, 𝜌(𝑘 + 𝑖) = 𝜌(𝑘). But 𝑖 ≠ 𝑛 by our

assumption. Hence 𝜌 is not injective (one-to-one) on {𝑘, 𝑘 + 1,… , 𝑘 + 𝑛 − 1}, since it hits 𝜌(𝑘) at

both 𝑘 and at 𝑘 + 𝑖, so on {𝑘, 𝑘 + 1,… , 𝑘 + 𝑛 − 1}, 𝜌 cannot be surjective onto 𝑃 = 𝑉 (a set of size

𝑛), but this contradicts the conclusion of Claim 3.

From this we can conclude that 𝜌ᇱ = 𝜌 ↾ ℤାଵ is a path through 𝐺 that is onto 𝑉 and that satisfies

𝜌ᇱ(𝑛) = 𝜌ᇱ(0), i.e., that 𝜌ᇱ is a Hamiltonian circuit in 𝐺 and witnesses that 𝐺 is a Hamiltonian graph.
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4. HARDNESS

We can now reiterate the main results of [13] about the difficulty of the PBSPCC (Theorem 5.2 of

[13]).

Theorem 4.1. Let 𝑝 ∶ ℕ → ℕ be an increasing polynomial where 𝑝(𝑛) ≥ 3𝑛ଶ + 3𝑛 for 𝑛 ≥ 2. Then

the following statements are true:

1. The PBSPCC of finding minimum size patrol covers is𝒩𝒫-hard.

2. The PBSPCC decision problem is𝒩𝒫-hard.

3. The 𝑝-bounded cyclic PBSPCC decision problem is𝒩𝒫-complete.

Proof. Note that 𝒯(⋅) is an 𝑂(𝑛) transformation, as 𝑁ᇱ has only grown by a fixed factor of

approximately 3. We will show that all three problems are𝒩𝒫-hard by demonstrating that 𝒯(⋅) is

a transformation from the Hamiltonian graph decision problem which is itself 𝒩𝒫-complete (see

[6]).

Suppose that 𝐺 = (𝑉, 𝐸) is a graph and we ask whether 𝐺 has a Hamiltonian circuit. Let 𝑛 = |𝑉|

and construct 𝒯(𝐺) = 𝑁ᇱ = (𝑉ᇱ, 𝐸ᇱ, 𝑃, 𝑄) and form a patrolled network (𝑁ᇱ, ℓ), where ℓ = (3𝑛 +

2, 1, 𝑑) and 𝑑(𝑒ᇱ) = 1 for all 𝑒ᇱ ∈ 𝐸ᇱ. Then:

1. For the PBSPCC we look for the minimum patrol cover size for (𝑁ᇱ, ℓ) and test whether that

minimum is 𝑛 + 1.

2. For the PBSPCC decision problem we ask whether there is a patrol cover of size 𝑛 + 1.

3. For the 𝑝-bounded cyclic PBSPCC decision problem we ask whether there is a patrol cover of

size 𝑛 + 1 where the cover is cyclic of order at most 𝑝(𝑛).

If 𝐺 has a Hamiltonian circuit, then by Lemma 3.1 we can construct such a patrol cover of size 𝑛+1,

with each element of that cover being cyclic of order 3𝑛(𝑛 + 1), which is less than 𝑝(𝑛), so for

each problem there is definitely such a cover. Note that for the more general PBSPCC minimization

problem we cannot have a cover of size≤ 𝑛, otherwise we would have each vessel patrolling patrol

regions without any prospect of leaving to replenish. Conversely, if there is a cover of size 𝑛 + 1

of (𝑁ᇱ, ℓ), then Lemma 3.2 allows us to conclude that 𝐺 is Hamiltonian. This demonstrates that all

three problems are𝒩𝒫-hard because any polynomial time solution to them will allow us to decide

the Hamiltonian graph decision problem.

OFFICIAL

14



OFFICIAL

DST-Group-TN-2026

To prove that the 𝑝-bounded cyclic PBSPCC decision problem is𝒩𝒫-complete, we just need show

that this problem is in𝒩𝒫. It is easy to test whether a set of routes combines to form a patrol cover

over a fixed set of times, so we just need to show that a set of routes can have a description whose

size is bounded by a polynomial. For (𝑁ᇱ, ℓ) we let size(𝑁ᇱ) ∶= |𝑉ᇱ| + |𝐸ᇱ|. By fixing 𝑝 before

we state the problem, we ensure that we only need to describe the states of at most 𝑝(size(𝑁ᇱ))×

size(𝑁ᇱ) different cycles – as a cover, if it exists, will be at most a size where each time step and each

patrol region gets its own dedicated patrol vessel – and each cycle will need at most 𝑝(size(𝑁ᇱ)) ×

size(𝑁ᇱ) pieces of information to describe it (as we only need to describe what it does at each of

its ≤ 𝑝(size(𝑁ᇱ)) time points). Therefore, we only need to test an input of size at most a constant

multiple of (𝑝(size(𝑁ᇱ)) × size(𝑁ᇱ))ଶ, which is a polynomial.
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