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ABSTRACT

In this report the Computer Vision System toolbox of MATLAB R© and the Visual Structure
from Motion software are evaluated on three datasets of airborne imagery, provided by Defence
Research and Development Canada, and on a dataset of synthetic imagery generated by the
VIRSuite software developed in the Defence Science and Technology Group. The user interface
for a developed code for structure reconstruction, based on the feature detection algorithms
of the MATLAB toolbox, is described.
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Evaluation of Available Software for Reconstruction

of a Structure from its Imagery

Executive Summary

The objectives of the “Three-Dimensional Target Reconstruction” International Collaboration
Project (CP 7–25–13) between Australia, Canada and USA, are to extract three-dimensional
information from a target via low to high cost vision sensors on moving ground or air platforms
through algorithm development. Methods of analysis include comparison of three-dimensional
reconstruction algorithms to ‘truth’ data gathered via Laser Detection and Ranging (LADAR)
sensors including inertial sensors.

Existing techniques allow reliable reconstruction of smooth surfaces, such as terrains, but the
reconstruction of three-dimensional buildings is very challenging with automated software.
This project is aimed at investigating new techniques to improve robustness of the recon-
struction process, and also looks at the issues of using LADAR data for direct reconstruction.
LADAR data is often sparse, particularly at longer ranges, and the fusion of two-dimensional
imagery can be beneficial. The expected defence outcomes from the project are:

• the development of robust techniques for mission planning when using imaging seekers

• collaboration on algorithmic techniques for automatic target reconstruction, detection
and recognition

• improved simulation techniques and sharing of test data sets.

This report partially addresses the objectives of the collaboration project. The Computer
Vision System toolbox of MATLAB R© and the Visual Structure from Motion (VisualSFM)
software are evaluated on three datasets of airborne imagery, provided by Defence Research
and Development Canada, and on a dataset of synthetic imagery generated by the VIRSuite
software developed in the Defence Science and Technology Group. The user interface for a
developed code for structure reconstruction, based on the feature detection algorithms of the
MATLAB toolbox, is described.
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1 Introduction

The objectives of the “Three-Dimensional Target Reconstruction” International Collaboration
Project (CP 7–25–13) between Australia, Canada and USA, are to extract three-dimensional
information from a target via low to high cost vision sensors on moving ground or air platforms
through algorithm development. Methods of analysis include comparison of three-dimensional
reconstruction algorithms to ‘truth’ data gathered via Laser Detection and Ranging (LADAR)
sensors including inertial sensors.

Existing techniques allow reliable reconstruction of smooth surfaces, such as terrains, but the
reconstruction of three-dimensional buildings is very challenging with automated software.
This project is aimed at investigating new techniques to improve robustness of the recon-
struction process, and also looks at the issues of using LADAR data for direct reconstruction.
LADAR data is often sparse, particularly at longer ranges, and the fusion of two-dimensional
imagery can be beneficial. The expected defence outcomes from the project are:

• the development of robust techniques for mission planning when using imaging seekers

• collaboration on algorithmic techniques for automatic target reconstruction, detection
and recognition

• improved simulation techniques and sharing of test data sets.

A series of reports have been published [Antanovskii 2014, Antanovskii 2016b, Antanovskii
2016a, Antanovskii 2017b, Antanovskii 2017a] which partially address the objectives of the
collaboration project. In particular, a prototype MATLAB code for 3D target reconstruction
is developed, which implements the basic 3D reconstruction algorithms described in [Hartley &
Zisserman 2003]. In this follow-up report the Computer Vision System toolbox of MATLAB R©

and the Visual Structure from Motion (VisualSFM) software are evaluated on three datasets
of airborne imagery, provided by Defence Research and Development Canada (DRDC), and on
a dataset of synthetic imagery generated by the VIRSuite software developed in the Defence
Science and Technology Group [Swierkowski et al. 2014]. The user interface for a developed
code for structure reconstruction, based on the feature detection algorithms of the MATLAB
toolbox, is described.

2 Overview of feature detection algorithms

Comprehensive background material and basic numerical methods for structure reconstruction
are provided in [Hartley & Zisserman 2003]. It is worthwhile emphasizing that this mono-
graph does not address the feature detection technology, which constitutes a broad subject of
research in its own, and in most situations assumes that all world points of interest are visible
in all views. In real-world scenarios this is not the case due to point occlusion.

