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ABSTRACT

This report addresses the description and implementation of numerical algorithms for the
reconstruction of world points representing a scene, and pinhole camera poses from the scene
images. The Image Processing and Computer Vision System toolboxes of MATLAB are used
for detecting, extracting and matching features in images. A camera graph is introduced to
indicate which image pairs to process, and a homography graph is derived as a sub-graph of
the line graph of the camera graph to parametrize three-dimensional transition homographies.
The estimated transition homographies are applied to world points and cameras, locally re-
constructed from image pairs, to bring them to a global frame of homogeneous coordinates.
Then potentially duplicate points are eliminated using an introduced metric between two
projective points with respect to cameras, and a visibility relation for Bundle Adjustment
is computed. This approach properly addresses the common situation when a point disap-
pears from a camera view and reappears later. Compatibility cocycle conditions for keypoint
matching relations over the camera graph cycles and for transition homographies over the
homography graph cycles are discussed.
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from the Scene Images with MATLAB R©

Executive Summary

This report addresses the description and implementation of numerical algorithms for the
reconstruction of world points representing a scene, and pinhole camera poses from the scene
images. The Image Processing and Computer Vision System toolboxes of MATLAB are used
for detecting, extracting and matching features in images. A camera graph is introduced to
indicate which image pairs to process, and a homography graph is derived as a sub-graph of
the line graph of the camera graph to parametrize three-dimensional transition homographies.
The estimated transition homographies are applied to world points and cameras, locally re-
constructed from image pairs, to bring them to a global frame of homogeneous coordinates.
Then potentially duplicate points are eliminated using an introduced metric between two
projective points with respect to cameras, and a visibility relation for Bundle Adjustment
is computed. This approach properly addresses the common situation when a point disap-
pears from a camera view and reappears later. Compatibility cocycle conditions for keypoint
matching relations over the camera graph cycles and for transition homographies over the
homography graph cycles are discussed.
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1 Introduction

The reconstruction of a real-world scene from multiple images of it, taken from the various
positions of cameras, is a central problem in Computer Vision. In the general case, the calibra-
tion and poses of cameras are unknown, and hence are part of solution. Sparse reconstruction
deals with the estimation of a point cloud, representing the scene, and is the first step in
the reconstruction procedure. Based on the estimated point cloud, the objective of a dense
reconstruction is to build a mesh of the scene by estimating line segments and facets passing
through the world points.

Taking an image of a scene is a simple task, which is generally achieved by projecting objects
in the three-dimensional space to the two-dimensional image plane of a camera. By adopting
the pinhole camera model [Forsyth & Ponce 2003, Hartley & Zisserman 2003] the projection
is represented by a linear map in the homogeneous coordinates of the space and the image
plane. The inverse problem of reconstructing a scene from images is more complex in nature
as compared with the forward problem of taking images.

In general, inverse problems are quite difficult to solve numerically [Tarantola 1987], mainly
because of inherent poor conditioning of involved matrices that requires the application of
suitable regularization techniques, called preconditioning. The accuracy of a reconstruction
procedure depends on how many features in images are detected and how well do they match.
In most circumstances these features are isolated points of interest, called keypoints, but some-
times line segments or curves or even regions can be also captured. The matched keypoints
obtained by an automated procedure are in putative correspondence as they may contain
outliers which should be reliably eliminated; otherwise the accuracy of reconstruction will
be significantly deteriorated. The elimination procedure is based on estimating geometric
constraints, given in terms of homogeneous multi-focal tensors, using the Random Sample
Consensus (RANSAC) algorithm [Fischler & Bolles 1981]. Then, working with inliers only,
three-dimensional world points and camera poses are estimated up to a non-degenerate pro-
jective transformation (three-dimensional homography). The world points and camera maps
are computed in their own homogeneous coordinate charts determined by a pair of images if a
bifocal constraint is used. The next step is to bring all these objects, the world points without
duplication and the camera maps, into a global coordinate frame. Each of these steps intro-
duces an unavoidable error which can become very significant. Therefore, the final important
step is to apply Bundle Adjustment, which minimizes an objective function given in terms
of the squares of Euclidean distances between image keypoints and reprojected world points.
The Levenberg–Marquardt solver [Levenberg 1944, Marquardt 1963] is usually employed for
the minimization of the objective function. In the end of this procedure a cloud of world
points is obtained along with camera maps, which fit best to the imagery.

Comprehensive background material and basic numerical methods for structure reconstruction
are provided in [Hartley & Zisserman 2003]. It is worthwhile emphasizing that this mono-
graph does not address the feature detection technology, which constitutes a broad subject of
research in its own, and in most situations assumes that all world points of interest are visible
in all views. This is obviously not the case in real-world scenarios due to occlusion.

