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ABSTRACT

This report addresses the description and MATLAB implementation of the Scale-Invariant
Feature Transform (SIFT) algorithm for the detection of points of interest in a grey-scale
image. Some illustrative simulations for code verification are conducted.
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Implementation of the Scale Invariant Feature

Transform Algorithm in MATLABR©

Executive Summary

The most important problem in Computer Vision is to detect an object from its images taken
from various positions and at variable illumination. The only way to recognize an object
from its images, some of which may play the role of training images, is to associate points of
interest to which distinctive features can be assigned and matched between different images.
The matching procedure will be successful only if the extracted features are nearly invariant
to scale and rotation of the image.

This report addresses the description and MATLAB implementation of the Scale-Invariant
Feature Transform (SIFT) algorithm for the detection of points of interest in a grey-scale
image. Some illustrative simulations for code verification are conducted.
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1 Introduction

The most important problem in Computer Vision is to detect an object from its images taken
from various positions and at variable illumination. The only way to recognize an object
from its images, some of which may play the role of training images, is to associate points of
interest to which distinctive features can be assigned and matched between different images.
The matching procedure will be successful only if the extracted features are nearly invariant
to scale and rotation of the image.

Scale-Invariant Feature Transform (SIFT) algorithm has been designed to solve this problem
[Lowe 1999, Lowe 2004a]. Up to date, this is the best algorithm publicly available for research
purposes. It is worthwhile noting that the commercial application of SIFT to image recognition
is protected by the patent [Lowe 2004b]. The main idea of the SIFT algorithm is based on
progressive smoothing and resizing an image, and taking local extrema of the difference-
of-Gaussian functions in the three-dimensional space of pixel coordinates and scales. The
points of interest, also called keypoints, are the corrected local extrema to achieve a better
accuracy to a sub-pixel level and extra stability by eliminating noise. Then each keypoint
is assigned an orientation (or even multiple orientations) defined by the histogram of local
gradient of the image intensity. Relative to the orientation, a descriptor is computed from
the keypoint neighbourhood, which is invariant to image scale and rotation, but yet highly
distinctive.

Synthetic imagery generated by VIRSuite are used for testing the developed code. The VIR-
Suite software is a real-time scene generator developed in Defence Science and Technology
Group (see e.g. [Swierkowski et al. 2014]). It is designed to provide closed-loop dynamic sim-
ulations of complex scenarios that include moving objects, composite backgrounds, sources of
radiation and precise radiometry. The software is capable of generating high-fidelity multi-
modal live imagery comprising range data and passive imagery in the visual and infrared
bands.

This report addresses the description and MATLAB R© implementation of the SIFT algorithm
for the detection of points of interest in a grey-scale image. Some illustrative simulations for
code verification are conducted. The developed MATLAB code may be released on request.
It can be used as a prototype for an advanced and optimized software.

2 Description of the SIFT algorithm

Denote the intensity of the input grey-scale image by I0(x, y) where x and y are pixel coordi-
nates. We assume that the intensity I0(x, y) is normalized to the range 0 ≤ I0(x, y) ≤ 1. We
rescale the image by doubling its size (aliasing) and apply initial smoothing (anti-aliasing)
with the blur amount of σ = 0.5. It is claimed in [Lowe 2004a] that, on average, this simple
pre-processing will increase the number of detected keypoints by a factor of 4.

To blur images we use Gaussian filter with the kernel

G(x, y, σ) =
1

2π σ2
exp

(
−x

2 + y2

2σ2

)
(1)

UNCLASSIFIED
1



DST-Group–TR–3347

UNCLASSIFIED

where σ is the blur amount or scale. The blurred image intensity I(x, y, σ) is given by the
expression

I(x, y, σ) = G(x, y, σ) ∗ I0(x, y) (2)

where the asterisk denotes convolution with respect to x and y. Due to the convergence
of G(x, y, σ) to the delta-function δ(x, y) as σ goes to zero, we have I(x, y, 0) = I0(x, y).
The points of interest are closely related to the local extrema (maxima or minima) of the
Laplacian-of-Gaussian function

L(x, y, σ) = σ2 ∆I(x, y, σ) (3)

in the scale-space of (x, y, σ), where ∆ denotes the Laplacian operator with respect to x and y.
Due to the formula

lim
k→1

G(x, y, k σ)−G(x, y, σ)

k − 1
= σ2 ∆G(x, y, σ) , (4)

the Laplacian-of-Gaussian function can be approximated by the difference-of-Gaussian func-
tion

D(x, y, σ) = I(x, y, k σ)− I(x, y, σ) ≈ (k − 1)L(x, y, σ) (5)

where k is some constant close to 1. Since the factor (k− 1) does not affect extrema location
of L(x, y, σ), the scaled Laplacian-of-Gaussian function is replaced with the difference-of-
Gaussian function D(x, y, σ) which can be computed more efficiently.

