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ABSTRACT

This report describes the core foundational concepts of aerospace modelling, an understanding
of which is necessary for the analysis of complex environments that hold many entities, each
of which might employ a separate reference frame and coordinate system. I begin by defining
vectors, frames, and coordinate systems, and then discuss the quantities that allow Newton’s
laws to be applied to a complex scenario. In particular, I explain the crucial distinction
between the “coordinates of the time-derivative of a vector” and the “time-derivative of the
coordinates of a vector”. I finish by drawing a parallel between this aerospace language and the
notation found in seemingly unrelated areas such as relativity theory and fluid dynamics, and
make some comments on various supposedly different derivatives as found in the literature.
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On the Use of Vectors, Reference Frames, and

Coordinate Systems in Aerospace Analysis

Executive Summary

Classical concepts of kinematics are by now well established. But the many differences of
opinion on the subject easily found on various internet physics and maths discussion sites
indicate that despite being well established, these concepts are not necessarily well understood.
I believe that this confusion stems from standard textbook presentations on the subject, whose
applicability is limited to only very simple scenarios. In the complex environments encountered
in aerospace, a far more advanced understanding of the relevant concepts and their notation
is pivotal to the success of any analysis.

This report discusses the more advanced (but still standard) definitions of vectors, reference
frames, and coordinate systems that allow their use to model the most complex aerospace
scenarios. I begin by defining vectors, highlighting the crucial distinction between a proper
vector (an arrow) and a coordinate vector (an array of numbers). Next I define a reference
frame as a quasi-physical scaffold relative to which all motion is defined. I then define a
coordinate system essentially as a set of rulers attached to a frame, but with the proviso that
one’s choice of frame need not be tied to one’s choice of coordinates; that is, we are free to
quantify the events in our chosen frame by using the coordinates natural to another frame.

Having defined the basic concepts, I discuss the quantities that allow Newton’s laws to be
applied to a complex system. In particular, I explain the important difference between the
“coordinates of the time-derivative of a vector” and the “time-derivative of the coordinates of
a vector”, which is central to aerospace calculations. This difference is not widely appreciated
in the field, nor indeed in physics more generally, where it is generally taught only in advanced
courses in relativity—but where its meaning is easily lost in a forest of notation. And yet this
difference is a basic part of vector analysis that could easily be taught at a first-year university
level.

To unify the discussions of this report with the bigger picture, I finish by drawing a parallel
between this aerospace language and the tensor notation common in relativity theory. One
theme of this report is that some apparently different types of derivative found in the literature
are, in essence, identical: although often viewed as “new” or special, they are in fact nothing
more than standard derivatives written in a way that is meant to aid practitioners in the
various fields that use them.
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1 Introduction

Six-degree-of-freedom modelling is a classic example of a calculation in aerospace theory that
can involve multiple reference frames and coordinate systems. One might think that the
concepts of how to relate such frames and coordinate systems are well established, taught
to all physics/maths/engineering undergraduates, and with nothing new left to say. But a
study of non-specialist discussions and differences of opinion on the subject on various internet
physics and maths discussion sites [1] reveals a large variance in their contributors’ declared
understanding of the theory of vectors, reference frames, and coordinate systems, the basic
tools that describe position and motion. I believe that this general confusion begins early on,
with standard first-year university textbooks that were necessarily written for the simplest of
systems, and which understandably use abbreviated notation that is fully appropriate to the
tasks they address. These first-principles ideas and notation are simply inadequate to handle
more advanced systems such as the complex dynamics of aerospace. There, some concepts
and notation must be redesigned to handle environments involving multiple entities each with
their own reference frame and coordinate system. In particular, when calculating velocity,
the crucial distinction between the “coordinates of the time-derivative of a vector” and the
“time-derivative of the coordinates of a vector” is generally not given the attention it deserves,
and tends to be absent from many discussions. These two quantities are unequal for all but
the simplest scenarios.

The objects described in kinematic scenarios range from a pendulum or a train confined
to a rail, to an aircraft flying over a curved Earth while being tracked by a spinning satellite.
Simplistic definitions of vectors, reference frames, and coordinate systems are usually quite
adequate for non-demanding scenarios, but they tend to fail when used to describe the complex
environments that are of real interest in aerospace.

This report aims to highlight and address such difficulties by drawing attention to more
sophisticated definitions and notation for the subject. I begin by defining vectors, frames,
and coordinate systems, and then discuss the ideas that allow Newton’s laws to be applied to
a complex system. Newton’s laws are of course fundamental to the field, but I include them
in this report to highlight the full attention which must be given to the various frames and
reference points that are necessary to make full sense of these laws in complex environments.

The notation used in the following pages is similar to that used by Zipfel in his book
Modeling and Simulation of Aerospace Vehicle Dynamics [2]. What might at first seem like
notational clutter, both in this report and in Zipfel’s book, quickly becomes useful when
a plethora of vectors, frames, and coordinate systems are all playing concurrent roles in a
scenario being analysed. The simple notation of an undergraduate physics textbook is very
useful for simple scenarios, but it fails to cope with anything more advanced.

A good starting point is the notion of a continuous space populated with objects whose
behaviour we wish to analyse. Discussions of reference frames can easily become esoteric—
such as with Mach’s ideas of inertia—and so we might not hope to define everything in an
absolute sense; but neither should our definitions become an infinite chain of turtles standing
on the backs of turtles: we must stop somewhere and rely on usage to dictate the meaning of
the core ideas. The concepts described in the next few sections are introduced in an ordered
way, but this does not rule out their being re-ordered with a different description, depending
on which is treated as constructible from the others.
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2 The First Concept: Proper Vectors

Two quite distinct objects are routinely called a “vector” [3]. The first is a proper vector,
which is a geometrical quantity, drawn very usefully as an arrow, and envisaged without
any possibility of confusion as a real physical object, such as a straight piece of wood with
an arrowhead at one end. This concrete view makes it clear that, like a point, a proper
vector can be thought of as existing in an absolute sense: it can be “seen” by all. It has no
numbers explicitly associated with it. The second type of object commonly called a vector is
a coordinate vector, an ordered set of numbers discussed in Section 5. We will write a given
proper vector in boldface as v, with length v. Note that v is an arrow, a geometrical quantity
with a kind of absolute existence, with no numerals associated with it.

The proper vector is useful because it can be treated as a building block of the world that
we wish to analyse. Given fundamental ideas of distance and angle, we can use vectors to
construct a complex object and hence describe it.

We must be careful to distinguish a proper vector from a point. A proper vector requires
two points to define it: a head and a tail, and it follows that a single point is not a proper
vector. The position of a point A can only be quantified by describing its displacement
relative to a given point B. This displacement vector is the fundamental proper vector: it can
be modelled as an arrow, with tail at point B and head at A. We will write this displacement
vector of A relative to B as rAB. The usual “triangle law of addition” for vectors (arrows)
says that

rAB + rBC = rAC . (2.1)

Multiplying a proper vector by a positive number simply increases its length by that factor.
Multiplying it by −1 just reverses its direction, so

rAB = −rBA . (2.2)

When a point’s position is loosely described as a (proper) vector, what is really meant is that
the displacement of the point from some given origin is a proper vector. Although one can
add vectors (both proper and coordinate) and multiply them by numbers, points cannot be
added or multiplied in the same way.1

Describing objects by the arrows that are the primordial proper vectors has given rise to
the field of linear algebra, in which proper vectors become codified into elements of a vector
space. All scientists are familiar with “adding” arrows top-to-tail, and with this operation,
the axioms that define a vector space—found in every book on linear algebra—are easily
understood when we use arrows as examples of the elements of the vector space. For example,
scaling a proper vector, and adding two of them, produces another proper vector.

1In relativity an event becomes a point in spacetime, and proper vectors are called four-vectors in the four
dimensions of spacetime. Just as a point is not a vector in ordinary spatial analysis, in relativity an event is
not a four-vector. But you will often see the spacetime coordinates (t, x, y, z) of an event mistakenly called a
four-vector. We might well construct a four-vector whose tail is at some event designated as the origin of the
spacetime coordinates, and whose head is at the event (t, x, y, z); but that is a very specific state of affairs,
because there is generally nothing special about the coordinate origin. This is discussed further (for space only)
in Section 7.3.

2
UNCLASSIFIED



UNCLASSIFIED
DST-Group–TR–3309

3 The Second Concept: Reference Frames

A reference frame, or simply“frame”, can be pictured as a rigid lattice attached to an observer,
relative to which that observer quantifies the motion of objects. In the classical mechanics of
aerospace, this single observer makes measurements in some way that is not (and need not
be) always specified. I use the words “frame” and “observer” interchangeably in this report.
Although not discussed further here, in the subject of special relativity it becomes necessary
to imagine the lattice as populated with a continuum of agents, each occupying a fixed point
on the lattice and holding their own clock, who each record the positions and times of events
only in their“very close”vicinity, and who send their data to a master station that periodically
collates this information to form a global picture of the scenario of interest. But even this
complex setup is called both a frame and a single observer.

The idea of reference frames is rooted in notions of statics, kinematics (motion), and
dynamics (forces and masses). Begin with an idea of the points at the corners of the lattice
of the frame being used. Consider the displacement of a given point from some reference
point. Being an arrow, displacement is a proper vector, and in fact is the primordial proper
vector. For example, the displacement of Adelaide relative to (i.e. from) Perth is the arrow
embedded in Earth whose tail is at Perth and whose head is at Adelaide. All observers agree
on the nature and identity of this displacement vector, because it can be constructed as a
giant wooden arrow connecting Perth and Adelaide. All observers, regardless of their relative
orientation or motion, will construct the same arrow—neglecting considerations of special
relativity here and throughout this report. The displacement of Adelaide from Perth is a
well-defined, completely unique proper vector, and requires no further information attached
to it, such as the identity of any observer. So the notation rAP for the displacement (vector)
of Adelaide relative to Perth does not need any choice of frame specified.

Next, consider kinematics: the subject of velocity, or how displacement vectors vary with
time:

velocity vector ≡ d

dt
(displacement vector) . (3.1)

Time-differentiating a changing proper vector entails subtracting that vector at time t from
that vector at time t+ ∆t, dividing the result by ∆t, and taking the limit ∆t→ 0. In what
amounts to the same thing, we can subtract the vector at time t from the vector at time t+ dt
and divide the result by dt (this process invisibly incorporates taking the limit), as shown in
Figure 1. This differentiation can in principle be carried out purely geometrically, without
using numbers.

Observers who rotate relative to each other will obtain different results when they measure
how a displacement vector is changing with time. For example, everyone at rest on Earth
agrees that Adelaide has no velocity relative to Perth, because they each measure the dis-
placement vector of Adelaide from Perth not to change with time. But an observer hovering
outside Earth, at rest relative to the distant stars and not rotating relative to them, will see
the displacement vector of Adelaide from Perth rotate through 360◦ once every “sidereal day”
(about 23 hours 56 minutes), and will conclude that the velocity of Adelaide relative to Perth
is non-zero (and in fact the velocity vector itself also rotates through 360◦ once per sidereal
day, as do all of its time derivatives). I signal this difference in the calculation of velocity by
saying that whereas all observers fixed to Earth’s surface inhabit the same frame—usually
called the Earth-Centred Earth-Fixed frame, or ECEF2—the observer hovering at rest rela-

2“Earth-Centred” actually has nothing to do with the frame, and presumably refers to one choice of coordi-
nates for it. See the footnote on page 5 for further discussion.
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rAP (t) rAP (t+ dt)

Frame F

vFAP dt

Figure 1: In frame F , the velocity of Adelaide A relative to Perth P is found from the (black)
displacement vectors of Adelaide relative to Perth at times t and t+ dt: we translate
one displacement vector so that both share a common tail, which facilitates subtract-
ing the earlier from the later vector and dividing the (red) resulting vector by dt.
The result is the velocity vFAP of Adelaide A relative to Perth P in frame F .

tive to the stars inhabits a different frame, the Earth-Centred Inertial frame (ECI). So, two
observers are defined to inhabit the same frame if they construct the same velocity (proper
vector, an arrow) of any given point relative to some other given point.

It follows that when describing or analysing a kinematical situation, one must always
specify the frame being used. Any analysis that does not make this choice clear is set to fail
at some point.

Finally, consider dynamics, the study of how forces affect masses. This is the realm of
Newton’s laws, which apply in their simplest form only to inertial frames. (Using other frames
requires introducing “pseudo forces”, which are really just book-keeping devices calculated by
applying Newton’s laws in an inertial frame.) A frame is defined to be inertial if a free mass
maintains a constant velocity in that frame. No frame is truly inertial. We can imagine
hovering high above Earth, at rest relative to the distant stars, watching Earth rotate. If
we throw a ball, the ball will hold an almost-constant velocity for a short while before the
acceleration it receives from Earth’s gravity begins to change the ball’s velocity to a measurable
extent. The higher we hover, the weaker Earth’s gravity will be at our location, and the
more inertial our frame will be, and over a longer time. The ECI is the non-rotating frame
constructed by one who is far enough from Earth to be treated as permanently inertial; but
this frame does extend far enough into space from that observer to include Earth within it.

4 The Third Concept: Coordinate Systems

In any scenario, kinematic quantities such as position, velocity, acceleration, and angular
momentum must be definable as proper vectors by examining the scenario of interest in a
chosen frame. Only when we wish to perform numerical calculations might we decide to
introduce a coordinate system.

A frame and a coordinate system are very often confused and thought to be the same
thing, but they are quite different entities and ideas. A frame is a construct that enables us
to recognise motion (if not quantify it), whereas a coordinate system is a collection of sets of

4
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numbers that specifies the locations of points. The world can be treated as formed of points
that exist in an absolute sense, and which have nothing to do with any frame. Two observers
(i.e. different frames) will agree completely on the identity of a particular point or event.
While it might sound obvious or trivial, it is worth emphasising that if each observer places
a fingertip at the chosen point, then their fingertips will touch. The observers may well have
some relative rotation, but a point in space is a primal concept of location: the point cannot
rotate because it simply has no structure that is rotatable.

Given a frame, a coordinate system can be created by labelling with numbers the lattice
points that make up the frame, so that each point has associated with it a set of coordinates.
This is one way of constructing a coordinate system, but it does not imply that given a frame,
we are obliged to use coordinates that were constructed in this way. Instead we are free to
use a different coordinate system. The fact that this other coordinate system was constructed
by attaching numbers to a different frame is of no importance. A given coordinate system
need not have any relationship to a given frame. For example, coordinates that are fixed in
the ECEF can certainly be used to quantify a velocity measured in the ECI. Or we might
choose cartesian coordinates originating at an aircraft’s centre and with axes embedded in
the aircraft’s body, to describe the orbit of a satellite around Earth. But although frames
and coordinates are not related, a choice of frame may well suggest some natural choices of
coordinates. Consider the ECEF, which describes the view of an observer for whom no part
of Earth’s body moves. A particular choice of cartesian coordinates (defined in Section 6)
that is often used with the ECEF has its axes originating at Earth’s centre and embedded
in the solid body of the planet. The x axis emerges at lat/long 0◦/0◦, the y axis emerges at
lat/long 0◦/90◦, and the z axis completes a right-handed set.3

A second coordinate system used for the ECEF is latitude/longitude/height. A third is,
say, the north–east–down set of axes originating at any fixed place of interest, such as Adelaide;
like the previous two coordinate systems, these axes define a set of xyz coordinates for any
point in the universe (and not just “near” Earth’s surface).