Feature detection is a low-level image processing operation based on examining every pixel of
an image and its immediate neighbourhood to associate feature descriptors to the detected
keypoints; the extracted descriptors are then used to match the keypoints in two images.
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Several feature detection algorithms are publicly available. Some of them are listed below in
the chronological order of development:

• Combined Corner and Edge Detector [Harris & Stephens 1988];

• Minimum Eigenvalue [Shi & Tomasi 1994];

• Scale-Invariant Feature Transform [Lowe 1999, Lowe 2004];

• Maximally Stable Extremal Regions [Matas et al. 2002, Mikolajczyk et al. 2005, Nister
& Stewenius 2008, Obdrzalek et al. 2009];

• Features from Accelerated Segment Test [Rosten & Drummond 2005];

• Speeded-Up Robust Features [Bay, Tuytelaars & Van Gool 2006, Bay et al. 2008, Bradski
& Kaehler 2008]; and

• Binary Robust Invariant Scalable Keypoints [Leutenegger, Chli & Siegwart 2011].

The above feature detection algorithms, except for the patented Scale-Invariant Feature Trans-
form algorithm, are implemented in the Image Processing and Computer Vision System tool-
boxes of the latest release of MATLAB R©.

The author’s previous publication [Antanovskii 2014] is related to some theoretical aspects
and application of Geometric Algebra to 3D reconstruction. The paper [Antanovskii 2016b]
describes the sparse reconstruction of a scene and camera poses from images processed se-
quentially, akin to a video stream. The paper [Antanovskii 2016a] provides a theoretical
background to the more general problem of an arbitrary set of images matched pairwise ac-
cording to a given camera graph. This report extends [Antanovskii 2016a] with the description
and implementation of numerical algorithms for the reconstruction of world points and camera
poses from a scene imagery. The Image Processing and Computer Vision System toolboxes
of MATLAB are used for detecting, extracting and matching features in images. Following
[Antanovskii 2016a] we employ a camera graph indicating which image pairs to process, and
a homography graph parametrizing three-dimensional transition homographies between two
coordinate systems defined by the adjacent edges of the camera graph. The homography
graph is thus a sub-graph of the line graph of the camera graph [Harary 1972]. The estimated
transition homographies are applied to world points and cameras, locally reconstructed from
image pairs, to bring them to a global frame of homogeneous coordinates. Then potentially
duplicate points are eliminated using an introduced metric between two projective points with
respect to cameras, and a visibility relation for Bundle Adjustment is computed. Compat-
ibility cocycle conditions for keypoint matching relations over the camera graph cycles and
for transition homographies over the homography graph cycles are discussed. This rather
academic approach properly addresses the common situation when a point disappears from a
camera view and reappears later. However, it may not be suitable to large-scale simulations
because of extra processing which inevitably deteriorates performance.

Using a randomly-generated benchmark model, numerical experiments are conducted to verify
the developed MATLAB code and establish correlation between artificially introduced Gaus-
sian noise and reconstruction errors. The code has been also applied to the airborne mid
wave infra-red (MWIR) imagery of a scene containing a building in the Ottawa (Canada)
area, and the airborne visible-spectrum imagery of a scene containing a church. The images
and metadata files with camera poses have been provided to Defence Science and Technology
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Group by Defence Research and Development Canada.

2 Problem formulation

Employing the pinhole camera model [Forsyth & Ponce 2003, Hartley & Zisserman 2003], the
projection of a three-dimensional world point to the image plane of a camera reduces to the
matrix multiplication x = X P where x is the row-vector of three homogeneous coordinates
of the image point, x =

[
x1 x2 x3

]
, X the row-vector of four homogeneous coordinates

of the world point, X =
[
X1 X2 X3 X4

]
, and P the 4-by-3 matrix of the homogeneous

coordinates of the camera map,

P =


P11 P12 P13

P21 P22 P23

P31 P32 P33

P41 P42 P43

 . (1)

The right action of camera maps is adopted throughout the paper, so the conventional camera
matrix is transposed to the one used here. Recall that the homogeneous coordinates are
defined up to a nonzero scale. The camera matrix P is assumed non-degenerate (of rank 3).
In this case the left kernel of the matrix P is one-dimensional, and thus a nonzero element of
the kernel defines the camera centre C. Since C P = 0, the camera centre is not projected to a
valid image point. All the other three-dimensional points are mapped to the projective image
plane of the camera; however, only the points with positive depth (in front of the camera) and
within a camera-specific cone of vision will be seen in the image plane [Forsyth & Ponce 2003].
The view frustum obtained by truncating the cone of vision with parallel planes is typically
a pyramid with a rectangular base in the virtual image plane located in front of the camera
for convenience as opposed to the real image plane behind the camera centre.