The computation of local extrema of D(x, y, σ) is based on generating the so-called scale-space
pyramid. Progressive blurring is applied to the image for carefully chosen discrete values of
scales σ separated by a constant factor k such that k > 1 [Lowe 2004a]. In order to speed up
the algorithm, the blurred image is down-sampled by resizing it by a factor of 0.5 when the
value of σ is doubled, and then the blurring procedure is repeated. This operation creates the
octaves of progressively blurred images. Doubling of σ implies that k = 21/N where N is the
number of scale intervals. In order to find local extrema, we need to produce D(x, y, σ) at
(N + 2) levels of σ (one above and one below), and therefore generate (N + 3) blurred images
for each octave of the pyramid. It is recommended in [Lowe 2004a] to use 4 octaves, 3 scale
intervals (N = 3), and set the initial scale to σ = 1.6 (prior blurring).

The discrete values of D(x, y, σ) form a three-dimensional array for each octave, so the local
extrema can be computed by examining every triplet (x, y, σ) with its 26 immediate neighbours
in the hexagonal mesh (8 neighbours at the same level of σ and 9 neighbours at the level above
and below). The associated value of σ is called the scale of the keypoint (x, y).

Normally, a lot of extrema will be detected in a typical image, so an appropriate elimination of
noise is essential to achieve stability. This is accomplished by the following procedure. First,
the gradient and Hessian matrices of D(x, y, σ) are estimated from its discrete values at the
local extrema. Denoting partial derivatives by the corresponding subscripts, we compute the
corrections to x, y and σ by the formula

(dx,dy,dσ) = − (Dx, Dy, Dσ)

Dxx Dxy Dxσ

Dxy Dyy Dyσ

Dxσ Dyσ Dσσ

−1 . (6)
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Only reasonably small corrections satisfying the conditions |dx| < 0.5 and |dy| < 0.5, as
well as σ + dσ > 0, are taken into account, for which we compute the corrected sub-pixel
coordinates and scale

(x̂, ŷ, σ̂) = (x, y, σ) + (dx,dy,dσ) (7)

and then find the corrected value of the difference-of-Gaussian function

D (x̂, ŷ, σ̂) = D (x, y, σ) +
1

2
[Dx(x, y, σ) dx+Dy(x, y, σ) dy +Dσ(x, y, σ) dσ] . (8)

In order to eliminate extrema with low contrast or poorly localized at edges, we leave only
those keypoints which satisfy the inequalities

|D (x̂, ŷ, σ̂)| > α ,
DxxDyy −D2

xy

(Dxx +Dyy)
2 > β , (9)

where α and β are some thresholds. Their optimal values, α = 0.03 and β ≈ 0.08, obtained
from conducted numerical experiments over a variety of images are recommended in [Lowe
2004a].

The next step is to assign a consistent orientation to each keypoint (x̂, ŷ) with scale σ̂. By
construction, the gradient (Dx, Dy) vanishes at the corrected point (x̂, ŷ, σ̂), and therefore
its value does not determine an orientation. However, this gradient can be averaged over a
neighbourhood of the keypoint with the Gaussian kernel (1) centred at the keypoint. It is
recommended in [Lowe 2004a] to choose 1.5 σ̂ as the scale of the Gaussian weight. In princi-
ple, the direction of the averaged gradient can be used as the reference angle with respect to
which a rotation-invariant keypoint descriptor will be computed. A better option is to assign
potentially multiple orientations to a keypoint [Lowe 2004a] when several peaks of the gradi-
ent magnitude with respect to the gradient angle have comparable values. This is achieved
by building a histogram of the weighted gradient magnitudes with respect to the gradient
angles. The orientation histogram has 36 bins covering 360 degrees. Peaks of the orientation
histogram exceeding 80% of the highest peak are used to create a keypoint with that quan-
tized orientation. So, multiple keypoints at the same location may be created. It is claimed
in [Lowe 2004a] that about 15% of keypoint locations would have multiple orientations, but
these contributed significantly to the stability of matching. Finally, the keypoint orientation
is corrected by interpolating the peak position using a quadratic spline.

The orientation of a keypoint is used to extract a descriptor from a neighbourhood of the
keypoint location, which is invariant with respect to a similarity transform of the image. The
keypoint descriptor is a 128-dimensional vector of unit length. Its construction is described
in detail in [Lowe 2004a].

The matching of a descriptor to a database of descriptors is quite straightforward. We find
a candidate database descriptor whose Euclidean distance d from the given descriptor is
minimal. The candidate descriptor will be accepted if d is less than some parameter ρ times
the minimum distance over all the rest database descriptors, but rejected otherwise. The
parameter ρ called the rejection ratio should be in the range 0 < ρ < 1. The optimal value
ρ = 0.8 is recommended in [Lowe 2004a].