A natural coordinate system for the ECI is a cartesian set of axes originating at Earth’s
centre, that are fixed relative to the distant stars. The x axis points to the First Point of
Aries, a point in the sky defined by Earth’s spin axis (the z axis) and Earth’s orbit around
the Sun, and which changes only slowly over the course of centuries. The y axis completes
the right-handed set.

In relativity each reference frame is traditionally given its own dedicated coordinate system,
so that discussion of frames tends to be inseparable from discussion of the relevant coordinates.
Also, the arrows that all observers agree to have some kind of “objective” reality become four
dimensional, joining events in space and time rather than points in space. The interesting
topic of whether one observer might gain from using the coordinate system of another observer
is not conventionally discussed in the subject.

3Does “ECEF” denote a frame or a coordinate set? While “Earth-Fixed” describes the view of Earth as
fixed (so relates to a frame), “Earth-Centred” relates to the cartesian coordinates just described, that originate
at Earth’s centre. Perhaps this very acronym highlights the general confusion that exists between frames and
coordinates.
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5 The Fourth Concept: Coordinate Vectors

Proper vectors are usually simply called vectors. But another type of object is also commonly
called a vector: a coordinate vector. This is a row or column of numbers that describes a
proper vector using some choice of coordinates: we will normally write it as a column, so
in n dimensions it’s an n× 1 matrix of numbers; but we make an exception when it occurs
within a line of text, where for space reasons it will be written as a row, and with parentheses
instead of brackets to indicate this exception is being made. And although points are not
vectors, we will also write the coordinates of points as a parenthesised row of numbers; there
should be no confusion.

The Correspondence Principle, a basic statement of linear algebra, says that any proper
vector (an arrow) can always be represented numerically by a coordinate vector (an array
of numbers). Proper vectors are the arrows that we draw to develop an intuitive feel for
a scenario; coordinate vectors are the arrays of numbers that we use for calculation. A
given proper vector can be associated with an infinite number of different coordinate vectors,
corresponding to an infinite number of different choices of coordinate system. For the same
reason, a given coordinate vector can be associated with an infinite number of different proper
vectors. In the absence of a coordinate system, a given proper vector has no connection with
a given coordinate vector. They are two entirely different objects.

For any proper vector v, we write the coordinate vector that quantifies v in a coordinate
system S as [v]S (as in [3]), so that [v]S is a (say, 3× 1) matrix of numbers. Given v and S,
the proper and coordinate vectors v and [v]S are two ways of describing the same entity.
In this report I will usually write an arbitrary proper vector as v, where the “v” stands for
“vector”. (Note in particular that although velocity is a proper vector, v need not specifically
denote velocity in the generic discussions of this report.)

The “[ ]S” notation is a linear operation, so is very easy to work with. The every-day
adding of proper vectors by adding their components is written as [a+ b]S = [a]S + [b]S :
“the components of the sum are the sums of the components”. Scaling a vector by a real
number r is written [ra]S = r[a]S : “the components of a multiple are the multiples of the
components”.

Both the dot product and cross product are defined for both proper vectors and coordinate
vectors in such a way that the following hold for any vectors a, b and choice of coordinates S:

a ·b = [a]S · [b]S , [a× b]S = [a]S × [b]S . (5.1)

Normally of course, we don’t apply such rules explicitly; they simply describe what we are
doing when we “dot” or “cross” two vectors in the usual way by working with their com-
ponents. But it is worth noting that, for example, the dot is being used in two separate
ways here: it combines two proper vectors via the usual expression “a ·b = |a| |b| cos θ”, and
it combines two coordinate vectors via a rule that is written for cartesian coordinates as
(ax, ay, az) ·(bx, by, bz) = axbx + ayby + azbz. (For more general coordinates this rule is writ-
ten similarly but with a weight factor attached to each of the six possible products of the
components. These weights are the relevant “metric coefficients”.) A similar comment applies
to the cross-product operation.

A final point is that whereas a matrix can multiply a coordinate vector (a column of
numbers), it cannot multiply a proper vector, since “matrix times arrow” is not defined. Thus
in the context of this report where nothing is omitted in the notation, “M [v]S” is meaningful

6
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when M is a matrix, but “Mv” is not. In the sections to follow, we will see similarly that
when F denotes a frame, “dFv/dt” and “d[v]S/dt” are meaningful, but “dv/dt” is not.

The relationship of a proper vector (the actual object) to a coordinate vector (that object’s
representation is some chosen coordinate system) is similar to the relationship of a number to
its representation in some base. A number is an object with a concrete existence (such as the
number of fingers on each of my hands), and it has a numeric-string representation in some
chosen basis: this number of fingers is written “5” in base 10 (or indeed in any base higher
than 5), but “12” in base 3. A given number can be written as various strings of numerals
depending on the base chosen, and a given string of numerals can denote various numbers
depending on the base chosen.

6 Basis Vectors

A coordinate system has associated with it at each point a set of basis vectors, one for each
dimension/coordinate. We will take it as given that any vector can be written as a linear
combination of basis vectors, a fact that can be found in any book on introductory linear
algebra.

When the basis vectors at each point are mutually orthogonal, of unit length, and don’t
change their orientation from one point to the next, the associated coordinate system is called
cartesian, and is especially easy to work with. A flying aircraft typically defines its own
cartesian coordinate axes as embedded in its body, but even if the aircraft flies straight and
level over Earth’s curved surface, an observer at rest on Earth will see the relevant basis
vectors change from point to point, and must incorporate that change if using the aircraft’s
coordinates.

Suppose that in three dimensions we have a set of u, v, w coordinates which may or may
not be cartesian. A curve along which one of these coordinates changes while the other two
are held fixed need not be a straight line. We construct the u basis vector “eu” at any point P
in the following way. (Because P is a point, not a vector, we don’t write it bold.) Start at P ,
and step an infinitesimal amount in u while holding v and w constant. The end of the step
is the new point P + dP , where the vector pointing from start to end points is written dP
(and we have signalled that it is a proper vector by writing a bold P ). The basis vector eu
at P is defined to be this infinitesimal vector divided by the infinitesimal increase du in u:

eu = dP /du , with v, w constant. (6.1)

This vector is the same regardless of whether du is positive or negative; that is, we could step
in either direction along the relevant curve. Treating P as a function of the coordinates, we
could write

eu ≡ ∂P (u, v, w)/∂u . (6.2)

With this definition (6.2), the vector that represents an infinitesimal step away from P in an
arbitrary direction is written using the chain rule of partial differentiation as

dP = du
∂P

∂u
+ dv

∂P

∂v
+ dw

∂P

∂w
= du eu + dv ev + dw ew . (6.3)

(We cannot generally write a similar expression for a non-infinitesimal step away from P ,
because the basis vectors might change with position.) With S labelling the coordinate system
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{u, v, w}, the coordinate vector of this step dP is

[dP ]S =

 du
dv
dw

 . (6.4)

This is a familiar result when using cartesian coordinates, but we now see that it also holds
for non-cartesian coordinates. The catch is that the basis vectors eu, ev, ew might not have
unit length or be orthogonal, so that the dot- and cross-product operations will need to be
modified for such coordinates.

As a side comment, we might write the components of a point as

“ [P ]S =

 uv
w

 .” (6.5)

But we must be careful to remember that this is just notation: the non-bold P here signifies that
it is a point and not a vector. Equation (6.5) certainly does not say that P equates to a vector
ueu + vev + wew, because if that were so, which eu, ev, ew would we mean here, since in general they
are functions of position? A similar expression is often written when using cartesian coordinates: you
will often see a point written in such coordinates as “xi + yj + zk”, where i, j,k denote ex, ey, ez
respectively. (On a historical note, the use of i, j,k is a quaternion convention predating vectors, which
derived from the non-bold i representing

√
−1 .) But this description of a point as a displacement

from the coordinate origin is valid only because the cartesian basis vectors ex, ey, ez don’t change with
position.

Given two coordinate systems u, v, w and u′, v′, w′, the chain rule of partial differentiation
says, e.g. for eu′ ,

eu′ =
∂P

∂u′
=
∂u

∂u′
∂P

∂u
+
∂v

∂u′
∂P

∂v
+
∂w

∂u′
∂P

∂w

=
∂u

∂u′
eu +

∂v

∂u′
ev +

∂w

∂u′
ew , (6.6)

which shows how to relate two sets of basis vectors. We see from (6.6) that the S coordinates
of eu′ are

[eu′ ]S =

 ∂u/∂u′

∂v/∂u′

∂w/∂u′

 =
∂

∂u′

 uv
w

 . (6.7)

There is nothing mysterious about differentiating a matrix in (6.7). Differentiation uses a subtraction
and a scaling, and these are both defined component-wise for a matrix. So the derivative of a matrix is
simply the matrix of derivatives of its components.

The resemblance of (6.7) to (6.5) is somewhat superficial, but is potentially a cause for con-
fusion. We must realise here that the (u, v, w) on the right-hand sides of (6.5) and (6.7) is
not a coordinate vector; it is merely an array of the coordinates of the point P .

As an example, we calculate the cartesian coordinates of the polar basis vectors er, eθ.
Begin with

x = r cos θ , y = r sin θ . (6.8)

We could write

er =
∂x

∂r
ex +

∂y

∂r
ey , eθ =

∂x

∂θ
ex +

∂y

∂θ
ey , (6.9)

8
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origin of polar coordinates
x

y
(x, y)

ex

ey

(x, y)

ex

ey (r, θ)

er

eθ

(r, θ)

er

eθ

Figure 2: Basis vectors for polar and cartesian coordinates in two dimensions. The cartesian
basis vectors have unit length and are identical everywhere. The polar basis vector er
points everywhere radially outward from the origin of the polar coordinates, and has
unit length. The polar basis vector eθ is everywhere transverse, and is easily shown
to have length r.

or—the same idea but more compact—we could apply (6.7), writing C for the cartesian
coordinates:

[er]C = ∂r

[
x
y

]
= ∂r

[
r cos θ
r sin θ

]
=

[
cos θ
sin θ

]
(which has unit length) ,

[eθ]C = ∂θ

[
x
y

]
=

[
−r sin θ
r cos θ

]
(which has length r) . (6.10)

Examples of these basis vectors for polar coordinates along with basis vectors for cartesian
coordinates are shown in Figure 2. The cartesian basis vectors always point in the same
direction regardless of where they are situated: ex always points right in the figure, and
ey always points up. Because of this, whenever cartesian basis vectors are drawn at all, they
tend to be drawn just once, typically with their tails at the coordinate origin. In contrast, the
polar basis vectors really do change from point to point. At each point, the radial vector er
always points radially out from the origin of the polar coordinates and has unit length, and
the transverse vector eθ is found by rotating this er 90◦ counterclockwise and giving the result
length r.

The above definition (6.2) of a basis vector eu as a partial derivative ∂P/∂u has led to the
notation “∂/∂u” sometimes being used to denote that basis vector. There is no implication in
the above analysis that a basis vector is the operator ∂/∂u: the operating has already been
done on P , so to speak. Nevertheless, the modern language of differential geometry does in
fact omit P , defining eu as precisely this partial derivative operator ∂/∂u; and more generally,
it defines a vector to be a linear combination of these operators. This particular abstraction
finds no application in aerospace. To use proper vectors in real physical scenarios, define them
to be geometrical arrows as we have done here, and then you will always be able to construct
a meaningful and useful picture.

The handedness of a three-dimensional coordinate system u, v, w is determined by its basis

UNCLASSIFIED
9



DST-Group–TR–3309

UNCLASSIFIED

vectors eu, ev, ew: if the angle between eu × ev and ew is between 0 and 90◦, the coordinate
system is called right handed; otherwise it is left handed. Although coordinate systems can
have any handedness, it is wise to ensure that all such systems being used concurrently have
the same handedness. The usual convention is that they are right handed. Right handedness
is built in, for example, to the standard expression for calculating a cross product from vector
components, so that calculating the cross product for the left-handed case would require using
a non-standard formula. Although there is nothing wrong with doing this, one must not lose
one’s audience along the way, and certainly it is considered very conventional and safe to settle
on one convention, which is that coordinates are constructed as right handed in aerospace. In
fact they are typically constructed as orthonormal: the basis vectors all have unit length and
are mutually orthogonal. In the case of polar coordinates, the basis vectors are orthogonal
but not all of unit length. Even so, they can be normalised, and examples of this are given in
the next section and in Appendix A.1.

6.1 Example: Basis Vectors for Polar Coordinates

What are the basis vectors for a latitude/longitude/height coordinate system of the ECEF?
Write4

λ = latitude , φ = longitude , h = height above sea level. (6.11)

For simplicity, suppose Earth is a perfect sphere of sea-level radius R. (Earth’s actual oblate
spheroid shape means that the following equations don’t quite apply to it, but this discussion
is for illustration only. The main ideas here extend to a surface of any shape.) At any point
(λ, φ, h) which may or may not be on Earth’s surface, consider making a single step north
by some infinitesimal latitude dλ > 0 (meaning longitude and height are held constant), and
constructing the corresponding displacement vector dP . This points north and has length
(R+ h) dλ. Following (6.1), divide that vector by dλ to give eλ, which thus points north with
length R+ h. We could equally well step south instead of north, in which case the latitude
increase is dλ < 0: when the south-pointing displacement vector dP is divided by dλ (which
is now negative), the resulting eλ will again point north as it should, since it’s defined to be
unique at any point.

Similarly, eφ points east with length (R+ h) cosλ, and eh points up with length one.
These vectors are easily expressed in the commonly used xyz coordinates for the ECEF that
originate at Earth’s centre, as shown in Figure 3. First, relate λ, φ, h in the usual spherical
polar way to the cartesian set x, y, z via

x = (R+ h) cosλ cosφ ,

y = (R+ h) cosλ sinφ ,

z = (R+ h) sinλ . (6.12)

Now write the proper vector eλ as, following (6.6),

eλ =
∂x

∂λ
ex +

∂y

∂λ
ey +

∂z

∂λ
ez

= −(R+ h) sinλ cosφ ex − (R+ h) sinλ sinφ ey + (R+ h) cosλ ez , (6.13)

4The symbols in (6.11) are also used by others, and make sense for two reasons: (1) φ is very commonly
used as the angle of longitude in spherical polar coordinates even when Earth is not present, and (2) the first
two letters of “lambda” match those of “latitude”. But be aware that some practitioners call longitude λ and
latitude ψ, which matches no other implementation of spherical polar coordinates.

10
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x

y

z

λ

φ

R+ h

uλ
uφ

uh

Figure 3: The geometry defining the coordinates (λ, φ, h) in (6.12)

and thus as a coordinate vector in xyz coordinates:

[eλ]xyz =

−(R+ h) sinλ cosφ
−(R+ h) sinλ sinφ

(R+ h) cosλ

 . (6.14)

Similar analysis gives the coordinate vectors [eφ]xyz and [eh]xyz.

The lengths and mutual angles of basis vectors are encapsulated in the metric coefficients
of the relevant coordinate system. Define

gαβ ≡ eα ·eβ . (6.15)

For the above lat/long/height coordinates,

gλλ = (R+ h)2 , gφφ = (R+ h)2 cos2 λ , ghh = 1 , (6.16)

and all other combinations gλφ etc. equal zero. Because eλ, eφ, eh are mutually orthogonal,
the lat/long/height coordinate system is called orthogonal. But it is not orthonormal, because
the basis vectors are not all of unit length. And it’s certainly not cartesian, because the basis
vectors change direction and/or length from point to point.