The inhomogeneous Euclidean coordinates of the image point, x =
[
x1 x2

]
, are given by the

following formula

x = ϕ (X,P ) (2)

where

ϕ (X,P ) =
[
ϕ1 (X,P ) ϕ2 (X,P )

]
, (3)

ϕ1 (X,P ) =
X1 P11 +X2 P21 +X3 P31 +X4 P41

D (X,P )
, (4)

ϕ2 (X,P ) =
X1 P12 +X2 P22 +X3 P32 +X4 P42

D (X,P )
, (5)

D (X,P ) = X1 P13 +X2 P23 +X3 P33 +X4 P43 . (6)

UNCLASSIFIED
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The projection map ϕ (X,P ) depends on the 4 homogeneous coordinates of X and 12 entries
of P , which, after ignoring arbitrary scales, form 14 independent parameters mapped to the 2
inhomogeneous coordinates of x. It is straightforward to check that ϕ (X,P ) is invariant with
respect to any three-dimensional homography H given by a non-singular 4-by-4 matrix

H =


H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44

 (7)

which acts on X and P according to the rules

X 7→ XH , P 7→ H−1 P . (8)

In other words,

ϕ (X,P ) ≡ ϕ
(
XH,H−1 P

)
. (9)

Note that the projection map ϕ is undefined at the camera centre X = C, more generally,
at the principal plane D (X,P ) = 0. Since we are interested in the inverse problem of data
fitting, the given image points are always finite.

In the most general formulation, the sparse reconstruction of a scene takes a collection of
images of the scene as an input along with control parameters, including an instruction for
which image pairs to match, and generates world points and camera maps as an output. We
assume that the images are first preprocessed to detect interest points, which will form a
collection of arrays x(k) of two-dimensional Euclidean coordinates. Here the index k runs
from 1 to the total number of images or views, say NV . In other words, the array x(k) is a
two-column matrix whose number of rows may vary with k. The instruction for which image
pairs to match will be specified by a two-column image-pair connectivity matrix E with a
typical row of the form

[
k1 k2

]
. For each row

[
k1 k2

]
of E enumerated by the row index e

running from 1 to NE , the interest points x(k1) and x(k2) are matched, resulting in a two-
column matrix M (k1,k2) whose typical row

[
m1 m2

]
gives the row index m1 to x(k1) and m2

to x(k2) of keypoints in putative correspondence. We are not making any assumption on the
quality of the matching procedure, so outliers may be present.

In an ideal case, the correspondences M (k1,k2) should induce a bijection between putatively
matched keypoints. However, this is not guaranteed by a feature matching algorithm, so
we will assume that M (k1,k2) is a binary relation, which we will call the keypoint matching
relation.

Recall that a binary relation R is by definition a set of ordered pairs of elements a ∈ A and
b ∈ B [Schmidt 2011]. In other words, R is a subset of the direct product A×B. The sets A
and B are called the source and target of R, respectively. By definition, two elements a and b
are R-related, written aR b, if (a, b) ∈ R. Binary relations form a category whose objects
are sets, and morphisms are the relations themselves [Mac Lane 1998]. Binary relations can
be composed (the composition is associative) and reverted, and the identity relation on a
set A plays the role of the unit 1A which is the neutral element in the category of relations.
Indeed, the identity relation is defined as 1A = {(a, a) : a ∈ A}, and the composition of two
relations R and S can be defined if the target set of R is the source set of S. In this case, if

4
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R ⊂ A×B and S ⊂ B×C, then RS ⊂ A×C is defined as the set of pairs (a, c) ∈ A×C such
that (a, b) ∈ R and (b, c) ∈ S for some b ∈ B. Note that the relation RS may be empty even
when both R and S are non-empty. It is straightforward to check that 1AR = R 1B = R. The
reverted relation R∗ is defined as the set of (b, a) ∈ B × A such that (a, b) ∈ R. The reverse
operation is obviously an involution, because (R∗)∗ = R. It is also called the inversion, or
conversion, or transposition. Note that RR∗ 6= 1A in general even when the domain of R
coincides with A.

The image-pair connectivity matrix E defines the edges of a simple graph [Harary 1972] whose
vertices are the integers k = 1, . . . , NV . We call this graph the camera graph [Antanovskii
2016a]. It is natural to extend this simple graph to a directed graph by assigning an orientation
to each edge (k1, k2). Let us attach x(k) to each vertex k and M (k1,k2) to each edge e = (k1, k2)
of the camera graph as values (weights), and denote the valued camera graph by G. Thus, the
graph G has size NE and order NV . It is natural to symmetrize this graph by adding reversed
arrows and setting

M (k2,k1) =
[
M (k1,k2)

]∗
. (10)

This convention will be useful when we define composition of relations along a cycle of G.
Note that the order of the symmetrized camera graph is doubled, but we will always refer to
the underlying simple graph.

The sparse reconstruction problem, modulo interest point detection and matching, takes
the following compact form. Given camera graph G with vertex values x(k) and edge val-
ues M (k1,k2), reconstruct world points X[n], n = 1, . . . , NX , camera maps P[k] and a visibility
relation V ⊂ {1, . . . , NX} × {1, . . . , NV } such that

x
(k)
ink

= ϕ
(
X[n], P[k]

)
(11)

for each (n, k) ∈ V and some row index ink into the matrix x(k).