UNCLASSIFIED
3



DST-Group–TR–3347

UNCLASSIFIED

3 Code evaluation

Three simulations have been conducted for code verification. The first two simulations are
used to test keypoint detection, and the third one for keypoint detection and descriptor
matching.

Figure A1 shows a synthetic image generated by VIRSuite in the visible spectrum. The
image size is 1024-by-1024 pixels. The image is first converted to grey scale, and its intensity
is normalized. The SIFT keypoint detection algorithm has been applied to the resulting image
with the default control parameters recommended in [Lowe 2004a]. The number of detected
keypoints is equal to 3,524. An image of the scale-space pyramid is shown in Figure A2.
The keypoint locations (red dots) and orientations (green arrows) are shown in Figure A3. It
is seen multiple orientations assigned to some locations. Figure A4 shows the histogram of
keypoint scales. It is seen from the histogram that the majority of keypoints are detected at
relatively small scales.

Figures A5–A8 show similar information for a synthetic image generated by VIRSuite in
the infrared spectrum. The infrared image size is also 1024-by-1024 pixels. The number of
detected keypoints is equal to 309 which significantly smaller than the number in the previous
example.

The last simulation recovers a similarity-transformed image by means of an estimated two-
dimensional homography. The grey-scale image of a camera man (cameraman.tif) has been
loaded. This image is supplied with MATLAB for demonstration purposes, and its size is
256-by-256 pixels. Another image is obtained from this image by a similarity transforma-
tion; namely, it is scaled by 90% and rotated anticlockwise by 5 degrees. The original and
modified images are shown in Figure A9. Keypoints have been detected in both images and
their descriptors matched. The rejection ratio is equal to 80%. The putative matches are
shown in Figure A10, which definitely contain outliers. A two-dimensional homography has
been estimated from the putative matches using the RANSAC algorithm. This procedure is
described in detail in [Hartley & Zisserman 2003]. The number of inlier matches is equal to 92
out of 106 putative matches. The inlier correspondences are shown in Figure A11. Using the
estimated homography, the modified image is transformed back. The original and recovered
images are shown in Figure A12.

4 Discussion

The SIFT algorithm has been described and implemented in MATLAB. The conducted numer-
ical simulations demonstrated that it works reasonably well. The current version of the code is
not optimized yet. Proper optimization can be done in a multi-threaded environment.

4
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Appendix A: Figures

Figure A1: Synthetic image 1 generated by VIRSuite in visible band

Figure A2: Difference-of-Gaussian image 1 for σ = 3.2
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Figure A3: Keypoint locations and orientations in image 1
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Figure A4: Histogram of keypoint scales in image 1
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Figure A5: Synthetic image 2 generated by VIRSuite in infrared band

Figure A6: Difference-of-Gaussian image 2 for σ = 3.2
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Figure A7: Keypoint locations and orientations in image 2
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Figure A8: Histogram of keypoint scales in image 2
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Figure A9: Original and transformed images

Figure A10: Putative matches
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Figure A11: Inlier matches

Figure A12: Original and recovered images

12
UNCLASSIFIED



UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY GROUP
DOCUMENT CONTROL DATA

1. DLM/CAVEAT (OF DOCUMENT)

2. TITLE

Implementation of the Scale Invariant Feature Transform

Algorithm in MATLAB R©

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED RE-

PORTS THAT ARE LIMITED RELEASE USE (L) NEXT TO

DOCUMENT CLASSIFICATION)

Document (U)

Title (U)

Abstract (U)

4. AUTHOR

Leonid K Antanovskii

5. CORPORATE AUTHOR

Defence Science and Technology Group

PO Box 1500

Edinburgh, South Australia 5111, Australia

6a. DST Group NUMBER

DST-Group–TR–3347

6b. AR NUMBER

016–811

6c. TYPE OF REPORT

Technical Report

7. DOCUMENT DATE

February, 2017

8. Objective ID

AV12877489

9. TASK NUMBER

AIR07/213

10. TASK SPONSOR

RAAF Air Combat Group

13. DST Group Publications Repository

http://dspace.dsto.defence.gov.au/dspace/

14. RELEASE AUTHORITY

Chief, Weapons and Combat Systems Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500,
EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

17. CITATION IN OTHER DOCUMENTS

No Limitations

18. RESEARCH LIBRARY THESAURUS

Science, Mathematics, Algorithms, Computer Vision, Object Recognition

19. ABSTRACT

This report addresses the description and MATLAB implementation of the Scale-Invariant Feature Transform (SIFT)

algorithm for the detection of points of interest in a grey-scale image. Some illustrative simulations for code verification

are conducted.

UNCLASSIFIED


	Title
	Executive Summary
	Author
	Contents
	Figure
	1 Introduction
	2 Description of the SIFT algorithm
	3 Code evaluation
	4 Discussion
	5 References
	Appendix A: Figures
	Document Control Data