The above gives mathematical meaning to the “east–north–up” coordinates frequently
used in aerospace analyses: eφ points east with length (R+ h) cosλ, eλ points north with
length R+ h, and eh points up with length one. But east–north–up coordinates are usually
defined as an orthonormal basis, meaning their basis vectors have unit length:

east unit-length basis vector = uφ ≡
eφ∣∣eφ∣∣ =

eφ
(R+ h) cosλ

,

north unit-length basis vector = uλ ≡
eλ
|eλ|

=
eλ

R+ h
,

up unit-length basis vector = uh ≡
eh
|eh|

= eh . (6.17)
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For example, (6.14) then gives the coordinates of the north unit-length basis vector as

[uλ]xyz =

− sinλ cosφ
− sinλ sinφ

cosλ

 , (6.18)

and similarly for the east and up unit-length vectors, uφ and uh. If we work within the ECEF
and agree to use the east–north–up coordinates originating at a fixed point such as Adelaide
to describe any point (which could even be on Pluto), then those coordinates will certainly
be cartesian because by definition, at any other point in space they are made to be parallel
to those at Adelaide. On the other hand, if we embed the basis vectors in the body of an
aircraft, then they can change from point to point along the aircraft’s track if it manoeuvres,
and so will not be cartesian. They will be defined only at points occupied by the aircraft;
and if the aircraft visits a given point more than once, the basis vectors at that point will be
updated to the latest set each time the point is occupied.

7 Relating Different Coordinate Systems

One or more observers might express a proper vector v in multiple coordinate systems: call
those systems A and B. Vector v is written as [v]A using A coordinates, and as [v]B using
B coordinates. How are the 3× 1 matrices [v]A and [v]B related? I answer this question in
the section that follows, and then extend the idea beyond the realm of vectors.

7.1 Relating Vector Components

The following is a standard approach of linear algebra that shows how to transform a co-
ordinate vector between coordinate systems. It requires the basis vectors to be orthonor-
mal—meaning of unit length and mutually orthogonal—so we remind ourselves of that by
writing the orthonormal basis vectors of coordinate system A as (keeping to 2 dimensions for
economy of notation) uxA ,uyA , and the orthonormal basis vectors of coordinate system B as
uxB ,uyB . (The following can be re-expressed for a general basis, but some complexity arises,
and since aerospace universally uses only orthonormal bases, we confine discussion to those.
The details for a general basis are given in Appendix A.) Starting with an arbitrary proper
vector v written in two coordinate systems as

v = vxAuxA + vyAuyA = vxBuxB + vyBuyB , (7.1)

the relevant coordinate vectors of v are

[v]A =

[
vxA
vyA

]
=

[
v ·uxA
v ·uyA

]
, [v]B =

[
vxB
vyB

]
=

[
v ·uxB
v ·uyB

]
. (7.2)

Now consider

[v]B =

[
v ·uxB
v ·uyB

]
=

[(
vxAuxA + vyAuyA

)
·uxB(

vxAuxA + vyAuyA
)
·uyB

]

=

[
uxA ·uxB uyA ·uxB
uxA ·uyB uyA ·uyB

] [
vxA
vyA

]
≡ µAB [v]A . (7.3)
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That is, the direction-cosine or orientation matrix µAB transforms coordinates from A to B:

[v]B = µAB [v]A , (7.4)

where (7.3) shows that the columns of µAB are the basis vectors of A written in B coordinates:

µAB ≡
[

[uxA ]B [uyA ]B

]
. (7.5)

Equation (7.4) has here been derived for coordinates with orthonormal basis vectors, but in
fact it holds also for general coordinates, as shown in Appendix A. Although orthonormal
coordinates are the only type ever used in aerospace analysis, we will derive various results in
the pages to come using (7.4), which are thus true for more general coordinate systems.

It might be thought that (6.7) can now be used to calculate the matrix µAB, but that would
be so only if equations relating the A coordinates to B coordinates were available—and if all
basis vectors were orthonormal. In practice such equations are generally unavailable, so the
matrix µAB must be calculated by other means. See [4] for details.

It’s clear that
[v]A = µBA µ

A
B [v]A , (7.6)

so that
µBA =

(
µAB
)−1

. (7.7)

For orthonormal coordinates, (7.3) shows that the rows of µAB are the basis vectors of B
written in A coordinates. From this, it’s not hard to see that

µBA =
(
µAB
)t
. (7.8)

So a µ matrix for orthonormal coordinates is orthonormal: its inverse equals its transpose.
This is not the case for non-orthonormal coordinates.

The µ matrices can be “chained” together; for example, with three coordinate systems:

[v]A = µBA [v]B = µBA µ
C
B [v]C ≡ µCA [v]C , (7.9)

showing that
µCA = µBA µ

C
B , (7.10)

and similarly for any number of coordinate systems.

7.2 Relating Rank-2 Tensor Components

Just as a proper vector v is a geometrical object whose A-coordinates can be written as a
3× 1 matrix [v]A, so too a linear operator L that transforms v to another vector Lv can be
coordinatised, and is most usefully then written as a two-dimensional matrix [L]A. This is a
fundamental idea in linear algebra, where L might be a rotation, or a stretch. To match the
geometrical picture of v as an arrow, the operator L can be envisaged as an object in its own
right that combines with a proper vector to produce a new proper vector. Whereas differential
geometry has taken a proper vector (an arrow) and redefined it to be an operator, here we
are taking an operator (L) and treating it as an object in its own right that “combines” with
a proper vector v to produce Lv.
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Just as a proper vector is independent of any choice of coordinates, so too this new ob-
ject L, called a tensor, is independent of any choice of coordinates; e.g. we can rotate an arrow
in space without any reference to a coordinate system. Similar to proper vectors and coordi-
nate vectors, we might call L a “proper tensor” to distinguish it from its coordinates [L]A, a
“coordinate tensor”. But perhaps universally the proper tensor is simply called a tensor; and
when it operates on a vector, the coordinate tensor can usefully be written as a matrix, so it
tends to be called simply a matrix. The relationship between coordinates and tensor/vector
is

[L]A [v]A = [Lv]A . (7.11)

For example, if A is the xy cartesian coordinate system in the plane and L rotates a vector
counter-clockwise through angle θ,

[L]A =

[
cos θ − sin θ
sin θ cos θ

]
, [v]A =

[
x
y

]
, [Lv]A =

[
x cos θ − y sin θ
x sin θ + y cos θ

]
. (7.12)

Extending Section 7.1 we ask the question: how do the matrices [L]A and [L]B relate?
Consider:

[L]B [v]B = [Lv]B
(7.4)
=== µAB [Lv]A = µAB [L]A [v]A = µAB [L]A µ

B
A [v]B , (7.13)

and since v is arbitrary, it follows that

[L]B = µAB [L]A µ
B
A . (7.14)

Equations (7.4) and (7.14) are fundamental to any study of coordinatising tensors (see e.g. [2]
for the use of these expressions in aerospace).

L is a “rank-2 tensor” because it needs two indices to coordinatise it, corresponding to its
matrix representative being 2-dimensional. Proper vectors are also tensors because of their
“concrete” existence independent of a coordinate system. Needing a single coordinate index to
describe them (and hence being naturally written as arrays), they are called rank-1 tensors.
Unlike vectors with their pictorial representation as an arrow, higher-rank tensors are perhaps
not readily visualised.

The simplest tensor is a rank-0 tensor, called a scalar, which is a number with no coordinate
dependence—so no coordinate index is necessary. The height at any point on a mountain and
the temperature at any point in a room are both scalars. The word “scalar” is often loosely
used to denote simply a number, but it has a more refined meaning than that: it is a value of
some quantity that doesn’t depend on coordinate choice.

The main feature of a tensor of any rank is that as an “object”, it is independent of the
coordinate system chosen to represent it. As an example with a 2-dimensional vector v, the
sum vxAexA + vyAeyA equals the sum vxBexB + vyBeyB (which equals v), but the coordinate
vector (vxA , vyA) is not required to equal (vxB , vyB ). An older definition of a tensor (which
includes a vector as one possible type) is modelled on the spatial-invariance property of a
vector, but this older definition acknowledges the existence of coordinate vectors but not
proper vectors. So this older definition treats the tensor as comprised in some sense only of
its coordinates, defining the tensor to be the aggregate of all possible coordinate sets that
it can have, and stipulating that these coordinates must transform between their respective
coordinate systems via, say, (7.4) or (7.14)—although expressions involving partial derivatives
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are more usually used for that transform, following the analysis of Section 6. This “behaviour
under a transform” definition follows from the above analysis, but when seen in isolation, it
begs the question of why the coordinates should relate via (7.4) or (7.14). In the modern view,
the tensor’s coordinates certainly do depend on the coordinate system via (7.4) or (7.14), but
the tensor itself does not depend on the coordinate system. This independence of coordinate
system was known to the earliest researchers who incorporated tensors into physics, because
that independence is the entire reason that tensors are useful. The old idea that a tensor is an
aggregate of sets of numbers only mistakes the components for the tensor itself. The modern
view defines a tensor as anything that does not depend on the choice of coordinates: a much
simpler definition!

Remember that a matrix is not a tensor. Rather, a matrix is a convenient way to write the
components of a rank-2 tensor in some chosen basis. This is just an extension of the statement
that a column of three numbers is not a proper vector.

7.3 Interpretations of “Position”

As stated in Section 2, the position of a point A is not a proper vector. Instead, we can
only quantify A’s position relative to some other point B, in which case the displacement
vector rAB might simply be called the “position of A”, and almost certainly written as rA
when the presence of B is understood. The “relativeness to B” is then implied, but we must
always be aware of which point has been chosen as the reference B.

The reference point B is often the origin O of a set of cartesian coordinates that has been
chosen to quantify the events of some frame. Suppose observer (i.e. frame) 1 uses a coordinate
system 1, and observer 2 uses a coordinate system 2. Observer 1 chooses to define the position
of A as rAO1

, meaning relative to the origin O1 of coordinate system 1. Likewise, observer 2
chooses to define the position of A as rAO2

. These two positions are different proper vectors
if O1 and O2 are different points. Moreover, each observer recognises both vectors as the real
entities that they are; there is no disagreement anywhere. Using the usual way of adding
vectors, the positions quantified by the two observers are related via

rAO1
= rAO2

+ rO2O1
, (7.15)

as shown in Figure 4. The proper vector rO2O1
describes the displacement of the origins of

the two coordinate systems, but we must remember that positions have nothing to do with
coordinate systems as such; it is simply the case that observers 1 and 2 deemed it useful to
use the origins of their coordinate systems as their required reference points. They could have
used any points whatsoever as reference points; they could even have used the same reference
point.

When we switch to a new coordinate system and must transform the coordinates of a
proper vector appropriately, we know that the new coordinates are obtained from a matrix
multiplication with the old, by way of (7.4). But we must use care when applying this
idea to the coordinates of positions. As mentioned several lines up, observer 1 will often
define the position of point A as the displacement vector of A from a reference point O1 that
also serves as the origin of observer 1’s coordinate system, hence writing the position of A
as [rAO1

]1. Observer 2 chooses to define the position of the same point A as its displacement
vector from O2, the origin of observer 2’s coordinate system, and hence writes A’s position
as [rAO2

]2. The question is: how are these coordinate vectors [rAO1
]1 and [rAO2

]2 related?
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Observer 1

Observer 2

A

O1

O2

rAO1

rAO2rO2O1

x1

y1

x2

y2

Figure 4: Observers 1 and 2 are both free to choose any point relative to which they each specify
the position of A as a displacement vector. But in practice, observer 1 probably
chooses his own coordinate origin O1, and observer 2 probably likewise chooses his
own coordinate origin O2. Even with this choice, observer 1 still has the option
of choosing either [rAO1

]1 or [rAO1
]2 as coordinates, and observer 2 has the option

of choosing either [rAO2
]1 or [rAO2

]2 as coordinates. Usually—but not always—
observer 1 chooses [rAO1

]1 and observer 2 chooses [rAO2
]2. These coordinate vectors

are related to each other via the second line of (7.16).

Write

[rAO1
]1 = [rAO2

+ rO2O1
]1 = [rAO2

]1 + [rO2O1
]1

= µ2
1 [rAO2

]2 + [rO2O1
]1 . (7.16)

That is, the coordinates of the two observers’ descriptions of the position of A are related via
a matrix multiplication and a shift. There is nothing mysterious about this; it simply reflects
the fact that positions are commonly referred to the origin of the coordinate system being
used, and this origin might differ across different coordinate systems. It’s certainly true that

[rAO2
]1 = µ2

1 [rAO2
]2 , (7.17)

because a single displacement vector rAO2
is present here. But the simple fact is that observer 1

tends to write the position of A as [rAO1
]1, not [rAO2

]1. Because of this common and completely
normal practice, we must carefully define what is meant by“position”or“position vector”when
more than one coordinate system is in use. In general, don’t assume that the coordinates of
“positions” are related only by a matrix multiplication; instead, use the last line of (7.16).

8 The Velocity Vector

As discussed above, the position of a point A is defined only relative to some reference point B,
and then is the proper vector rAB. In contrast, the velocity of A is not only defined using the
reference point B, but also according to the frame F being used. “The velocity of A” has no
a priori meaning; instead we require “the velocity of A relative to B in the frame F ”, vFAB.
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We can omit reference to B and F only when their identities are understood from the relevant
context. This velocity is a proper vector due to its being defined in the usual way in the
frame F with a subtraction of displacements (which are proper vectors), which can only
produce a proper vector. Further, the S-coordinate vector of this velocity is [vFAB]S . This
requires four entities to be specified: the point of interest A, the reference point B, the
frame F , and the coordinate system S. Any supposed velocity coordinate vector for which
these quantities are not known has no place in any analysis.

To show how the velocity vector is defined by a choice of frame, consider the velocity of
Adelaide A relative to Perth P in the ECEF, vecefAP . Standing on Earth places us in the ECEF.
We draw an arrow from Perth to Adelaide (which is the proper vector rAP ), and detect that it
does not change with time. It follows that vecefAP = 0. Next consider the velocity of Adelaide
relative to Perth in the ECI, veciAP . Hovering in space far from Earth, we draw the same arrow
from Perth to Adelaide, rAP , but now find that it rotates through 360◦ in one sidereal day. It
follows that veciAP is not zero. We can calculate this velocity at any moment in the usual way
of calculus by drawing rAP at times t and t+ dt, subtracting the initial vector from the final,
and dividing the result by dt. We signal that this procedure is carried out within a particular
frame with a superscript on the derivative d:

vecefAP =
decefrAP

dt
= 0 , veciAP =

decirAP
dt

6= 0 . (8.1)

It might seem counterintuitive that “Adelaide can have a velocity relative to Perth”, but this
quoted phrase has no meaning as it stands. Adelaide may or may not have a velocity relative
to Perth in some specified frame. Velocity is defined by watching how the displacement vector
of Adelaide relative to Perth, rAP , changes with time, in some specified frame. And this vector
does change with time in the ECI. We tend to live our day-to-day lives from the perspective
of the ECEF, and because vecefAP = 0, we might be inclined to think that “Adelaide has no
velocity relative to Perth”. But the frame must be specified for such a phrase to be meaningful.

The phrase“velocity of point A relative to point B”is sometimes assumed by non-specialists
to involve “the rest frame of B” [5]. But such cannot be the case, simply because the point B
has no unique rest frame. For suppose that B is Earth’s centre: this point is at rest in the
ECEF, but is also at rest in the ECI, because even though Earth rotates in the ECI, a point
cannot rotate about itself; so Earth’s centre is fixed in the ECI. But the velocity of Adelaide
relative to Earth’s centre is zero in the ECEF and clearly non-zero in the ECI. So the “velocity
of Adelaide relative to Earth’s centre in the rest frame of Earth’s centre” is undefined.