Note that the collection of the homogeneous coordinates of the world points X[n] is given
by an NX -by-4 matrix where NX is unknown. The visibility relation V tells us whether a
point X[n] is visible in the view k or not. If it is, the index ink will indicate the image keypoint

in the array x(k) corresponding to X[n].

Ignoring arbitrary scales in X[n] and P[k], the total number of scalar unknowns (degrees
of freedom) in the reconstruction problem (11) is equal to N1 = 3NX + 11NV . If all the
world points are visible in all the image planes, the number of scalar equations is equal
to N2 = 2NX NV . Since N1 grows linearly with respect to NX and NV , but N2 grows
quadratically, the system of defining equations (11) becomes overdetermined, N1 < N2, even
for moderate NX and NV ≥ 2. The visibility relation V may change this proportion but not
dramatically provided that NX and NV are sufficiently large. Therefore, the number of scalar
equations is expected to exceed the number of model parameters.

Since noise is always present in images, the system of equations (11) is never satisfied exactly.
Therefore, an optimal solution should be obtained by minimizing the total reprojection error.
Assuming that this error is the sum of the Euclidean distances squared between the measured
and reprojected image points, the least-squares objective function assumes the form

f (w) =
∑

(n,k)∈V

∥∥∥ϕ (X[n], P[k]

)
− x(k)ink

∥∥∥2 (12)

UNCLASSIFIED
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which has to be minimized over the model parameters w =
{
X[n], P[k]

}
.

A solution w to the above minimization problem is by no means unique, because any 3D
homography H applied simultaneously to all the points and camera maps by the rules (8) does
not change the objective function f(w). In particular, the reconstructed scene is determined
up to an arbitrary three-dimensional homography. Reconstruction up to a 3D homography is
called projective.

The initially specified camera graph may change in the process of reconstruction if the num-
ber of matched keypoints appears to be insufficient; for example, in the presence of a large
proportion of outliers. In this case the corresponding edge e = (k1, k2) of the camera graph
has to be removed along with its value M (k1,k2). In principle, this edge-elimination procedure
can produce a disconnected camera graph even when the initial camera graph is complete,
that is when all the 1

2 NV (NV − 1) image pairs are instructed to be matched.

3 Solution outline

The problem of sparse reconstruction belongs to the class of inverse problems, such as data
fitting or model parameter estimation. In this context the given image keypoints represent
measured data, and the coordinates of the world points and camera maps constitute the model
parameters to be estimated. The most reliable way to solve the reconstruction problem is to
minimize the objective function (12) as it contains observable values only. Finding the global
minimum of a function of many variables is a formidable task in most circumstances, therefore
only an iterative procedure, such as the Levenberg–Marquardt algorithm, widely used in
nonlinear regression analysis, can be practically afforded. However, an iterative solution may
find a local minimum of the objective function if the initial guess is not close enough to
the exact solution. Therefore, it is of a paramount importance to estimate an approximate
solution as accurately as possible, and then use it as an initial guess for the Levenberg–
Marquardt solver.

Recall that the sparse reconstruction problem is projective in nature, so the solution, if exists,
will be obtained up to a 3D homography H with the action (8). A projective space does
not have a canonical metric to measure distances between 3D points which is needed for
building the visibility relation V by eliminating potentially duplicate points. However, when
a collection of camera maps P = {Pk} (k = 1, . . . ,K) is given, the associated metric δP
between two projective 3D points X and Y with respect to the camera maps can be defined
by the expression

δP (X,Y ) =
1

K

K∑
k=1

‖ϕ (X,Pk)− ϕ (Y, Pk)‖2 (13)

where ‖x‖ denotes the Euclidean norm in the image plane.

Strictly speaking, δP is not a distance squared as the axiom δP (X,Y ) = 0 if and only if
X = Y may be violated for a degenerate configuration of camera maps P . This situation
always occurs for one camera as the whole line through the camera centre is projected to a
single image point. The rest axioms of a distance, the symmetry δP (X,Y ) = δP (Y,X) and
the triangle inequality

√
δP (X,Z) ≤

√
δP (X,Y ) +

√
δP (Y, Z), are always satisfied. The

6
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metric δP is independent of a 3D homography H due to (9), and hence can be safely used for
detecting duplicate points, as well as for code validation against ‘ground truth’ data.

3.1 Local reconstruction

Local reconstruction involves finding a solution for each image pair as specified by the edges of
the camera graph. The solution, consisting of an array of world points and two camera maps,
is obtained in a local coordinate frame, and hence the name of local reconstruction.