Feature detection is a low-level image processing operation based on examining every pixel
of an image and its immediate neighbourhood to associate feature descriptors to points of
interest, called keypoints; the extracted descriptors are then used to match the keypoints in
any two images. Several feature detection algorithms are publicly available, namely:

• Combined Corner and Edge Detector algorithm [Harris & Stephens 1988]
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• Minimum Eigenvalue algorithm [Shi & Tomasi 1994]

• Scale-Invariant Feature Transform algorithm [Lowe 1999, Lowe 2004a]

• Maximally Stable Extremal Regions algorithm [Matas et al. 2002, Mikolajczyk et al.
2005, Nister & Stewenius 2008, Obdrzalek et al. 2009]

• Features from Accelerated Segment Test algorithm [Rosten & Drummond 2005]

• Speeded-Up Robust Features algorithm [Bay, Tuytelaars & Van Gool 2006, Bay et al.
2008, Bradski & Kaehler 2008]

• Binary Robust Invariant Scalable Keypoints algorithm [Leutenegger, Chli & Siegwart
2011].

The above feature detection, extraction and matching algorithms, except for the patented
Scale-Invariant Feature Transform (SIFT) algorithm [Lowe 2004b], are implemented in the
Computer Vision System and Image Processing toolboxes of MATLAB R©.

3 Imagery datasets

Three datasets of airborne imagery were provided by DRDC for the purpose of software
evaluation and benchmarking.

Figure 1: Typical image of Dataset A

The first dataset (“Dataset A”) contains 302 mid-wavelength infra-red (MWIR) airborne
images of a scene in the Ottawa (Canada) area. A meta-data spreadsheet with poses of
cameras and a high-resolution Computer-Aided Design (CAD) model of the building obtained
by terrestrial non-contact 3D imaging systems (laser scanner) were also provided by DRDC
[Beraldin & Coumoyer 2014]. The images were 480-by-640 pixels in size. A typical MWIR
image is shown in Figure 1.

2
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Figure 2: Typical image of Dataset B

The second dataset (“Dataset B”) contains 71 airborne images of a scene containing a church.
The texture of the buildings was altered, but the rest of the scene was intact. A meta-data
spreadsheet with poses of cameras was also provided by DRDC. The images were 1280-by-720
pixels in size. One of them is shown in Figure 2.

Figure 3: Typical image of Dataset C

The third dataset (“Dataset C”) contains 50 airborne images of a scene containing a small
farm. The images were 1000-by-1000 pixels in size. One of them is shown in Figure 3.

In addition to the real-world imagery provided by DRDC, the fourth dataset (“Dataset D”)
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Figure 4: Typical image of Dataset D

was evaluated, which consisted of 18 synthetic MWIR images generated by VIRSuite. This
software was developed in the DST Group [Swierkowski et al. 2014]. The synthetic images
were 1024-by-1024 pixels in size. One of them is shown in Figure 4.

4 Evaluation of the MATLAB toolbox

The latest releases of the Image Processing and Computer Vision System toolboxes support
the above-mentioned feature detection, extraction and matching algorithms except for the
SIFT algorithm. These algorithm implementations with default settings were evaluated on
the four imagery datasets. All the images in each dataset were processed, and the average
numbers of detected keypoints and putative matches calculated. The results are summarized
in Tables 1–4, respectively.

The Minimum Eigenvalue algorithm detected the greatest number of features on average.
However, the ratios of the average numbers of putative matches and detected keypoints were
considerably smaller. On the other hand, the corresponding ratios obtained by the Speeded-Up
Robust Features (SURF) algorithm were quite high, though the average numbers of detected
keypoints were moderate. This indicates that the SURF descriptors provide better identifi-
cation of the detected features.