The reference point B might be moving in the frame used to define the velocity. But all
points that are fixed in that frame give rise to the same velocity when used as reference points.
This is because the velocity vector is constructed by joining the head of a displacement vector
at time t to the head of the new displacement vector at time t+ dt, and dividing the resulting
vector (arrow) by dt; the tail point shared by both displacement vectors plays no role here.
We can also show this using the relevant notation in the following way. Consider a frame F ,
along with two points F1, F2, fixed in frame F . We ask: how does the F -velocity of some
point A relative to F1 (vFAF1

) relate to the F -velocity of A relative to F2 (vFAF2
)?

vFAF1
≡

dFrAF1

dt
=

dF

dt

(
rAF2

+ rF2F1

)
= vFAF2

+
dFrF2F1

dt
. (8.2)

But F1 and F2 are fixed in F , so certainly dFrF2F1
/dt = 0. It follows that

vFAF1
= vFAF2

, (8.3)
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allowing us to drop all mention of a fixed reference point, and simply speak of “the velocity
of A in frame F”:

vFA = velocity of A in frame F ≡ vFAF1
for any point F1 fixed in F . (8.4)

It’s now easy to see that

vFA − vFB = vFAF1
− vFBF1

(2.1)
=== vFAB , (8.5)

because (2.1) applies to any vectors (i.e. arrows), not just displacement vectors. So we see
that the velocity of A relative to B in frame F equals the velocity of A in frame F minus
the velocity of B in frame F . This relation is often used intuitively. Zipfel [2] calls vFAB
the “differential velocity” of point A relative to point B in frame F , and calls vFA the “linear
velocity” of point A in frame F . These two differently named velocities are fundamentally the
same thing: they are both the velocity of A relative to some possibly moving reference point
in frame F . The same comments apply to Zipfel’s use of the terms “differential acceleration”
and “linear acceleration”.

9 The Angular Velocity Vector

All higher derivatives of velocity might now be introduced, beginning with acceleration. But I
pause here to define an angular velocity vector, which be useful to describe frames that tumble
relative to each other, and which therefore yield different values for an object’s acceleration.
Defining an angular velocity vector is rather subtle because we must establish that any object
so defined has the properties that a vector should have; that is, we require to investigate what
adding angular velocities should mean.

We will define an angular velocity for two distinct scenarios: (1) a point moving in three
dimensions relative to a nominated point, and (2) a frame spinning relative to a nominated
frame. It can be shown that an arbitrary change of orientation can always be expressed
as a single rotation [6], so a frame whose orientation changes in a complex way relative to
a nominated frame can always be described as having a possibly time-dependent angular
velocity relative to that nominated frame. In other words, circular motion is always sufficient
to describe the motion of one frame that is perhaps tumbling chaotically relative to another.

9.1 Angular Velocity of a Point Relative to Another Point in
Some Frame

Begin with the usual ideas of a point moving with velocity v (a real number) in a circle of
radius r, sweeping out an angle θ as it moves. The point is defined to have a real-number
angular velocity of ω ≡ dθ/dt = v/r.

Now generalise this circular motion in a plane to arbitrary motion in three dimensions.
Define the angular velocity of point P relative to point A in some frame F , to be the putative
vector ωFPA, whose length is the rate at which the line joining A to P sweeps out angle in
the plane that it is momentarily moving in, and whose direction is given by the right-hand
rule choice of this plane’s normal. With the component of the point’s velocity vFPA transverse
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A

P

ωFPA

rPA

Frame F

vFPA

Figure 5: The red point P follows the red curve in space. At the moment of the picture, its
velocity relative to point A in this frame F is the red vector. Point P ’s instanta-
neous angular velocity ωFPA relative to point A in frame F is the blue vector, and
is perpendicular to the black and the red vectors. The blue vector can be placed
anywhere in the diagram, not just on the point P as done here.

to rPA written as v , the length of this vector is, using the notation “(a, b)” for the angle
between a and b,

∣∣ωFPA∣∣ ≡ |v |rPA
=
vFPA

∣∣sin(rPA,v
F
PA)
∣∣

rPA
=

∣∣rPA × vFPA∣∣
r2
PA

. (9.1)

In that case, define the angular velocity of point P relative to point A in frame F as

ωFPA ≡
rPA × vFPA

r2
PA

= r̂PA ×
vFPA
rPA

(9.2)

(where the hat denotes a unit vector), because the length of this vector agrees with (9.1),
and its direction correctly gives a right-handed sense for the “instantaneous rotation” of P
around A. Figure 5 shows the instantaneous angular velocity relative to point A (blue arrow)
of the blue point P that is moving along some arbitrary curve. The angular velocity is
continuously changing in time, and at any moment it describes the extent and orientation at
which P is instantaneously “orbiting”A.

Figure 6 shows the two fields of angular velocity vectors for a selection of points of a rigidly
rotating cylinder, relative to each of two choices of reference point A. The blue individual
angular velocity vectors have a spread of lengths and directions.

Although ωFPA is defined in (9.2) as a cross product of vectors and is therefore a vector itself,
at this stage just how we might employ it as a vector is not immediately clear.5 For example,

5You will find a distinction in the literature between “polar vectors” (our arrows) and “axial vectors”, also
known as “pseudo vectors”, that describe cross products such as angular momentum. This distinction relates to
how the world looks in a mirror and the notion of right- and left-handedness. One might say that we don’t use
mirrors to create new frames or coordinate systems in aerospace analysis, so we needn’t distinguish between
polar and axial vectors. But I see this distinction as completely artificial anyway: an exercise in creating jargon
for its own sake. Clearly, a right-handed cross product becomes left handed when viewed in a mirror (unless we
modify the meaning of“left handed”), and introducing terminology to describe that obvious fact gives no benefit
that I have ever seen. Every discussion requiring knowledge of pseudo vectors that I am aware of can be reduced
to a discussion of the notion of handedness, a topic that does not require two types of vector to be defined.
Pseudo vectors are sometimes said to “generalise the cross product to higher than three dimensions”, but the
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A A

Figure 6: The fields of angular velocity vectors for a selection of points (in green) in horizontal
slices of a rigidly rotating vertical cylinder, relative to a choice of two reference
points A, marked in each plot as a red star. The cylinder’s bulk rotation is indicated
by the magenta shaded arrows, with its axis of rotation the vertical magenta dashed
line. Left: Point A lies at the centre of the picture on the vertical rotation axis. The
vector field is cylindrically symmetric around the rotation axis. Right: Point A lies
in the central plane of the picture, but now to the right of the vertical rotation axis.
The lengths of the vectors in the right-hand plot have been increased for clarity.
Note that these two plots describe the same object rotating. Their details are not
important; the main point to note is that the field of angular velocity vectors is not
simple.

ωFPA + ωFAB does not generally equal ωFPB. (This is easily seen by calculating ωFPA + ωFAB and
ωFPB using (9.2) for a very simple scenario.) Perhaps the main use of definition (9.2) is that
it serves to introduce the concept of angular momentum, which appears in Newton’s laws.
Staying within the realm of classical mechanics, define the angular momentum of particle P
(of mass m) relative to a point A in frame F as

LFPA ≡ rPA ×mvFPA = mr2
PAω

F
PA . (9.3)

Now define the total angular momentum of a (not necessarily rigid) body B of point masses mi

relative to point A in frame F to be the sum of their individual angular momenta:

LFBA ≡
∑
i

LFiA =
∑
i

riA ×miv
F
iA =

∑
i

mir
2
iAω

F
iA . (9.4)

Some algebraic manipulation shows that a body’s total angular momentum can be written
as the sum of an “orbital” part (the angular momentum of a particle of mass

∑
imi at the

cross product easily generalises to higher dimensions based on the theory of determinants, without requiring
any concept of a pseudo vector [7]. The study of such vector behaviour is in fact more readily handled using
“multivectors”, which are geometrical objects built from vectors; for example, a planar area combined with a
direction is a “bivector”.
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A on axis

P

rPA

Frame F

vFPAΩF

r⊥

θ

Figure 7: The vectors used in deriving (9.8). rPA and vFPA are at right angles to each other.

particles’ centre of mass, relative to A in frame F ), and a “spin” part (the total angular
momentum of all of the particles relative to their centre of mass, in frame F ):

LFBA = LFMA

orbital part, where M is
a particle with total
mass of body at body’s
centre of mass

+
∑
i

LFi,CM

spin part, where CM is
body’s centre of mass

. (9.5)

The sum (9.4) will be easy to evaluate when all of the ωFiA are parallel. This idea becomes
more tractable for a rigid body, which is where the concept of total angular momentum finds
its main use. Consider for a moment a rigid body rotating right-handed about a unit vector n
in frame F . Denote by p the point on the rotation axis closest to a given body point P . What
is the value of ωFPp?

ωFPp =
∣∣ωFPp∣∣n =

∣∣∣∣∣r̂Pp × vFPprPp

∣∣∣∣∣n =
vFPp
rPp

n . (9.6)

But for circular motion the speed of rotation is proportional to distance from the axis, so it
must be that vFPp/rPp is a constant independent of the location of P . Hence ωFPp is independent

of P . So call it simply ΩF :

“angular velocity of rigid body” = ΩF ≡ ωFPp for any P . (9.7)

We see that the length of ΩF is vFPp/rPp, the angle turned through by the body in unit time,
and its direction is the rotation axis in a right-handed sense.

Moment of Inertia

Refer to Figure 7, which shows a point P (blue dot) in orbit around an axis on which is a
point A. The velocity of P relative to A is given by
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vFPA = ΩF× rPA , (9.8)

which can be shown in the following way. First, the figure shows that ΩF× rPA has the
correct direction: tangential to the rotation in the direction of motion. Second, the length of
ΩF× rPA is ∣∣ΩF× rPA

∣∣ =
∣∣ΩF

∣∣ |rPA| sin θ
=
∣∣ΩF

∣∣ r⊥ = vPA , (9.9)

as required. So in the rigid body of the previous discussion, the velocity of any point P relative
to a point A where A is located on the body’s rotation axis (and not necessarily in the plane of
P ’s rotation) is given by (9.8). This means that when A is on the rotation axis, the angular
velocity relative to A of any point in the body is

ωFPA
(9.2)
===

rPA × vFPA
r2
PA

(9.8)
===

rPA ×
(
ΩF× rPA

)
r2
PA

(A on rotation axis)

=
−rPA ×

(
rPA ×ΩF

)
r2
PA

(A on rotation axis). (9.10)

The cross product is used so frequently in rotational theory that I simplify its notation by
defining a new object v× for any vector v, such that for any vector a,

v×a ≡ v × a . (9.11)

We can coordinatise v× to produce [v×]S , or equivalently [v]×S , by defining [v×]S [a]S to equal
[v × a]S . That is,

[v×]S [a]S ≡ [v × a]S = [v]S × [a]S =

 vxvy
vz

×
 axay
az

 =

 vyaz − vzayvzax − vxaz
vxay − vyax


=

 0 −vz vy
vz 0 −vx
−vy vx 0

 axay
az

 , (9.12)

from which it follows that

[v×]S ≡ [v]×S =

 vxvy
vz

× ≡
 0 −vz vy

vz 0 −vx
−vy vx 0

 . (9.13)

As a side comment, due to its central role in rotational theory the cross-product matrix also appears
frequently in the quantum mechanics of angular momentum, where the following matrices appear:

Jx ≡ i~
[

1

0

0

]×
, Jy ≡ i~

[
0

1

0

]×
, Jz ≡ i~

[
0

0

1

]×
, (9.14)

where ~ is a constant. These matrices form one set of solutions to the equation JxJy−JyJx = i~Jz and
its cyclic permutations [8].
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Because v× combines with a vector to produce another vector, v× is a tensor. With this
notation, (9.10) is written more compactly as6

ωFPA =
−r×PA

2
ΩF

r2
PA

= −r̂PA×
2

ΩF (A on rotation axis), (9.16)

where r̂ is the unit vector r/r.

The angular momentum of a point mass P (of mass m) relative to point A on the rotation
axis and in frame F is now

LFPA
(9.3)
=== mr2

PAω
F
PA

(9.16)
=== −mr×PA

2
ΩF ≡ IPAΩF , (9.17)

where IPA is the particle’s moment of inertia relative to A. (Note that the moment of inertia
is defined relative to a point, not relative to an axis as sometimes thought: see the end of this
section for a further comment.) Recalling (9.4), when several particles are present forming a
(not necessarily rigid) body B, their total angular momentum relative to on-axis point A in
frame F is

LFBA =
∑
i

−mir
×
iA

2
ΩF =

(∑
i

−mir
×
iA

2

)
≡ IBA, moment of inertia
of whole body B relative to
on-axis point A

ΩF . (9.18)

The expression for a body B’s moment of inertia IBA relative to on-axis point A is neatly
written using the cross notation in (9.18), and we see that IBA is a tensor. As usual, an
expression such as (9.18) converts to coordinates S as[

LFBA
]
S

= [IBA]S
[
ΩF
]
S
, (A on axis) (9.19)

where

[IBA]S =
∑
i

−mi

[
r×iA
]2
S

(A on axis). (9.20)

Because a “cross matrix” is skew symmetric (i.e. transposing it changes its sign), its square is
symmetric. Hence the moment of inertia matrix [IBA]S is symmetric.

Equation (9.20) is a useful, compact, and unconventional expression for the moment of
inertia of a body relative to a point A situated on the rotation axis. We can check that it
reduces to a recognisable expression for a very simple, symmetrical case: that of a particle at
a distance r from the origin O, orbiting the z axis in the xy plane; note that the origin is on
the z axis, as required for (9.19) and (9.20) to apply. Referring to these last two equations,
set the cartesian axes S to be at rest in the F frame. The particle’s moment of inertia is not

6The cross product is of course not associative, but use of the cross-product tensor v× in fact is associative.
If this seems counterintuitive, compare and contrast the expressions

a× (b× c) = a×(b×c) = (a×b×)c

and (a× b)× c = (a×b)×c . (9.15)
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determined by its axis of rotation, but with an eye to eventually considering motion in the
xy plane, set the particle to lie at (x, y, 0). Its moment of inertia relative to the origin equals

[ImO]S = −m
[
r×mO

]2
S

= −m

xy
0

×2

= −m

 0 0 y
0 0 −x
−y x 0

2

= m

 y2 −xy 0
−xy x2 0

0 0 r2

 . (9.21)

[Although I have set z = 0 for the particle to save some computation, (9.21) is valid for rotation
about any axis passing through the origin: even if that axis is not the z axis, (9.21) will give
the instantaneous angular momentum via (9.19) for any rotation when the particle passes
through the xy plane.] Now choose the orbit to have angular rate ω right-handed around the
z axis. Equation (9.19) gives

[
LFmO

]
S

= m

 y2 −xy 0
−xy x2 0

0 0 r2

 0
0
ω

 = mr2ω

 0
0
1

 . (9.22)

This is the expected well-known result: for this highly symmetrical case, the angular momen-
tum is parallel to the angular velocity, and equals mr2 times the angular velocity.7

For an advanced example, we calculate the moment of inertia of a two-particle body B
relative to some arbitrarily chosen point A. The body B is composed of a particle with
mass 1 at position (1, 2, 3) and a particle with mass 2 at position (4, 5, 6). What is B’s
moment of inertia relative to the point A = (−1, 4, 2) when this two-particle body is spinning
rigidly on an axis passing through A? (Remember that these equations have been derived
only for the interesting case of A lying on the rotation axis.) Equation (9.20) gives

[IBA]S = −

 1
2
3

−
−1

4
2

×2

− 2

 4
5
6

−
−1

4
2

×2

= −

 2
−2

1

×2

− 2

 5
1
4

×2

= −

 0 −1 −2
1 0 −2
2 2 0

2

− 2

 0 −4 1
4 0 −5
−1 5 0

2

=

 39 −6 −42
−6 87 −6
−42 −6 60

 . (9.23)

This matrix is only valid at the moment when the particles occupy the stated positions. An
instant later they will have moved, and a new [IBA]S must be calculated.