For a given pair of camera maps, say P and Q, the homogeneous coordinates of the bifocal
tensor are formed by the 3-by-3 matrix

T =

T11 T12 T13
T21 T22 T23
T31 T32 T33

 (14)

where

Ti j = det


P1σ(i,1) P1σ(i,2) Q1σ(j,1) Q1σ(j,2)

P2σ(i,1) P2σ(i,2) Q2σ(j,1) Q2σ(j,2)

P3σ(i,1) P3σ(i,2) Q3σ(j,1) Q3σ(j,2)

P4σ(i,1) P4σ(i,2) Q4σ(j,1) Q4σ(j,2)

 (15)

and σ is the circular shift function defined by σ(p, q) = 1 + (p + q − 1) mod 3. The ex-
pression (15) has a functorial nature [Antanovskii 2016a]. The important property of the
homogeneous matrix T is that its rank is equal to 2, in particular detT = 0. Note that the
conventional fundamental matrix is transposed to T .

Given a bifocal tensor T with the constraint detT = 0, two camera maps P and Q can be
chosen in many ways such that the conditions (15) are satisfied [Hartley & Zisserman 2003].
One camera map can be arbitrarily selected, and the other will be obtained, still in many
ways.

The bifocal tensor T imposes a geometric constraint on the corresponding image points,
namely [Hartley & Zisserman 2003]

[
x1 x2 1

] T11 T12 T13
T21 T22 T23
T31 T32 T33

 y1y2
1

 = 0 (16)

where x = ϕ (X,P ) and y = ϕ (X,Q) with X being the homogeneous coordinates of some
world point. Knowing keypoint correspondences given by the matrix M (e), the equation (16)
becomes a linear homogeneous equation in the entries of T , and can be solved by the Singular
Value Decomposition (SVD) algorithm [Golub & Van Loan 1996], which finds the best fit to
the kernel of a usually over-determined system of equations. The broad class of methods for
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solving homogeneous equations, almost invariably based on the SVD algorithm, are called the
Direct Linear Transformation (DLT) algorithms [Hartley & Zisserman 2003].

It is worthwhile emphasizing that, since a solution to a homogeneous equation provides the
homogeneous coordinates of a projective space object of some type (a projective point, tensor,
or map), the application of the SVD algorithm is ambiguous as it depends on the frame of
homogeneous coordinates. In other words, the SVD minimization procedure is not invariant
with respect to homogeneous coordinate transformation. To partially overcome this problem,
suitable normalization techniques are developed, which are closely related to the precondi-
tioning of a linear system of equations. In general, a normalization procedure produces a more
accurate solution, which is still not invariant with respect to projective transformations. To
make the solution really invariant, one needs to minimize a reprojection error using a suitable
non-linear iterative algorithm, starting with the DLT solution as an initial guess.

Since a homogeneous 3-by-3 matrix has 8 degrees of freedom, it suffices to provide 8 point
correspondences when assembling equations (16). The right kernel of the 8-by-9 matrix defin-
ing T will be one-dimensional in general configuration, and hence will produce a unique
tensor T up to a scale. The normalized 8-point algorithm, with an appropriate image point
preconditioning and coercing the obtained matrix to ensure detT = 0, is given in [Hartley &
Zisserman 2003, Page 282]. The coercion of the bifocal tensor is an important step because
of unavoidable noise in images, though may introduce errors. This method can be applied
without alteration to estimate the bifocal tensor from any number of point correspondences,
greater than or equal to 8.

Actually, the bifocal tensor T has 7 degrees of freedom, because detT = 0, and therefore it
suffices to use 7 point correspondences to determine T [Hartley & Zisserman 2003]. However,
the DLT algorithm is no longer applicable since the constraint detT = 0 is nonlinear in entries
of T . A nonlinear method for the estimation of T from 7 point correspondences is described in
[Hartley & Zisserman 2003, Page 281]. Briefly, for 7 point correspondences, the 7-by-9 matrix
defining T has a two-dimensional right kernel, and therefore two basis elements of the kernel,
say T(1) and T(2), are available. Substituting the general solution T = αT(1) +(1−α)T(2) into
the equation detT = 0 results in a cubic polynomial equation for α, which provides at least
one real root. Note that the polynomial p(α) = det (αA+B) where A and B are matrices,
is called the characteristic polynomial of the matrix pencil [Gantmacher 1959].

The RANSAC algorithm [Fischler & Bolles 1981] is used to eliminate possible outliers which
do not satisfy the geometric constraint (16) given some tolerance. The matrix T is explicitly
computed from 7 randomly sampled keypoint correspondences in a general configuration.
The struggle for the minimum set of keypoint correspondences pays off, making the RANSAC
solver more reliable as its success depends on the probability that all 7 randomly sampled
correspondences represent inliers. The RANSAC solver returns inlier indices from which
the bifocal tensor is re-estimated by the normalized DLT algorithm using the whole set of
inliers.