The keypoints from first two images from each dataset, detected by the Minimum Eigen-
value algorithm, and their putative matches are shown in Figures A1–A4, respectively. It is

4
UNCLASSIFIED



UNCLASSIFIED
DST-Group–TR–3356

Table 1: Detected keypoints and putative matches in the images of Dataset A

Feature detection algorithm Detected keypoints Putative matches

Combined Corner and Edge Detector 98 63

Minimum Eigenvalue 961 556

Maximally Stable Extremal Regions 419 232

Features from Accelerated Segment Test 133 50

Speeded-Up Robust Features 477 359

Binary Robust Invariant Scalable Keypoints 141 23

Table 2: Detected keypoints and putative matches in the images of Dataset B

Feature detection algorithm Detected keypoints Putative matches

Combined Corner and Edge Detector 227 60

Minimum Eigenvalue 1918 296

Maximally Stable Extremal Regions 466 143

Features from Accelerated Segment Test 272 49

Speeded-Up Robust Features 713 340

Binary Robust Invariant Scalable Keypoints 256 19

Table 3: Detected keypoints and putative matches in the images of Dataset C

Feature detection algorithm Detected keypoints Putative matches

Combined Corner and Edge Detector 1202 191

Minimum Eigenvalue 9608 383

Maximally Stable Extremal Regions 559 156

Features from Accelerated Segment Test 984 112

Speeded-Up Robust Features 991 377

Binary Robust Invariant Scalable Keypoints 548 22

Table 4: Detected keypoints and putative matches in the images of Dataset D

Feature detection algorithm Detected keypoints Putative matches

Combined Corner and Edge Detector 1440 6

Minimum Eigenvalue 6776 10

Maximally Stable Extremal Regions 260 12

Features from Accelerated Segment Test 134 1

Speeded-Up Robust Features 142 8

Binary Robust Invariant Scalable Keypoints 92 0

seen that the number of matched features in the synthetic images is very small as compared
with the number of detected features. The variation of default control parameters, though
provided more putative matches, did not help much as the additional matched features were
outliers.
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5 Evaluation of VisualSFM

Several methodologies have been employed for the evaluation of 3D target reconstruction soft-
ware, which are based on various types of metrics [Cavegn et al. 2014, Nex et al. 2015, Ballabeni
et al. 2015, Nikolov & Madsen 2016]. In this report we did not compare reconstructed objects
with ‘ground-truth’ data in detail, so only visual recognition of a scene from the reconstructed
point cloud was applied.

VisualSFM developed by Changchang Wu [Wu 2013, Wu et al. 2011] can be downloaded from
http://ccwu.me/vsfm/. This software uses the SIFT algorithm to detect feature points, and
its performance depends on the Graphics Processing Unit (GPU) specification.

VisualSFM was applied to the images of Datasets A-D. The reconstructed point clouds and
camera poses are shown in Figures A5–A8, respectively. Camera poses are not seen well in
the figures. The graphical user interface of VisualSFM allows the user to scale, rotate and
translate the reconstructed scene. In general, this provides a means to visually analyse the
obtained model.

The visual examination of the obtained point clouds demonstrated that the scenes were re-
constructed fairly well from the airborne images of Datasets A-C. Also, the number of the
reconstructed camera poses match the number of images. However, the synthetic MWIR
images did not provide a sufficient number of points. Moreover, only two cameras out of 18
were reconstructed by VisualSFM.

Though future enhancement of the VisualSFM software is expected in the view of the pub-
lication [Zheng & Wu 2015], it is very unlikely that the source code will be released. This
motivated us to develop an in-house code to meet future requirements.

6 Description of the developed MATLAB code

The developed MATLAB code implements several multi-view reconstruction algorithms from
[Hartley & Zisserman 2003], and currently relies on the Image Processing and Computer
Vision System toolboxes of MATLAB to detect, extract and match features.

The main menu of the code is shown in Figure 5. A dataset of imagery has to be loaded first.
Images can be in any standard format supported by the Image Processing toolbox. If camera
poses are available, the user can create an XML metadata file called metadata.xml file whose
sample fragment is shown below:

<?xml version="1.0" encoding="utf-8"?>

<metadata>

<image file="image001.jpg" x="303086" y="5.2002e+06" z="594.284"/>

<image file="image002.jpg" x="303101" y="5.20027e+06" z="594.284"/>

<image file="image003.jpg" x="303105" y="5.20035e+06" z="597.017"/>

<image file="image004.jpg" x="303103" y="5.20042e+06" z="602.179"/>

<image file="image005.jpg" x="303097" y="5.20049e+06" z="606.734"/>

<image file="image006.jpg" x="303089" y="5.20056e+06" z="608.556"/>

<image file="image007.jpg" x="303078" y="5.20063e+06" z="608.556"/>

6
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Figure 5: The main menu of the MATLAB application for target reconstruction
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<image file="image008.jpg" x="303064" y="5.2007e+06" z="610.074"/>