Equation (9.19) shows that the total angular momentum of this “rigid” two-particle body
will not generally be parallel to its angular velocity. In an engineering context, the fact that
these two vectors are not parallel is associated with a sideways torque on the rotation axis
that stresses the bearings holding the spinning body, even to the point of rapid bearing failure.
But even the most asymmetrical body’s moment of inertia IBA will have three eigenvectors,
so that the body’s total angular momentum when spinning around an axis defined by one of

7The moment of inertia of a point mass m is sometimes described as the number mr2 instead of the matrix
in (9.21). We see here the role of mr2 in the wider scheme. It’s also wise to recognise that our particle’s
moment of inertia is not equal to mr2 times the identity matrix.
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these eigenvectors passing through A will be parallel to its angular velocity. Here the body
spins smoothly without stressing its bearings, which is of course the most desirable situation
for engineers. It is perhaps a surprising result that even the most asymmetrical body always
has these three axes about which it will spin smoothly—and it turns out that these axes are
always orthogonal.

The moment of inertia is often mistakenly thought to be defined relative to an axis. Moment
of inertia is defined relative to a point, not an axis; its value does not depend on any choice
of axis. Recalling (9.3), angular momentum “r ×mv” is defined relative to the point from
which r emanates, so if the “L = IΩ” expression for the angular momentum L of a rigid body
is to hold, then the moment of inertia I must be defined relative to the same point, since
the angular velocity Ω can hold no information about that point. Alternatively, suppose that
the moment of inertia was indeed defined relative to an axis. In that case, wouldn’t we be
better off just multiplying in advance the 3× 3 matrix in (9.23) by that axis expressed as a
unit vector, to arrive at a more portable 3× 1 column instead of a matrix? Three numbers
would be simpler to handle than nine, and then, for a given body with scalar spin rate Ω,
we would then only need to multiply this column by Ω. But, of course, this is not done in
practice precisely because the moment of inertia is not defined relative to an axis.

The widespread belief that I refers to a specific axis probably arose because the eigenvectors
of I tend to define the axes of spin for commonly used bodies in engineering such as wheels.
But even here a reference point must still be specified, because for example a wheel spinning
at the end of an axle presents different dynamics to a wheel spinning in the middle of that
same axle. See page 35 for a related comment about torque.

9.2 Angular Velocity of a Frame Relative to Another Frame

The above discussion showed that a single angular velocity ΩF could be defined for the rigid
body as a whole, and the angular velocity ωFPA in frame F of any point P relative to an
on-rotation-axis point A was then given by applying (9.16) to ΩF . This suggests a second
type of angular velocity: that of one frame relative to another, which will be useful in the
next section. If frame F spins within frame G, we calculate ΩG for the lattice of frame F ,
and call the result the angular velocity of frame F relative to frame G: ΩFG.

But in what sense is this “vector” a real vector? Can two such vectors be added? It turns
out that they can, so that for example

ΩAB + ΩBC = ΩAC . (9.24)

This is proved in Section 6 of [4]. It rests on the fact that rotating a vector by dα around
unit-vector a is effected by pre-multiplying the vector by 1 + dαa×; so combining two in-
finitesimal rotations is equivalent to applying a single rotation of 1 + (dαa+ dβ b)×, which
involves the sum of dαa and dβ b. That this process happens in a time dt is equivalent to
adding angular velocity vectors. This also proves that infinitesimal rotations commute: that
is, turning an object through an infinitesimal angle dα around one axis, then through an in-
finitesimal angle dβ around a possibly different axis, gives the same result as swapping those
two rotations. In combining two angular velocities, we consider a body as undergoing two
infinitesimal rotations in time dt. We could never represent angular velocity as a vector if the
two infinitesimal rotations did not commute—because vector addition is commutative.

Setting C to A in (9.24) gives
ΩAB = −ΩBA , (9.25)
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which makes sense intuitively from the definition of ΩAB.

One important instance of the angular velocity occurs for an aircraft undergoing roll/pitch/yaw
motion. Convention sets the aircraft’s x axis to be its roll axis (forward through its nose),
y to be its pitch axis (out along the starboard wing) and z to be its yaw axis (the below-
fuselage direction). The changing orientation of the aircraft is comprised of a roll angular
velocity, a pitch angular velocity, and a yaw angular velocity. Because these angular velocities
add as vectors, the aircraft’s (B) overall angular velocity relative to the world W is their sum:

ΩBW = roll vector + pitch vector + yaw vector. (9.26)

The roll, pitch, and yaw rates are conventionally labelled p, q, r respectively, so

[
ΩBW

]
B

= [roll]B + [pitch]B + [yaw]B =

 p0
0

+

 0
q
0

+

 0
0
r

 =

 pq
r

 . (9.27)

This expression is used frequently in 6-degree-of-freedom analyses of aircraft.

All frames agree that the angular velocity of frame F relative to frame G is the vector ΩFG,
so there is no need to specify which frame is “doing the observing”. This agreement can be
seen as follows. Imagine F and G represented by two boxes in contact along a common face.
All frames agree on the physical reality of the axis of relative rotation of the boxes. As box F
rotates relative to box G, it scratches grooves in the surface of box G that have a physical
reality. All frames agree on the length of any groove gouged out in a given time interval.
Hence all agree on the length and direction of ΩFG.

10 Coordinates and the Time Derivative

To calculate time derivatives such as velocity and acceleration, we naturally prefer to ma-
nipulate coordinates (coordinate vectors) rather than draw and manipulate arrows (proper
vectors). But combining the processes of differentiating and coordinatising demands careful
inspection. The “coordinates of a time derivative” and the “time derivative of coordinates” can
easily be confused, but these two quantities are generally not the same. Start with a proper
vector v that varies with time, and consider:

Coordinates of a time derivative: Calculate the F -frame time derivative of v, then ex-
press this in coordinates S:

proper vector = v ;

its time derivative in F =
dFv

dt
;

S-coordinates of time derivative =

[
dFv

dt

]
S

. (10.1)

Time derivative of coordinates: Now reverse the order of differentiating and coordinatising:

proper vector = v ;

its S-coordinate vector = [v]S ;

time derivative of coordinate vector =
d[v]S

dt
. (10.2)
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Recall that “dF/dt” acts here on a proper vector (an arrow), whereas “d/dt” differentiates each
element of a coordinate vector (a column of coordinates).

The two columns of numbers [dFv/dt]S and d[v]S/dt are generally different. To see how
they might be related, write a vector v as a linear combination of basis vectors, where the
following xyz coordinates needn’t be cartesian:

v = vxex + vyey + vzez . (10.3)

Differentiate this in some frame F , writing e.g. v̇x to mean d(vx)/dt:

dFv

dt
= v̇xex + vx

dFex
dt

+ v̇yey + vy
dFey

dt
+ v̇zez + vz

dFez
dt

. (10.4)

If the basis vectors {ex, ey, ez} don’t change with time in frame F , then (10.4) reduces to

dFv

dt
= v̇xex + v̇yey + v̇zez , (10.5)

and if this basis set that doesn’t change in F is called f , then

[
dFv

dt

]
f

=

 v̇xv̇y
v̇z

 =
d

dt

 vxvy
vz

 =
d[v]f

dt
. (10.6)

So for this special coordinate system f that is at rest in frame F ,[
dFv

dt

]
f

=
d[v]f

dt
. (10.7)

Equation (10.7) shows that the coordinates of the derivative do equal the derivative of the
coordinates for the special case when the coordinate basis vectors don’t change with time
in the chosen frame. In the following section I take the next step of expressing dFv/dt in
arbitrary coordinates S.

10.1 Three Forms of the Time Derivative of a Vector

Here we derive the following three forms of the S-coordinates of the F -frame time derivative
of an arbitrary vector v:[

dFv

dt

]
S

=

(
d

dt
+ µfS µ̇

S
f

)
[v]S (orientation-matrix form) (10.8a)

=

(
d

dt
+
[
ΩSF

]×
S

)
[v]S (angular-velocity form) (10.8b)

=

(
d

dt
+ ΓFS

)
[v]S (basis-vector form). (10.8c)

The second term in each of the parentheses, µfS µ̇
S
f ,
[
ΩSF

]×
S

, and ΓFS , when multiplied by [v]S ,
each quantify the extent to which “differentiating v” and “coordinatising v” do not commute.
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10.1.1 Direction-Cosine Form (10.8a)

Equation (10.8a) is easily derived for orientation matrices in the following way. Recall (10.7),
which expresses an F -frame time derivative in a special set of coordinates f , whose basis
vectors don’t change with time in F . How might we express dFv/dt in arbitrary coordi-
nates S—which might even be non-cartesian? Begin with[

dFv

dt

]
S

= µfS

[
dFv

dt

]
f

= µfS
d[v]f

dt
(10.9)

for arbitrary v. We now have an ordinary derivative d/dt—but it has come at the price of a
switch to f -coordinates. So convert the last coordinate vector back to S-coordinates, writing[

dFv

dt

]
S

= µfS
d

dt

(
µSf [v]S

)
= µfS

(
µ̇Sf [v]S + µSf

d[v]S
dt

)
= µfS µ̇

S
f [v]S +

d[v]S
dt

, (10.10)

so that we arrive at (10.8a): [
dFv

dt

]
S

=

(
d

dt
+ µfS µ̇

S
f

)
[v]S . (10.11)

At first sight it might appear anomalous that a specific choice of coordinates f for frame F
appears on the right-hand side of (10.11) but not the left-hand side. We might infer that for
two choices of coordinates f, f ′, whose basis vectors don’t change with time in F , that

µfS µ̇
S
f = µf

′

S µ̇
S
f ′ . (10.12)

This is certainly true. Prove (10.12) by first referring to (7.10) to write

µSf = µf
′

f µ
S
f ′ . (10.13)

Time-differentiate both sides:
µ̇Sf = µ̇f

′

f µ
S
f ′ + µf

′

f µ̇
S
f ′ . (10.14)

Because basis sets f and f ′ are fixed relative to each other, their relative orientation µf
′

f

doesn’t depend on time, so µ̇f
′

f = 0 and (10.14) becomes

µ̇Sf = µf
′

f µ̇
S
f ′ . (10.15)

Now pre-multiply both sides of (10.15) by µfS , using (7.10) again:

µfS µ̇
S
f = µfS µ

f ′

f µ̇
S
f ′

= µf
′

S µ̇
S
f ′ , (10.16)

which is just (10.12), as required.

Another useful expression involving µ̇ is formed by differentiating the expression µAB µ
B
A = 1

with respect to time, to arrive at

µ̇AB µ
B
A = −µAB µ̇BA . (10.17)
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10.1.2 Angular Velocity Form (10.8b)

Equation (10.8b) can be derived by scrutinising the picture of v evolving. Place ourselves in
frame F and watch the coordinate system S rotating around an axis whose direction might
also be continuously changing. An observer attached to S defines a frame S, which rotates
relative to frame F with some angular velocity ΩSF . In a time dt, we in frame F watch how v
evolves. We notice that an infinitesimal increment in v can be considered as the sum of two
steps:

Increment of v in F = Increment of v in S

+ increment provided by rotation of S in F . (10.18)

By virtue of its rotation alone, v will increment by ΩSFdt× v: this follows from (9.8). Writing
the increment of v in frame F as dFv and similarly for frame S, (10.18) becomes

dFv = dSv + ΩSF dt× v , (10.19)

so that
dFv

dt
=

dSv

dt
+ ΩSF× v . (10.20)

Coordinatising in S, and then recalling (10.7) as it applies to S, converts (10.20) to[
dFv

dt

]
S

=
d[v]S

dt
+
[
ΩSF× v

]
S

=
d[v]S

dt
+
[
ΩSF

]×
S

[v]S

=

(
d

dt
+
[
ΩSF

]×
S

)
[v]S , (10.21)

which is (10.8b).

Equations (10.8a) and (10.8b) together yield

µfS µ̇
S
f =

[
ΩSF

]×
S
, (10.22)

which is useful because it relates the slightly mysterious-looking matrix µfS µ̇
S
f to the very

concrete notion of the instantaneous angular velocity of frame S relate to frame F , expressed
in S-coordinates. It trivially produces the standard expression for how the orientation matrix
evolves:

µ̇Sf = µSf
[
ΩSF

]×
S
. (10.23)

This important equation appears in books on aerospace dynamics, such as [9] and [10].

10.1.3 Changing Basis-Vector Form (10.8c)

Suppose we write a vector v as a linear combination of the basis vectors {ex, ey, ez}, which
needn’t be orthonormal; in other words, the xyz coordinates needn’t be the usual cartesian
sort. In this section we use a language of components that is common in tensor analysis:

v = vxex + vyey + vzez ≡ vαeα , (10.24)

where summation over any repeated up-down index (here α) is assumed. Now write

dFv

dt
=

dF (vαeα)

dt
. (10.25)

UNCLASSIFIED
29



DST-Group–TR–3309

UNCLASSIFIED

As usual, dF/dt simply means “differentiate with respect to time, remembering that we are in
frame F”, so the usual product rule of differentiation applies:

dFv

dt
=

dvα

dt
eα + vα

dFeα
dt

, (10.26)

where dvα/dt denotes the time derivative of vα (a number), not the α-component of the time
derivative of v or v (which would require a “dF ”, not just a “d”).

Now, dFeα/dt is another proper vector, so it too can be written as a linear combination of
the S-basis vectors as

dFeα
dt

= ΓFxSα ex + ΓFySα ey + ΓFzSα ez = ΓFβSα eβ , (10.27)

for some numbers ΓFxSα , ΓFySα , ΓFzSα . Then (10.26) becomes

dFv

dt
=

dvα

dt
eα + vα ΓFβSα eβ (now swap dummy indices α and β)

=
dvα

dt
eα + vβ ΓFαSβ eα =

(
dvα

dt
+ vβ ΓFαSβ

)
eα . (10.28)

In other words,

[
dFv

dt

]
S

=
d

dt

 vxvy
vz

+

 v
β ΓFxSβ

...
vβ ΓFzSβ

 =
d

dt

 vxvy
vz

+

ΓFxSx . . . ΓFxSz
...

...
ΓFzSx . . . ΓFzSz


≡ ΓFS

 vxvy
vz



=

(
d

dt
+ ΓFS

)
[v]S , (10.29)

which is (10.8c).

We see here that the following quantities are identical: µfS µ̇
S
f (relating to the orientation

matrix and how it evolves),
[
ΩSF

]×
S

(relating to the instantaneous angular velocity of S in F ),

and ΓFS (relating to the way the basis vectors of S evolve in F ).