In the end of this procedure, the keypoint matching relations M (k1,k2) are modified by keeping
inlier correspondences only. Actually, the relations M ((k1,k2)) should be bijective. The camera
graph can be also modified if the number of bijective correspondences is insufficient (less
than 7) to recover the bifocal tensor T . Moreover, the following camera cocycle condition
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must be satisfied

M (k1,k2)M (k2,k3) · · · M (kp,k1) ⊂ 1k1 . (17)

Here 〈k1, k2, . . . , kp〉 is any cycle of the camera graph, and the symbol 1k1 in the right-hand
side denotes the identity relation of the image plane k1. It suffices to test the camera cocycle
condition (17) on the fundamental cycles of the camera graph. Recall that a graph cycle must
contain at least three vertices, so p ≥ 3. If the superposition of relations in (17) is empty, the
cocycle condition will be automatically satisfied.

As soon as the bifocal tensor T is obtained, two canonical camera matrices, P and Q, compat-
ible with T are chosen and world points reconstructed by the triangulation algorithm [Hartley
& Zisserman 2003]. This is accomplished by the SVD subroutine. Note that the triangulation
procedure leads to the following linear equations[

X1 X2 X3 X4

]
A =

[
0 0 0 0

]
(18)

for the homogeneous coordinates of the world point X, where the 4-by-4 matrix A given by
the expression

A =


x1 P13 − P11 x2 P13 − P12 y1Q13 −Q11 y2Q13 −Q12

x1 P23 − P21 x2 P23 − P22 y1Q23 −Q21 y2Q23 −Q22

x1 P33 − P31 x2 P33 − P32 y1Q33 −Q31 y2Q33 −Q32

x1 P43 − P41 x2 P43 − P42 y1Q43 −Q41 y2Q43 −Q42

 (19)

has rank 3 in the general configuration. The triangulation algorithm has to be repeated for
all point correspondences (x, y) thus producing the point cloud X.

The final step is to apply the Gold Standard method [Hartley & Zisserman 2003, Page 285]
which adjusts the obtained camera maps P and Q, and world points X, by minimizing the
reprojection error in both images. The reduced objective function (12), which now takes the
form

f (w) =
∑(

‖ϕ (X,P )− x‖2 + ‖ϕ (X,Q)− y‖2
)

(20)

where the summation is taken over all the reconstructed points, is minimized using the
Levenberg–Marquardt solver. The least-squares Jacobian matrix is analytically computed
in a straightforward manner; for example

∂ϕ1 (X,P )

∂X1
=
P11 − ϕ1 (X,P ) P13

D (X,P )
, (21)

∂ϕ1 (X,P )

∂P11
=

X1

D (X,P )
, (22)

∂ϕ1 (X,P )

∂P13
= −ϕ1 (X,P ) X1

D (X,P )
. (23)

In the end of this procedure, we obtain two camera maps and a cloud of world points corre-
sponding to the detected inliers for each image pair specified by the rows of E. As mentioned
before, the camera graph G may be altered by deleting those edges which have an insufficient
number of inliers.
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3.2 Global reconstruction

After the local reconstruction is completed, camera maps and world points are computed in
their own homogeneous coordinate charts, and hence the next step is to bring them together to
a global reference frame. This is accomplished by estimating and applying three-dimensional
transition homographies, between two charts of homogeneous coordinates, parametrized by
the edges of the homography graph [Antanovskii 2016a]. The homography graph, denoted
here by H, is a symmetrized graph built from the line graph of the camera graph G. The
vertices of the homography graph are the edges of the camera graph (the matrix E), and the
edges of the homography graph are those pairs (e1, e2) of the adjacent edges of the camera
graph which have a sufficient number of common keypoints in the shared image to determine
a transition homography from local coordinates associated to e1 to those of e2. Let H(e1,e2)

denotes the corresponding transition homography.

Similarly to the symmetrization procedure of the camera graph, we assign the inverse transi-
tion homography to an edge with reversed orientation

H(e2,e1) =
[
H(e1,e2)

]−1
. (24)

It is natural to apply the transition homographies to the world points and camera maps in
order to bring all of them to a global reference frame. However, this procedure may break
unless the following homography cocycle condition is met

H(e1,e2)H(e2,e3) · · · H(ep,e1) = I . (25)

Here 〈e1, e2, . . . , ep〉 is any cycle of the homography graph, and I is the unit homography.
As with the camera graph, it suffices to test the homography cocycle condition (25) on the
fundamental cycles of the homography graph.