<image file="image009.jpg" x="303044" y="5.20077e+06" z="610.378"/>

<image file="image010.jpg" x="303018" y="5.20083e+06" z="608.556"/>

<image file="image011.jpg" x="302989" y="5.2009e+06" z="605.216"/>

<image file="image012.jpg" x="302955" y="5.20095e+06" z="600.964"/>

<image file="image013.jpg" x="302917" y="5.20101e+06" z="598.839"/>

<image file="image014.jpg" x="302874" y="5.20107e+06" z="597.624"/>

<image file="image015.jpg" x="302829" y="5.20112e+06" z="594.891"/>

<image file="image016.jpg" x="302779" y="5.20116e+06" z="594.284"/>

<image file="image017.jpg" x="302725" y="5.20121e+06" z="594.588"/>

...

</metadata>

and place it in the folder where the dataset images are located. The file and x, y, z attributes
of each <image> element must specify the image file name and the Cartesian coordinates of the
camera corresponding to the taken image, respectively. This optional information is primarily
used for bringing the reconstructed model to the reference frame of the cameras for better
visualization, therefore camera orientation is ignored. Since this reference frame is defined by
at least five cameras in general configuration, the user will be prompted to load the metadata
file if five or more images are selected. Then the loaded images can be optionally resized and
their contrast enhanced.

After a dataset of imagery is loaded the user can execute the following reconstruction steps:

1 Detect features

2 Match features

3 Estimate camera graph

4 Estimate homography graph

5 Estimate visibility relation

6 Run bundle adjustment.

Relevant solver control parameters can be selected at each step. Visualisation of intermediate
reconstruction results is available, and each step can be repeated with adjusted solver control
parameters. Alternatively, all the 6 steps can be executed in a batch mode with the default
solver parameters.

In Step 1, after the feature detection algorithm is specified, all images are processed to detect
and extract features. Then the detected keypoints can be viewed. The user can change the
feature detection algorithm and re-run Step 1 if required.

In Step 2 the user is prompted to select the camera graph type, which specifies which image
pairs to process, and then prompted to accept or change the default rejection ratio, a param-
eter in the match feature algorithm of the Computer Vision System toolbox, which is used to
decide when to reject ambitious matches.

In Step 3 the user is prompted to select solver control parameters for the estimation of
bifocal tensors for each edge of the camera graph. Employing the implemented RANSAC
algorithm [Fischler & Bolles 1981], outliers are detected for each image pair by randomly

8
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sampling 7-point correspondences and estimating the bifocal tensor (the fundamental matrix)
using the non-linear algorithm described in [Hartley & Zisserman 2003, Page 281]. Then
the bifocal tensor is re-estimated from the remaining inliers using the normalized 8-point
algorithm [Hartley & Zisserman 2003, Page 282]. Finally, the Gold Standard method is applied
to optimize the bifocal tensor by minimizing the re-projection error objective function using
the implemented Levenberg–Marquardt solver [Levenberg 1944, Marquardt 1963]. In the end
of this procedure the camera graph built on images as vertices and image pairs with sufficient
number of point correspondences as edges is fully estimated. Some edges of the camera graph
are deleted if an insufficient number of matched inliers are detected. After Step 3 the user
can check the refined correspondences and camera graph co-cycle conditions, and view the
matched inliers. The refined correspondences between matched inliers must be a bijection for
each image pair, the edge of the camera graph, and the camera co-cycle condition must be
satisfied for each graph cycle for consistency [Antanovskii 2017b]. If these conditions are not
met, e.g. due to excessive noise, the user has to change the solver control parameters, such as
the inlier tolerance, or choose another feature detection algorithm.