Equation (10.8a) uses the orientation matrix µfS that specifies how the basis vectors of f
relate to those of S; (10.8b) uses ΩSF , the angular velocity vector of the basis-vector set S in
frame F , and (10.8c) uses component knowledge of how the S-basis vectors evolve in frame F .
When the S-coordinates are set identical to the f -coordinates, it’s clear that

µfS =

 1 0 0
0 1 0
0 0 1

 , ΩSF =

 0
0
0

 , ΓFS =

 0 0 0
0 0 0
0 0 0

 , (10.30)

in which case

µfSµ̇
S
f =

[
ΩSF

]×
S

= ΓFS =

 0 0 0
0 0 0
0 0 0

 . (10.31)

Then each of (10.8a)–(10.8c) reduces to (10.7) as expected.
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The above analysis of vectors can also be extended to higher-order tensors. In particular,
Appendix B derives the time derivative of a rank-2 tensor, producing (B3), the rank-2 version
of (10.8b).

The signature of whether the coordinates of a time derivative equal the time derivatives
of the coordinates is whether the basis vectors of the coordinate system in use are changing
with time. They need not be changing at any particular point in space; rather, it’s sufficient
only that the basis vectors forming the continuous parade “encountered” along its track by an
airborne vehicle change with time.

Zipfel [2] emphasises the distinction between the coordinates of a derivative and the deriva-
tive of coordinates by calling dFv/dt the “rotational time derivative”, written as DFv. Names
aside, the primary point is that dFv/dt is not a new kind of time derivative; it is simply the
time derivative of a proper vector v calculated in frame F . All derivatives must be calculated
in some frame, and it’s only because we are generally using more than one frame in aerospace
scenarios that we must explicitly denote the frame currently in use.

Equation (10.8c) is actually just an instance of the “covariant derivative” of tensor analysis,
which I rederive in more standard language in Appendix C. In tensor analysis the covariant
derivative applies to all coordinates, not just time, and is nothing more than the usual partial
derivative written in a way that incorporates how the basis vectors change with time and
position, which enables us to work with coordinates only and omit explicit reference to those
basis vectors.

Omitting basis vectors makes sense computationally in that we tend to compute with coor-
dinates only, since these are easily written as arrays of numbers in any programming language.
Nonetheless, I think that omitting basis vectors from the start (which is the traditional ap-
proach to tensor analysis) is pedagogically risky because basis vectors connect coordinate
vectors to proper vectors. Tensor analysis has traditionally focussed on components only, and
this is why the covariant derivative exists: to incorporate the effect of the changing basis
vectors automatically and invisibly. But this very convenience continues to support the idea
that a vector is only a set of components. Perhaps a vector was once only a set of compo-
nents, or rather an aggregate of such components across all conceivable coordinate systems,
possessing a particular transformation property across those coordinate systems. But this
idea of an aggregate of sets of numbers belies the intuitive idea that a vector is simply an
arrow, a single coordinate-independent object. This is precisely why we profit from distin-
guishing a coordinate vector from a proper vector; and basis vectors are the enabler here.
Some authors [11] describe covariant differentiation as an operation that is constructed to
satisfy the rules of tensor analysis, understandably seen as arcane by many. While it certainly
can be constructed that way, it is really not something arbitrarily constructed in order “to
work”; instead, it is simply a convenient way to write a partial derivative without explicit
reference to basis vectors [12]. It emerges naturally when we differentiate a proper vector
while constructing a coordinate vector.

It’s evident, then, from any one of (10.8a)–(10.8c) that the S-coordinate vector of the time
derivative, [dFv/dt]S , does not generally equal the time derivative of the coordinate vector,
d[v]S/dt—nor should they generally be equal, given that no frame appears in the latter
quantity. Clearly, the frame used to calculate a derivative need have nothing to do with the
coordinates that might be chosen to express the vector. For example, calculate the ground
velocity of an aircraft in the body coordinates of a rotating satellite. The ground velocity
of the aircraft A is vecefA or equivalently vecefAB , where B is any point at rest in the ECEF.
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The satellite coordinates S of this velocity are

[vecefAB ]S ≡
[

decefrAB
dt

]
S

(10.8a)
===

(
d

dt
+ µES µ̇

S
E

)
[rAB]S , (10.32)

where E is any coordinates that don’t change with time in the ECEF. In particular, we see
here explicit reference to the changing matrix µSE that quantifies the orientation of the satellite
relative to Earth. Examples of calculating µ can be found in [4].

The above discussion clears up a particular confusion that exists regarding the nature
of velocity. The argument goes something like this, and note that I am deliberately using
vague wording within the quotes that follow in order to mimic the vagueness of the typical
argument: “Consider two coordinate systems S, T, whose relation to each other varies with
time, written as the time-dependent matrix µST . A position in S is related to a position in T
via multiplying by µST . When we differentiate these positions to give velocities, an extra term
involving µ̇ST appears, whose presence implies that the two velocities are no longer related by
simply multiplying by µST . So velocity cannot really be a vector.” But velocity is a proper
vector: its components do transform simply via multiplying by µST , just as for a displacement
vector. Where does the argument go wrong?

The argument goes wrong because its wording is too vague to mean anything. We need
only define everything carefully to see where the problem lies. The position (i.e. displacement
vector) of some point A relative to some reference point B is rAB, whose components are
related in the two coordinate systems via

[rAB]T = µST [rAB]S . (10.33)

Differentiate each side to give

d

dt
[rAB]T = µ̇ST [rAB]S + µST

d

dt
[rAB]S . (10.34)

So far we have derivatives of coordinate vectors; but the original argument discusses“velocity”,
so we must rewrite (10.34) in terms of proper vectors, using (10.7). Choose a frame in which
the coordinate system S doesn’t change: this can be called S also. Similarly, choose a frame
in which T doesn’t change, to be called T . Then (10.34) becomes[

dTrAB
dt

]
T

= µ̇ST [rAB]S + µST

[
dSrAB

dt

]
S

. (10.35)

In velocity notation, this is [
vTAB

]
T

= µ̇ST [rAB]S + µST
[
vSAB

]
S
. (10.36)

Being proper vectors, velocities can be treated as arrows (just like displacement vectors), so
their components transform in the usual way of (7.4). Equation (10.36) then becomes[

vTAB
]
T

= µ̇ST [rAB]S +
[
vSAB

]
T
. (10.37)

Now we see where the original vaguely worded argument in italics above has gone awry. The
µ̇ matrix does not interfere with any notion of velocity being a proper vector; rather, µ̇ simply
relates the T coordinates of two different velocity vectors, vTAB and vSAB. This underlines the
importance of being clear about which frame is being used to calculate velocity, and more
generally of using a clear language to describe kinematic scenarios.
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11 The Acceleration Vector

An acceleration vector can be defined as

aFGAB ≡
dF

dt

dG

dt
rAB =

dF

dt
vGAB , (11.1)

denoting how frame F measures the frame-G velocity vector to change. But to apply Newton’s
laws it suffices to consider only one frame, so we define a more restricted version of (11.1) as

aFAB ≡ aFFAB =
dF

dt
vFAB =

(
dF

dt

)2

rAB ≡
dFF

dt2
rAB , (11.2)

where dFF/dt2 is shorthand for (dF/dt)2.

Suppose F1 and F2 are fixed points in frame F . Then analogously to (8.3), write

aFAF1
=

dF

dt
vFAF1

(8.3)
===

dF

dt
vFAF2

= aFAF2
, (11.3)

which prompts us to define the acceleration of a point in frame F as

aFA = acceleration of A in frame F ≡ aFAF1
for any point F1 fixed in F . (11.4)

Consider now two frames, F and G. How does the F -frame acceleration of point A relative
to point B compare with the G-frame acceleration of A relative to B? We can apply (10.20)
provided we know the relative angular velocity of F relative to G. Suppose then, that the two
frames have no relative angular velocity; it follows that dFv/dt = dGv/dt for any vector v.
In that case,

aGAB =
dGGrAB

dt2
=

dFFrAB
dt2

= aFAB , (11.5)

so that both frames measure the same value for the acceleration of A relative to B, indepen-
dently of how those frames are moving relative to each other.

Next we ask a related but different question: how does the acceleration of A in frame F
(aFA) compare with the acceleration of A in frame G (aGA) when the two frames (as above)
have no relative angular velocity? For this, single out a fixed point F0 in frame F and a fixed
point G0 in frame G and write

aFA = aFAF0
=

dFFrAF0

dt2
=

dGG

dt2
(
rAG0

+ rG0F0

)
= aGA +

dGGrG0F0

dt2
. (11.6)

The frames’ two values of the acceleration of A differ by the relative acceleration of the two
frames. Suppose F and G separate by at most a constant velocity: dGrG0F0

/dt = constant.
Then (11.6) produces

aFA = aGA . (11.7)

That is, the acceleration of a point A is the same in two frames whose relative acceleration
and angular velocity are zero.

The notation here addresses all manner of similar questions. For example, how does the
F -acceleration of A relative to a point fixed in the G frame (aFAG0

) compare with the G-

acceleration of A (aGA)? When the frames have no relative angular velocity, these two accel-
erations are equal:

aFAG0
=

dFFrAG0

dt2
=

dGGrAG0

dt2
= aGA . (11.8)

For any arbitrary relative linear and orientational motion of the frames, we need only return
to (10.20) to calculate the details.
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12 Inertial Frames

Recalling the analysis that produced (11.7), we see that if two frames F and G maintain a con-
stant relative orientation (ΩFG = 0) and a constant relative velocity (dFrF0G0

/dt = constant)
then (11.7) holds: a body’s acceleration in frame F will equal its acceleration in frame G.

Define an inertial frame I to be one in which a free body (one subject to no forces) has no
acceleration. It follows that the free body will also have no acceleration in any other frame
that maintains a constant relative orientation and constant relative velocity to I. So this
second frame will also be inertial, and we arrive at the following statement: any frame that
maintains a constant relative orientation and constant relative velocity to an inertial frame
will be inertial as well.

Inertial frames are of especial interest in analysing a system’s dynamics, because they
allow Newton’s laws of motion to be applied with a minimal number of forces. In particular,
Newton’s second law “force = mass × acceleration” stated in an inertial frame I for a possibly
time-dependent mass m is

F I =
dI

dt
(mvIm) , (12.1)

where I can be any inertial frame.

Suppose we have a constant mass m accelerated by a force F I in an inertial frame I, so
that (12.1) becomes

F I = maIm . (12.2)

We wish to work with Newton’s laws in a rotating frame R, and so wish to write Newton’s
second law in the non-inertial frame R by equating a possibly different force FR to maRm.
The question is, what is FR? We need only calculate aRm, which we can do either directly by
converting dR/dt to dI/dt, or indirectly by starting with (12.2) and converting dI/dt to dR/dt.
This second way turns out to be slightly faster than the first. For convenience set DA ≡ dA/dt,
and begin with

aIm = (DI)2rmI = (DI)2(rmR + rRI) =
(
DR + ΩRI×)2rmR + aIR . (12.3)

Now expand the parentheses to give

aIm = aRm + DR
(
ΩRI×rmR

)
+ ΩRI×DRrmR + ΩRI×(ΩRI×rmR) + aIR

= aRm +
(
DRΩRI

)
×rmR + 2ΩRI×vRm + ΩRI×(ΩRI×rmR) + aIR . (12.4)

Rearrange:

aRm = F I/m −
(
DRΩRI

)
×rmR

angular

− 2ΩRI×vRm
Coriolis

−ΩRI×(ΩRI×rmR)

centrifugal

− aIR
frame

≡ FR/m . (12.5)

We see here the four pseudo forces that must be included in the rotating-frame analysis: a term
measuring the relative angular acceleration of the two frames, Coriolis and centrifugal terms,
and a term for the relative linear acceleration of the two frames. These forces define FR, the
frame-R version of the inertial-frame force F I .
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13 Torque and Angular Momentum

The torque τFPA in frame F on a particle P relative to some point A is defined as the frame-F
rate of increase of the frame-F angular momentum of P relative to A:

τFPA ≡
dFLFPA

dt
. (13.1)

Applying (9.3) gives

τFPA =
dF

dt

(
rPA ×mvFPA

)
= ��

���
��

vFPA ×mvFPA
the zero vector

+rPA ×
dF

dt
mvFPA . (13.2)

Select a point F0 at rest in frame F , so that

τFPA = rPA ×
dF

dt
m
(
vFPF0

+ vFF0A

)
= rPA × fFP + rPA ×

dF

dt
mvFF0A

, (13.3)

where fFP is the force on the particle in frame F . Then provided that point A has at most a
constant velocity in frame F , the last term above vanishes, and we have

τFPA = rPA × fFP . (13.4)

When many particles are present that form a body B (not necessarily rigid), a short calculation
gives the rate of change of the body’s total angular momentum as

dFLFBA
dt

=
∑
i

riA × f
F,ext
i +

∑
ij

riA × fFij , (13.5)

where fF,ext
i is the “external” force acting on particle i (the force applied in F by everything

except the body itself), and fFij is the“internal”force exerted by particle j on particle i. For the

common case where all internal forces are central (i.e. radial), the second term
∑

ij riA × fFij
equals zero, so that

dFLFBA
dt

=
∑
i

riA × f
F,ext
i (central forces internally)

(13.4)
===

∑
i

τF,ext
iA ≡ τF,ext

BA , the torque on the body. (13.6)

This is the torque law as it’s usually applied. The torque is usually easiest to compute in an
inertial frame, where there are no pseudo forces to include.

Together with angular momentum and moment of inertia, torque is defined relative to
a point, not an axis (see page 25 for prior comments). To appreciate this idea, consider
increasing the spin rate of a wheel by holding and twisting only the end of its axle and
applying a torque. (Use an inertial frame to remove the complicating influence of gravity.)
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The r × f term in (13.6) shows that the wheel’s distance from the end of the axle affects the
torque we must apply: after all, if it is very far from us, then we are effectively accelerating
many distant point masses at the end of a rigid arm, and r × f has a large magnitude for each
of these masses. Alternatively, imagine the wheel is severely unbalanced and spinning slowly,
and we are trying to keep it rotating about a fixed axle. As it spins, it will pull sideways on
the axle, which we must counteract by applying a torque vector that is not parallel to the
axle. The further the wheel is from us, the harder we must work to counteract its tendency to
want to move sideways: we must apply a greater torque to keep the axle pointing in a fixed
direction.

14 Final Comments

Aerospace modelling typically combines many frames and coordinate systems following spec-
ifications that do not always make use of “nice” points such as centres of mass or origins of
coordinate systems. Even making sense of simple kinematic scenarios requires a sound footing
for the concepts of vectors, frames, and coordinates. The heavy use of sub- and superscripts in
this document might at first seem excessive, but they come into their own when we move be-
yond simple calculations: describing complex scenarios that depend on several entities would
quickly become unwieldy if we did not consistently indicate those entities in the notation. The
payoff for doing so is that we are able to make computational sense of what could otherwise
be a prohibitively complex environment.

I thank Peter Zipfel for discussions on this subject over some years. His book on aerospace
modelling [2] includes a great many numerical examples that extend the analyses presented
in this report.