The transition homography H(a,b) maps local coordinates of the world points X(a) to X(b).
The defining equations for H(a,b) take the form[

X(a)H(a,b)
]
∧ X(b) = 0 (26)

where ∧ is the exterior product of the Grassmann algebra Λ
(
R4
)

over the four-dimensional
vector space of homogeneous coordinates. The defining equations are linear in the entries
of H(a,b), and hence the SVD algorithm can be employed again to find the solution. However,
this approach depends on homogeneous coordinates, and therefore some preconditioning must
be applied. We used the scaling of the homogeneous coordinates of X(a) and X(b), projecting
them to the unit sphere. Though this procedure is not invariant, the matrix entries of the
defining equation (26) for H(a,b) are made of order 1. The RANSAC solver is applied to
eliminate possible outliers, and then the transition homography H(a,b) is re-estimated from
inliers only. If an insufficient number of matches is found, the corresponding arrow (a, b)
of the homography graph H is deleted along with (b, a). In principle, this may result in
a discontinuous homography graph. Then, using the initial guess H(a,b), the Levenberg–
Marquardt solver is applied to minimize the following objective function

δP (a)

(
X(a), X(b)H(b,a)

)
+ δP (b)

(
X(a)H(a,b), X(b)

)
(27)
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where P (a) and P (b) are the corresponding two-element families of camera maps in local
coordinates. Note that the symmetric objective function depends on 16 parameters, the
entries of H(a,b), because H(a,b)H(b,a) = I and X(a), P (a), X(b), P (b) are given.

The estimated transition homographies H(a,b) are used to construct the net homography along
an oriented path of the homography graph. The homography cocycle conditions guarantee
that the net homography is path independent. Starting from a source vertex of the homogra-
phy graph, which is an edge of the camera graph, we can choose the shortest path leading to
a given edge of the camera graph, compute the net homography along the path, and apply it
to the world points and camera maps. We select the camera graph edge with the maximum
number of inliers as the source vertex of the homography graph. To reduce the number of
multiplications of the transition homographies to a minimum, we identify the path distance
with the number of the path edges when computing the shortest path. Dijkstra’s algorithm
[Diestel 2005] for finding the shortest paths has been implemented.

3.3 Bundle adjustment

Next step is to eliminate duplicate world points and to recalculate all the involved indices
mapping the keypoints to the world points, thus computing the visibility relation V needed
for the definition (12) of the objective function. Given some tolerance the duplicate world
points are eliminated using the introduced metric (13). Proper elimination of duplicates
reduces the number of model parameters and hence improves the performance of the bundle
adjustment.

As soon as the visibility relation V is computed, along with the row indices ink into the ma-
trix x(k), defined on V, the Levenberg–Marquardt solver is applied to minimize the objective
function (12). A potentially large system of linear equations involving the least-squares Jaco-
bian matrix has to be solved at each iteration of the minimization algorithm. It is important
to emphasize that the Jacobian matrix is sparse. The Gaussian elimination algorithm be-
comes more efficient when a sparse matrix defining a system of linear equations is stored in
the sparse rather than dense format. In this case the number of computer operations is con-
siderably reduced by avoiding unnecessary multiplication by zeros. Therefore, with the help
of analytic expression of the Jacobian matrix stored in a sparse format, the final optimiza-
tion step performs efficiently. The Levenberg–Marquardt solver is terminated either when the
relative variation of the objective function becomes smaller than a given tolerance ε, namely

f (wi−1)− f (wi)

f (wi−1) + f (wi)
< ε , (28)

or when the iteration count i reaches a given iteration threshold.

4 Numerical experiments

A benchmark test fixture for the verification of the developed MATLAB code has been de-
signed. Almost all configuration parameters of the benchmark model described below are
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randomly sampled using Gaussian distribution characterized by expectation (mean value)
and standard deviation.

The Euclidean coordinates of the three-dimensional points are randomly generated with zero
expectation and the standard deviation of 1 unit length, producing a sphere-like point cloud
around the origin. The cameras have fixed intrinsic parameters, namely, the view frustum
rectangle is a square of 1000-pixel size, the principal point is at the centre of the view frustum
rectangle, the pixel aspect ratio is 1 and the pixel skew parameter is zero. The focal lengths
of the cameras have the expectation of 1000 and the standard deviation of 100 pixels, and
the expectation and standard deviation of the distance of the cameras from the origin (the
camera range) are equal to 10 and 1, respectively. The principal axes of the cameras point
at the origin, and the angle of camera rotation about the principal axis is uniformly sampled
from the interval [0, 2π].

The randomly generated benchmark model having 120 points and 10 cameras is shown in
Figure A1. The principal axes of the cameras are displayed in red.

The virtual images of the point cloud are also randomly generated by setting the range of
keypoint detection probability to [0.8, 1.0], the range of matching probability to [0.6, 1.0], and
the range of outlier probability to [0.0, 0.1]. It is ensured that only the points projected inside
the view frustum rectangle of the camera are selected. Then Gaussian noise is added to the
dimensional Cartesian coordinates of the image points. We refer to its standard deviation as
the noise level. The dimension of the Gaussian noise level is in pixels.