In Step 4 the user is prompted to select solver control parameters for the estimation of 3D
transition homographies. The 3D homography is a projective transformation of the 3D projec-
tive space bringing locally reconstructed world points for each image pair to a global reference
frame. The transition homographies are parametrized by the edges of the homography graph,
which is a subgraph of the line graph [Harary 1972] of the camera graph [Antanovskii 2016a].
The RANSAC solver is applied to estimate the 3D homography by randomly sampling 5-
point correspondences, followed by minimizing the re-projection error with respect to the
corresponding local camera maps using the Levenberg–Marquardt solver. If the homography
graph has cycles, the co-cycle conditions have to be satisfied [Antanovskii 2016a]. However,
in the presence of significant noise in images, the transition homographies may not satisfy the
co-cycle conditions accurately enough.

In Step 5 the user is prompted to select a uniqueness tolerance for the estimation of the
visibility relation [Antanovskii 2016b]. First, camera maps are computed in a global coordinate
system from the transition homographies and local canonical camera matrices. The locally
reconstructed world points are brought to the global coordinate system at the same time.
World points, reconstructed from different views, invariably contain duplicates which have to
be eliminated. The uniqueness tolerance is the threshold for merging potentially duplicate
points. A metric between two 3D points is defined as the maximum of the distances of
projected image points (e.g. in pixels) averaged over a set of cameras. This metric may not
be a proper distance, because it can vanish for different points when the set of cameras is
degenerate. For example, this situation always occurs for a single camera. However, in the
general configuration of at least two cameras, this metric has all the properties of a distance.
This approach is promising as it easily copes with the common situation when a 3D point
disappears from a view and then re-appears again. After Step 5 the user can check the camera
pose reconstruction error, if the matadata file was loaded, check the re-projection error, view
the re-projected keypoints in images, view the world points with or without camera positions,
and view the camera and homography graphs. A random 3D homography can be applied
from the user interface to change the projective view. There are 15 degrees of freedom for
the selection of an appropriate homography, which are not intuitive as opposed to object
rotation. So, a random homography is easier to apply for the visualization purpose, which
may eventually make the reconstructed scene more recognizable after a few attempts.
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9



DST-Group–TR–3356

UNCLASSIFIED

In Step 6 the user is prompted to select solver control parameters for Bundle Adjustment. The
whole set of world points without duplicates and camera maps is optimized by minimizing
the global re-projection error using the Levenberg–Marquardt solver. A sparse storage for the
associated Jacobian matrices is used in the implementation of the bundle adjustment. After
Step 6 the pattern of the sparse Jacobian matrix can be visualized.

7 Discussion

Four imagery datasets were evaluated with the Computer Vision System and Image Processing
toolboxes of MATLAB, and with VisualSFM. It was revealed that the real-world imagery
provided reasonably good reconstruction of the structures and camera poses, whereas the
synthetic images generated by VIRSuite performed poorly. The latter issue will be addressed
in the future.

The user interface of developed MATLAB code has been described, which is currently based
on the toolboxes of MATLAB [Antanovskii 2016a, Antanovskii 2017b]. The code is thoroughly
tested in unit tests and partially validated against the imagery datasets. The integration of
the implemented SIFT algorithm [Antanovskii 2017a] with the MATLAB code will be the
subject of a separate publication. Another important extension of the code to be addressed
in the future is its integration with LADAR sensing data.
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Appendix A: Simulation results

(i) Detected features in Image 1 (ii) Detected features in Image 2

(iii) Putative matches

Figure A1: Detected and matched features in two images of Dataset A
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(i) Detected features in Image 1 (ii) Detected features in Image 2

(iii) Putative matches

Figure A2: Detected and matched features in two images of Dataset B
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(i) Detected features in Image 1 (ii) Detected features in Image 2

(iii) Putative matches

Figure A3: Detected and matched features in two images of Dataset C
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(i) Detected features in Image 1 (ii) Detected features in Image 2

(iii) Putative matches

Figure A4: Detected and matched features in two images of Dataset D
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Figure A5: Point cloud and camera poses reconstructed from 302 images of Dataset A

Figure A6: Point cloud and camera poses reconstructed from 71 images of Dataset B
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Figure A7: Point cloud and camera poses reconstructed from 50 images of Dataset C

Figure A8: Point cloud and camera poses reconstructed from 18 images of Dataset D
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