15 References

[1] See “Row and column vectors”
(https://en.wikipedia.org/wiki/Row_and_column_vectors), which doesn’t
distinguish coordinate vectors from proper vectors; while Wikipedia is not being treated
as a credible citation source here, it can certainly be indicative of widespread opinion,
incorrect as well as correct. General discussions and differences of opinion on vectors and
related concepts are found at https://www.physicsforums.com and
http://physics.stackexchange.com. E.g. “Is the covariance or contravariance of
vectors/tensors something that can be visualized?”
(http://physics.stackexchange.com/questions/87775/
is-the-covariance-or-contravariance-of-vectors-tensors-something-that-can-be-vi?)
does not distinguish coordinate vectors from proper vectors; neither does “Is it foolish to
distinguish between covariant and contravariant vectors?”
(http://physics.stackexchange.com/questions/105347/
is-it-foolish-to-distinguish-between-covariant-and-contravariant-vectors?)
(with differences of opinion therein). Admissions of confusion are found at
http://www.physicsoverflow.org/24929/

is-partial-derivative-a-vector-or-dual-vector?merged=24735. The two pages
“Gradient is covariant or contravariant?” (http://physics.stackexchange.com/
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questions/126740/gradient-is-covariant-or-contravariant?) and “Is force a
contravariant vector or a covariant vector (or either)?”
(http://physics.stackexchange.com/questions/131348/
is-force-a-contravariant-vector-or-a-covariant-vector-or-either?) obfuscate
simple concepts while struggling to give any coherency to the subject. See also “What
the hell are vector components?” (https://www.physicsforums.com/threads/
what-the-hell-are-vector-components.372639) and the various conflicting answers
given therein. “What is a tensor?”
(https://www.physicsforums.com/threads/what-is-a-tensor.723969) highlights
the natural confusion caused by the comment found in Zee’s book Einstein Gravity in a
Nutshell (Princeton University Press, 2013) that “a tensor is something that transforms
like a tensor”. The page “Vector notation”
(https://en.wikipedia.org/wiki/Vector_notation) confuses “polar vectors” (see the
footnote on page 19 of this report) with polar coordinates. “Is partial derivative a vector
or dual vector?” (http://physics.stackexchange.com/questions/144089/
is-partial-derivative-a-vector-or-dual-vector? and
http://www.physicsoverflow.org/24929/

is-partial-derivative-a-vector-or-dual-vector?merged=24735) show different
approaches that rely on formalism more than explanation, as well as giving admissions of
confusion. “How can a set of components fail to make up a vector?”
(http://physics.stackexchange.com/questions/168300/
how-can-a-set-of-components-fail-to-make-up-a-vector?) gives several
definitions of a vector, again confusing coordinate vectors with proper vectors.
“Physicists’ definition of vectors based on transformation laws”
(http://physics.stackexchange.com/questions/241610/
physicists-definition-of-vectors-based-on-transformation-laws/241633#

241633) shows mixed attempts to relate index-transformation ideas to more physical
concepts. This page emphasises the basic distinction being discussed in this report, that
coordinate vectors are distinct from proper vectors.

[2] P.H. Zipfel (2014) Modeling and Simulation of Aerospace Vehicle Dynamics, 3rd ed., AIAA
Inc., Virginia. Zipfel’s notation differs slightly from that of this report, where he expresses
e.g. a change of coordinates (written [v]A = µBA [v]B in this report) as [v]A = [T ]AB[v]B.
When introducing time rates of change, his “[ds/dt]A” specifies no frame for the time
derivative of s, and instead needs to be interpreted as d[s]A/dt in his notation, or d[s]A/dt
in our notation.

[3] G.L. Bradley (1975) A Primer of Linear Algebra (Prentice Hall College) is an excellent
textbook on linear algebra that distinguishes carefully between vector components (coor-
dinate vectors) and vectors as elements of a vector space (visualised as arrows and called
proper vectors in this report), and describes how different coordinate systems are related.

[4] D. Koks (2012), A Pseudo-Reversing Theorem for Rotation and its Application to Ori-
entation Theory. DSTO–TR–2675, Melbourne, Vic., Defence Science and Technology Or-
ganisation (Australia).

[5] Such wording can easily be found with an appropriate text search of the internet.

[6] M.D. Shuster (1993) A Survey of Attitude Representations, Journal of the Astronautical
Sciences, 41 (4), pp. 439–517. See equation (117).
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[7] D. Koks (2006) Explorations in Mathematical Physics, Springer, New York. See Sec-
tion 2.4.2.

[8] J.J. Sakurai (1985) Modern Quantum Mechanics, Addison-Wesley. The angular momentum
matrices can be found in all books on advanced quantum mechanics.

[9] J.C. van der Ha and M.D. Shuster (2009) A Tutorial on Vectors and Attitude, IEEE
Control Systems Magazine.

[10] J.B. Kuipers (2002) Quaternions and Rotation Sequences: A Primer with Applications
to Orbits, Aerospace and Virtual Reality, Princeton University Press. See also [2].

[11] A selection over some decades: P. Richards (1959) Manual of Mathematical Physics,
Pergamon Press, Chapter 21; A. Eddington (1923) The Mathematical Theory of Relativity,
Cambridge University Press, Section 29; S. Weinberg (1972) Gravitation and Cosmology,
John Wiley and Sons, Chapter 4; A. Kyrala (1967) Theoretical Physics: Applications of
Vectors, Matrices, Tensors and Quaternions, W.B. Saunders Company, Section 6.6.

[12] One book that treats covariant differentiation similarly to this report is B. Schutz (1988)
A First Course In General Relativity, Cambridge University Press.

[13] W. Duncan et al. (1960), Mechanics of Fluids, Edward Arnold Publishing. The majority,
if not all, books on mathematical fluid dynamics introduce D/Dt in the same way.
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Appendix A: Relating Vector Components for

Non-Orthonormal Coordinates

The analysis of Section 7 must be modified for coordinate systems that are not orthonormal
(meaning their basis vectors are not orthonormal). Non-orthonormal bases are probably
never used in aerospace dynamics; they are usually encountered in general discussions of
tensor analysis, so this section is included for theoretical interest only and uses the standard
“up/down” index notation of tensor analysis. In particular, the notation of Section 7 becomes
modified, in that a vector v is now written in component form for coordinate system S as

v = v1e1 + v2e2 + v3e3 ≡ vαeα , (A1)

where the summation “α = 1, 2, 3” over a dummy index such as α is implied when that index
appears once as a superscript and once as a subscript. The metric tensor g is defined as
in (6.15), having αβ component

gαβ ≡ eα ·eβ . (A2)

So gαβ is the αβ component of the matrix [g]S . Now define a new set of numbers gαβ:

gαβ ≡ αβ component of matrix
(
[g]S

)−1
, (A3)

and use these to define a new basis set {e1, e2, e3} which is called “dual” to {e1, e2, e3}:

eα ≡ gαβeβ . (A4)

Although the original basis {e1, e2, e3} is not necessarily orthonormal, this new basis intro-
duces an inter-basis orthonormality:

eα ·eβ = gαµeµ ·eβ = gαµgµβ = δαβ ≡

{
1 α = β ,

0 otherwise.
(A5)

For example, given coordinates u, v, w that are not necessarily orthogonal, the basis vector eu

will be orthogonal to ev and ew, the basis vector ev will be orthogonal to eu and ew, and
the basis vector ew will be orthogonal to eu and ev. Similarly, the basis vector eu will be
orthogonal to ev and ew, and so on. It will be the case that eu = eu, ev = ev, and ew = ew if
and only if the basis {eu, ev, ew} is orthonormal. We see that for cartesian coordinates x, y, z,
the two bases are identical: ex = ex etc.

The new basis vectors are not necessarily orthonormal: an analysis similar to that of (A5)
gives

eα ·eβ = gαβ . (A6)

The relationship between the two bases is symmetrical, in that

gαβ e
β = gαβ g

βµeµ = δµα eµ = eα . (A7)

That is, equations (A4) and (A7) are

eα = gαβeβ , eα = gαβ e
β . (A8)

We see that the dual of a dual basis is just the original basis. It’s now straightforward to show
that

vα = v ·eα . (A9)
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We have also

v ·eα = vβeβ ·eα = vβgβα ≡ vα , (A10)

again giving a symmetry in the notation:

vα = v ·eα , vα = v ·eα . (A11)

Also,

v = vαeα = vαgαβe
β = vβ e

β , (A12)

from which we see that just as the vα are the components of v over the eα basis, so too the vα
are the components of v over the eα basis.

The significance of the dual basis is that the eα component of v is v ·eα, and not in
general v ·eα. Also, the nabla operator ∇ can be expressed using this dual basis as a sum
over α:

∇ = eα
∂

∂xα
≡ eα∂α . (A13)

This expression holds in any coordinate system. It’s often written in cartesian coordinates as
a definition

“ ∇ ≡ (∂x, ∂y, ∂z) ”, (A14)

which (a) omits the basis vectors, and (b) does not suggest how∇might be written in arbitrary
coordinates. Nabla is also sometimes written in general coordinates as

“ ∇ ≡
∑
α

eα
∂

∂xα
” (Wrong!), (A15)

which uses the wrong basis vectors. The general expression ∇ = eα∂α uses the dual basis,
and can be used to compute the divergence and curl in arbitrary coordinates by calculating
“∇ · ” and “∇×”.8

It can easily be shown that any orthonormal basis is identical to its dual, in which case
the above raised/lowered indices need not be used, and we can revert to the simpler notation
of Section 7.

Using the above notation, we can now reformulate the analysis of Section 7 for a general
basis. Consider coordinate systems A and A′ (these names are chosen here so that components
are more economically written than in Section 7: those for A have no prime, and those for A′

have a prime), and use just two dimensions for economy. Write an arbitrary proper vector v
as

v = vαeα = vβ
′
eβ′ . (A19)

8For example, the divergence is

∇·v = (eα ∂α) ·(vβeβ) = eα ·
[
∂α(vβeβ)

]
. (A16)

Appendix C shows that in the language of tensor analysis,

∂α(vβeβ) = vβ;αeβ , (A17)

in which case

∇·v = eα ·vβ;αeβ = δαβ v
β
;α = vα;α . (A18)

This last expression vα;α is how the divergence is usually written in tensor analysis.
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Now consider

[v]A′ =

[
v1′

v2′

]
=

[
v ·e1′

v ·e2′

]
=

[
vαeα ·e1′

vαeα ·e2′

]
=

[
e1 ·e1′ e2 ·e1′

e1 ·e2′ e2 ·e2′

] [
v1

v2

]
≡ µAA′ [v]A , (A20)

where

µAA′ ≡
[
e1 ·e1′ e2 ·e1′

e1 ·e2′ e2 ·e2′

]
, (A21)

In other words, as an extension to the idea of Section 7, the columns of µAA′ are the lowered-
index basis vectors eα of A written in raised-index A′ coordinates (found from dot products
with eβ

′
):

µAA′ =
[

[e1]A′ [e2]A′
]

(A22)

and the rows of µAA′ are the raised-index basis vectors of A′ written in lowered-index A coor-
dinates.

Inverting [v]A′ = µAA′ [v]A shows that µAA′ is still the inverse of µA
′

A as in Section 7; but these
two matrices are no longer in general the transposes of each other.

Finally, equation (7.14) still holds, because the analysis in (7.13) is unchanged when using
non-orthonormal coordinates.

A.1 Example: Calculating ∇ in Spherical Polar Coordinates

For an uncommon example of the utility of the dual basis, we calculate ∇ in spherical polar
coordinates r, θ, φ. Without even needing to know how these coordinates are defined, the
answer is simply

∇ = eα ∂α = er ∂r + eθ ∂θ + eφ ∂φ . (A23)

But we tend to work either with the basis {er, eθ, eφ} or with the normalised basis {êr, êθ, êφ}.
To find these, apply the discussion of Section 6 to write

eα =
∂x

∂α
ex +

∂y

∂α
ey +

∂z

∂α
ez for α = r, θ, φ . (A24)

Now we need to know how the spherical polar coordinates relate to x, y, z. The standard
approach begins with

x = r sin θ cosφ ,

y = r sin θ sinφ ,

z = r cos θ . (A25)

Working in cartesian coordinates “C” with sθ ≡ sin θ, cθ ≡ cos θ and similarly for φ, we then
have

[er]C =
∂

∂r

xy
z

 =

 sθ cφsθ sφ
cθ

 , [eθ]C =

 r cθ cφr cθ sφ
−r sθ

 , [eφ]C =

−r sθ sφr sθ cφ
0

 . (A26)

Relate the usual basis to the dual basis via (A4), for which is needed the metric elements. The
dot product is independent of coordinate system and is most simply calculated in cartesian
coordinates in the usual way; so write

grr = er ·er = [er]C · [er]C
(A26)
=== 1 , (A27)
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and similarly
gθθ = r2 , gφφ = r2 sin2 θ , (A28)

with all other gαβ equal to zero.9 The metric matrix is then diagonal, in which case in-
voke (A3):

grr =
1

grr
, gθθ =

1

gθθ
, gφφ =

1

gφφ
, (A29)

with all other gαβ equal to zero. Then (A4) becomes

er = grαeα = grrer =
er
grr

= er ,

eθ = gθθeθ =
eθ
gθθ

=
eθ
r2
,

eφ = gφφeφ =
eφ
gφφ

=
eφ

r2 sin2 θ
. (A30)

The normalised basis is

êr =
er
|er|

=
er√
grr

= er , êθ =
eθ√
gθθ

=
eθ
r
, êφ =

eφ√
gφφ

=
eφ

r sin θ
, (A31)

and similarly
ê r = er , ê θ = reθ , êφ = r sin θ eφ . (A32)

Finally, (A23) can be expressed in various ways as

∇ = er ∂r + eθ ∂θ + eφ ∂φ

= ê r ∂r +
ê θ

r
∂θ +

êφ

r sin θ
∂φ

= er ∂r +
eθ
r2
∂θ +

eφ

r2 sin2 θ
∂φ

= êr ∂r +
êθ
r
∂θ +

êφ
r sin θ

∂φ . (A33)

The last two forms in (A33) are seen frequently in the literature, being usually derived in
other ways that are sometimes economical and other times laborious.

A.2 Comment on the Vector Components vα

The notation of this appendix embodies the idea that every coordinate system has associated
with it two natural bases, {eα} and {eα}, which are identical if and only if the coordinates
are orthonormal. A vector v has component vα for the basis vector eα, and component vα for
the basis vector eα. (The pairing of down with up and up with down indices here is simply
conventional; convention could just as well have paired down with down and up with up.)
This pairing of bases is used extensively in crystallography.

9I have calculated grr using [er]C here, but it should be clear that it has unit length from its definition
in (6.1) or (6.2). Similarly, gθθ and gφφ can be calculated from (6.1) or (6.2) by studying the geometry of the
polar coordinate system.
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Now recall page 22, on which we defined a tensor v× that acts on a vector a to produce the
cross-product vector v × a. The tensor v× was conveniently coordinatised as a 2× 2 matrix.
We might choose to do the same with the dot product, defining a tensor “v ” that acts on a
vector a to produce the dot product v ·a. This tensor is conveniently coordinatised as the
1× 3 matrix [v1 v2 v3], so that

v a ≡ v ·a = [v1 v2 v3]

 a1

a2

a3

 = vαa
α . (A34)

In this view, the dot product has been absorbed into the vector v to create the new tensor v .
But whereas the notation v× is useful for a cross product, it’s not clear whether there is
anything to be gained by introducing a new tensor v .

However, modern differential geometry does introduce a new object along the same lines
as v : just as (A5) says that eα ·eβ = δαβ , differential geometry introduces a new object called a
“one-form” or “differential form” as a function of vectors and written variously as ω̃α or dx̃α, so
that ω̃α(eβ) ≡ δαβ . The numbers vα are then set to be the coefficients of a linear combination
of basis one-forms: thus we find ourselves dealing with the one-form vαω̃

α. The rationale
for this idea is that it does not require a dot product to be defined, which appears as early
as (A2). The upshot is that one dot product is replaced by an infinite set of one-forms—along
with several chapters of the required theory needing inclusion in textbooks on the subject.
Additionally, well-established higher-order vector concepts such as bivectors become replaced
by “two-forms”, and so on. My own view is that Ockham would not be impressed by this
introduction of such complexity, both notational and pedagogical. All of physics presupposes
the idea of measuring length, and this is precisely what a dot product does. So physics
cannot dispense with the dot product, and this implies that one-forms are not necessary in
the subject.