Table 1: Solver control parameters

Bifocal tensor

RANSAC trial threshold 1000

RANSAC inlier tolerance 10−2

RANSAC inlier ratio 0.2

RANSAC confidence probability 0.99

Iteration threshold 4000

Convergence tolerance 10−6

Transition homography

RANSAC trial threshold 1000

RANSAC inlier tolerance 10−4

RANSAC inlier ratio 0.2

RANSAC confidence probability 0.99

Iteration threshold 4000

Convergence tolerance 10−6

Visibility relation

World point uniqueness tolerance 10−4

Bundle adjustment

Iteration threshold 4000

Convergence tolerance 10−6

12
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Numerical experiments for the benchmark model are conducted for a gradually increasing
Gaussian noise level, averaged over 20 random samples. The solver control parameters are
given in Table 1. The complete initial camera graph is specified.

The mean values of the dimensionless point reprojection error, camera reconstruction error
and homography cocycle error as functions of the image noise level are shown in Figures A2, A3
and A4, respectively. The camera cocycle condition (17) was always fulfilled. The dimension
of reprojection error is in pixels, whereas camera reconstruction and homography cocycle
errors are dimensionless. They are defined in terms of the following metric

min

(∥∥∥∥ P

‖P‖F
− Q

‖Q‖F

∥∥∥∥
F

,

∥∥∥∥ P

‖P‖F
+

Q

‖Q‖F

∥∥∥∥
F

)
(29)

between two projective objects P and Q, say camera maps or homographies, where ‖ · ‖F
denotes the Frobenius norm [Golub & Van Loan 1996, Page 55] of the corresponding matrix
of homogeneous coordinates of the projective object. This metric is not invariant with respect
to projective transformations, but makes sense for two given camera matrices one of which is a
reference ‘ground truth’ camera, or for two homographies one of each is the unit homography I
arising in (25).

As expected, on average, these errors tend to increase with the noise level, but vanish at zero
level. It is seen from Figure A2 that the reprojection error is roughly proportional to the noise
level with the coefficient of proportionality between 2 and 3. This interesting result allows one
to estimate the image noise in terms of the reprojection error provided that its distribution
is Gaussian.

5 Simulation results

The developed MATLAB code has been partially validated against two sets of imagery pro-
vided to Defence Science and Technology Group by Defence Research and Development
Canada.

The first set is the airborne mid wave infra-red (MWIR) imagery of a scene containing a
building in the Ottawa (Canada) area. Figure A5 shows one of the MWIR images.

The second set is the airborne imagery of a scene containing a church. The texture of the
buildings is altered, but the rest scene is intact. Figure A9 shows one of the images.

A metadata file with camera poses are supplied with each imagery dataset. It is acknowledged
that the GPS camera positions are not accurate enough, so we used the camera centres only
for visualization purposes by bringing all the projective objects to the reference frame defined
by the camera centres using Least Squares estimation. Geographic coordinates are preliminary
converted to the UTM coordinates.

Figure A6 shows the reconstructed point cloud and camera trajectory from 60 images of the
building in the Ottawa area. The first camera pose is shown by the red asterisk. There
are 6,288 world points reconstructed. The reprojection error is shown in Figure A7. The
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maximum error is about 7 pixels, which is reasonable enough given that the images have the
size of 480-by-640 pixels. As is expected, the reconstruction error of camera poses is large as
shown in Figure A8.

Figure A10 shows the reconstructed point cloud and camera trajectory from 71 images of
the church building. The first camera pose is shown by the red asterisk. There are 4,297
world points reconstructed. The reprojection error is shown in Figure A11. The maximum
error is about 10 pixels, which is reasonable enough given that the images have the size of
720-by-1280 pixels. As is expected, the reconstruction error of camera poses is large as shown
in Figure A12.

6 Discussion

A theoretical background for the sparse reconstruction of a point cloud and camera maps
from image points of interest in putative correspondence, is presented. A prototype code has
been developed in MATLAB, thoroughly verified by designed unit tests and a benchmark test
fixture, and partially validated against real-world imagery provided by Defence Research and
Development Canada. The developed code is currently based on the Image Processing and
Computer Vision System toolboxes of MATLAB.
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Appendix A: Figures

Figure A1: Benchmark model

Figure A2: Point reprojection error versus Gaussian noise level
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Figure A3: Camera reconstruction error versus Gaussian noise level

Figure A4: Homography cocycle condition error versus Gaussian noise level
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Figure A5: MWIR image of a scene with the building in the Ottawa area

Figure A6: Reconstructed point cloud and camera trajectory (MWIR imagery)
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Figure A7: Reprojection error (MWIR imagery)

Figure A8: Camera pose reconstruction error (MWIR imagery)
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Figure A9: Image of a scene with the building of a church

Figure A10: Reconstructed point cloud and camera trajectory (visible-spectrum imagery)
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Figure A11: Reprojection error (visible-spectrum imagery)

Figure A12: Camera pose reconstruction error (visible-spectrum imagery)
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