Of course, one-forms and their higher-order relatives might be defined as an abstract math-
ematical exercise, but this does not guarantee they will be necessary or indeed useful for
anything outside the realm of abstraction for its own sake. Every calculation that I have
ever seen that uses one-forms with an end result not involving one-forms can be done more
simply using vectors and a dot product. The standard and conventional mantras of one-forms
state, for example, that “one-forms form the rigor behind infinitesimals”. Does this phrase
have any depth? Note that (A13) makes it obvious that ∇xα = eα for any coordinate system,
so e.g. ∇r = er, ∇θ = eθ, and so on. I believe that this simple identification of ∇ with the
dual basis is fundamentally the reason why infinitesimals, which are related to ∇ via standard
vector expressions such as df(x) = ∇f ·dx, are sometimes misidentified (via the dual basis) as
one-forms. Infinitesimals and one-forms both use linear notation, but that does not imply any
connection between them; and I am very sure that no user of one-forms could even remotely
begin to use them as an aid to envisaging the small displacement v dt undergone by a flying
aircraft in time dt. Another mantra is “one-forms render the curl operator easier to under-
stand”. But the curl operator is straightforwardly written in any coordinates by replacing an
expression such as “∇×A” with “eα ∂α ×A”, meaning “eα × ∂αA”, which is not mysterious.

Although n-forms appear in various fields of physics today, I have never seen anything
emerge from their use that sheds light for me on anything that is not defined in terms of
n-forms. Vector integral theorems such as those of Gauss and Stokes are certainly not sim-
plified when remoulded into form language. It seems that in recent years the use of n-forms
has transformed older straightforward vector calculus into something abstruse and convoluted
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that one is obliged to master only to gain acceptance into the appropriate academic clique.
In particular, I think that the use of forms has made general relativity inaccessible to a great
number of students who would have no problem understanding the subject if it were presented
using vectors. The only real use for n-forms that I am aware of is to produce more theorems
about n-forms. But that is a very circular state of affairs.
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Appendix B: Time Derivative of a Rank-2 Tensor

Equations (10.8a)–(10.8c) show how the coordinates of the time derivative of a vector relate
to the time derivative of the coordinates of a vector. Here I derive the analogous expression
for a rank-2 tensor L. That is, how does

[
dAL/dt

]
B

relate to d[L]B/dt? The calculation is
very similar to (10.9) and (10.10), but now using (7.14) instead of (7.4):[

dAL

dt

]
B

(7.14)
=== µAB

[
dAL

dt

]
A

µBA = µAB
d[L]A

dt
µBA

= µAB
d

dt

(
µBA [L]B µ

A
B

)
µBA

= µAB

(
µ̇BA [L]B µ

A
B + µBA

d[L]B
dt

µAB + µBA [L]B µ̇
A
B

)
µBA

= µAB µ̇
B
A [L]B +

d[L]B
dt

+ [L]B µ̇
A
B µ

B
A

(10.17)
=== µAB µ̇

B
A [L]B +

d[L]B
dt

− [L]B µ
A
B µ̇

B
A . (B1)

Now use (10.22) to write µAB µ̇
B
A =

[
ΩBA

]×
B

, and hence (B1) becomes[
dAL

dt

]
B

=
[
ΩBA

]×
B

[L]B +
d[L]B

dt
− [L]B

[
ΩBA

]×
B
, (B2)

or finally, using the well-known “commutator bracket” [P,Q] ≡ PQ−QP ,[
dAL

dt

]
B

=
d[L]B

dt
+
[[

ΩBA
]×
B
, [L]B

]
. (B3)

In particular, set L = ΩBA× in (B3) to produce[
dAΩBA×

dt

]
B

=
d[ΩBA×]B

dt
=

[
dBΩBA×

dt

]
B

. (B4)

That is, A and B both measure the same value for how their relative angular velocity ΩBA

changes with time. But in fact we already know this last point: we could have derived it by
differentiating the vector ΩBA rather than the tensor ΩBA×:

dAΩBA

dt

(10.20)
===

(
dB

dt
+ ΩBA×

)
ΩBA =

dBΩBA

dt
+ ΩBA×ΩBA

=
dBΩBA

dt
. (B5)
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Appendix C: Two Derivatives found in Tensor

Analysis and Fluid Flow

In line with the discussion of Section 10 in which various expressions for a time derivative
were given, this appendix explores two derivatives that have acquired their own names in
their respective fields and are traditionally presented as more advanced than the ordinary
and partial derivatives of calculus. But they are not more advanced at all; they are simply
ordinary and partial derivatives, in the same way that the time derivative of Section 10 is an
ordinary time derivative.

C.1 The Covariant Derivative

We have already seen the first of these derivatives: the “covariant derivative”. The calculation
of Section 10.1.3 is very similar to one encountered in tensor analysis, especially in the four
spacetime dimensions of relativity. To see how, again write a vector v as a linear combination
of basis vectors that are not necessarily orthonormal. Again we use a language of components
that is common in tensor analysis:

v = vαeα , (C1)

where summation over the repeated up-down index (here α) is assumed, and in particular
α sums over one time dimension labelled 0 and three space dimensions labelled 1, 2, 3. In
relativity each frame is given its own coordinates, so that e.g. in three frames labelled as
unprimed, primed, and barred, v is written as

v = vαeα = vα
′
eα′ = vᾱeᾱ . (C2)

Letting the coordinates denote the frame in this way means we can dispense with a frame
notation such as“F”, and write the partial derivative with respect to any one of the coordinates
of, say, the unprimed frame (label it xβ) as simply

∂v

∂xβ
=
∂ (vαeα)

∂xβ
=
∂vα

∂xβ
eα + vα

∂eα
∂xβ

. (C3)

We will use the standard “comma” notation, where a subscripted “, β” denotes ∂/∂xβ. Equa-
tion (C3) is then

v,β = (vαeα),β = vα,β eα + vα eα,β. (C4)

Similar to Section 10.1.3, expand eα,β as a linear combination of basis vectors:

eα,β = Γµαβ eµ (C5)

for four numbers Γµαβ known as Christoffel symbols. Equation (C4) becomes

v,β = vα,β eα + vα Γµαβ eµ (now swap dummy indices α and µ)

=
(
vα,β + vµ Γαµβ

)
eα ≡ vα;β eα . (C6)

So, provided that we remember to carry out this procedure of covariant differentiation,

vα;β ≡ vα,β + vµ Γαµβ , (C7)
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we can ignore the existence of the basis entirely, and focus only on components. In other
words, the covariant derivative allows us to “pretend” that the basis vectors don’t change, so
that ∂(vαeα)/∂xβ = vα;β eα. We then have:

vα,β [≡ (vα),β ] is the β partial derivative of the α coordinate of the vector v, and

vα;β [≡ (v,β)α ] is the α coordinate of the β partial derivative of the vector v. (C8)

Widespread in the field of general relativity is the practice of mimicking the idea that vα,β
is the same as ∂β v

α by writing the semicolon using operator notation: thus vα;β becomes
“∇β vα”. I see this as unfortunate because it expresses covariant differentiation as an operator
(on vα in this case), which is incorrect. The reason is that whereas the comma in (C8) is
simply the partial derivative operator acting on vα, the semicolon is not an operator acting
on vα, due to the presence of all components of v on the right-hand side of (C7). So a
particular vα might be zero everywhere and yet have a non-zero covariant derivative. For
example, consider the two-dimensional radial vector field v = vrer in polar coordinates r, θ.
Here vθ = 0 everywhere and so certainly vθ,θ ≡ ∂θ vθ = 0, but it turns out that vθ;θ = vr/r,
an expression that we could hardly obtain by applying any operator to zero.

Referring to (C8), one might ask why the notation vα;β is necessary at all, given that (v,β)α

works just as well. Traditionally (at least in the tensor calculus of relativity), the coordinate-
vector notation vα has almost always been used to represent the proper vector v; that is, the
same notation vα has traditionally been used for proper vectors and coordinate vectors. But
if vα is used to denote both the α-element of the coordinate vector and the proper vector v
itself, then what does vα,β mean—does it denote the β-derivative of the α-element, or does it
denote the β-derivative of the proper vector v, or perhaps the α-element of that derivative?
Equation (C8) distinguishes these quantities. Presumably vα;β is a historical artifact designed
to provide the necessary clarity. Our practice in this report has been always to distinguish
proper vectors v from coordinate vectors. The α-element of the coordinate vector is vα, and
the entire coordinate vector might be written as vα when there is no likelihood of confusion
and we are making a point of conforming to standard tensor language. But we write the
proper vector always as v.

The calculations in this appendix have been very straightforward (and not novel: see
e.g. [12]). All we have done is differentiate a vector, and the covariant derivative has emerged
naturally as a result. As pointed out on page 31, covariant differentiation is often described
in textbooks as an artificially constructed operation, with the Christoffel symbols Γµαβ being
introduced as correction terms that must be added to the partial derivative in (C7) to render
it compliant with the behaviour expected of vector components. But we see here that rather
than being a separate construction of tensor analysis, the covariant derivative is simply a
convenient way to calculate the components of the usual partial derivative without having to
think about basis vectors or write them down. It is useful without being esoteric.

C.2 A Derivative Used in Fluid Flow

The study of fluid flow makes frequent use of the time derivative in a form known by any of a
host of names in the literature, such as “material derivative” or “convective derivative”. This
derivative is simply the time derivative of some property of a physical element of the fluid. By
way of introduction, picture a solid object with a temperature distribution that is unchanging
in time, but which varies from place to place on the object. If we sample the temperature with
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a sensor that moves over the object, the temperature that the sensor sees will change with time
and be path dependent; and the faster the sensor moves on a given path, the faster will be the
temperature changes. If the object’s temperature distribution is T (x, y, z) then ∂T/∂t = 0,
but clearly d(sensor temp)/dt 6= 0. And yet the sensor temperature is clearly just T at the
position of the sensor. The notational problem here is that simply writing “dT/dt 6= 0” does
not indicate that the temperature change is due to the motion of the sensor. We might instead
write “dTsensor/dt 6= 0”, and although Tsensor = T at all points, the subscript “sensor” is not
redundant because it indicates that we are following the motion of a sensor.

In the study of fluid flow, consider the temperature of a stream of water, and suppress the
z coordinate to save space in what follows. Taken as a whole body of water, at any point in
time and space the water has a temperature distribution T (t, x, y). The body of water itself
might be warmed by the sun, accounting for the time dependence in T (t, x, y). But as the
water flows, it might encounter space-fixed sources of heat transfer, such as geothermal activity
or icebergs attached to the river bank. These account for the space dependence of T (t, x, y).
We are typically interested not so much in the overall temperature distribution T , as in the
temperature of a particular element of water while this element follows the stream. This
element is chosen at some place (x, y, z), so its position is a function of (x, y, z); but once
chosen, its temperature has only time dependence. So we write this temperature of the
element as Tel,xyz(t) or simply Tel(t), to denote that the space dependence of the choice of
element has less of our focus than the time dependence of the temperature of that element.

In particular, ask how this temperature Tel changes with time. The moving element sam-
ples any possible time dependence of the water body’s temperature distribution, as well as
encountering different temperatures in different regions of the water body. The element moves
with velocity v, expressed in our chosen coordinates as (vx, vy) [fluid physics typically employs
lowered indices for its vector components, unlike the usage of Section C.1]. We calculate the
rate of increase of Tel by simply following the element as it moves by an amount v dt in a
time dt, subtracting initial Tel (i.e. initial T ) from final Tel (i.e. final T ) and dividing by the
time interval:

dTel

dt
=
T (t+ dt, x+ vxdt, y + vydt)− T (t, x, y)

dt
. (C9)

The first term in the numerator above can be Taylor expanded, leading to

dTel

dt
=
���

���T (t, x, y, z) + ∂T
∂t dt+ ∂T

∂x vxdt+ ∂T
∂y vydt(((

(((− T (t, x, y)

dt

=
∂T

∂t
+
∂T

∂x
vx +

∂T

∂y
vy =

∂T

∂t
+ v ·∇T . (C10)

We could have found the same expression by reasoning that as the element moves for a time dt,
its amount of temperature increase due to the sun is ∂T/∂t dt, and its amount of temperature
increase due to space-fixed sources is the increase it picks up by moving through space, being
e.g. ∂T/∂x dx in the x direction. Its overall temperature increase is the sum of these:

dTel =
∂T

∂t
dt+

∂T

∂x
dx+ . . . , (C11)

from which (C10) follows. (This is, of course, precisely what a Taylor expansion is doing.)

Although the temperature Tel of the element at any moment and point equals the temper-
ature distribution T evaluated at that point, by using the symbol Tel I emphasise that we are
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following the progress of a particular element as it moves in the flow. The literature of fluid
dynamics typically takes a different course [13]; it solely uses “T”, and then introduces a new
derivative notation for dTel/dt, calling it for example DT/Dt and writing (C10) as

“ DT

Dt
≡
[
∂

∂t
+ v ·∇

]
T ”. (C12)

I suggest that using the same symbol T for both Tel and T is not productive, because such
use defocusses attention from the fact that we are following the evolution of a specific fluid
element, and it leads to D/Dt being treated as a new operator deserving of its own name such
as material derivative. But there is no new calculus present in D/Dt that must be learned by
the aspiring fluid dynamicist. The material derivative is just the time derivative (d/dt) of some
scalar property of a moving element, and as such it surely does not require a special name. I
think the focus should be on what is being differentiated with d/dt (the temperature Tel of
an element as distinct from the overall distribution of temperature T over space and time),
rather than on the idea that there is somehow a more advanced version of differentiation
present here, which there is not.

On a final segue, the above ideas are also used when applying Newton’s laws to an element
of the fluid to derive its motion, given a knowledge of all forces present. In a given frame
(whose presence is understood and so not indicated in the equations that follow) we wish
to write the acceleration of a fluid element. Obviously, the velocity vel of a fluid element
at any time and place equals the velocity v of the fluid at that time and place, but we can
usefully retain vel to remind ourselves that we are applying Newton’s “force equals mass times
acceleration” to an element, and so write the acceleration of the element as dvel/dt:

dvel

dt
=
v(t+ dt, x+ vxdt, y + vydt)− v(t, x, y)

dt

=
��

���
�

v(t, x, y, z) + ∂v
∂t dt+ ∂v

∂xvxdt+ ∂v
∂y vydt���

���− v(t, x, y)

dt

=
∂v

∂t
+
∂v

∂x
vx +

∂v

∂y
vy ≡

∂v

∂t
+ (v ·∇)v . (C13)

So we see that the acceleration dvel/dt of the fluid element turns out to be the perhaps
unfamiliar-looking ∂v/∂t+ (v ·∇)v, which is slightly different to the expression in (C12)
because now a vector is being operated on instead of the scalar in (C12). But the underlying
ideas are straightforward, and again there is no new derivative here. Setting this acceleration
equal to the total force on the element is the entry point to the subject of advanced fluid
dynamics. For example, (v ·∇)v can be re-expressed using ∇× v, and from this curl emerges
the study of vorticity within the fluid.
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