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ABSTRACT 
In recent years, the term ‘non-traditional sensing’, or NTS, has seen increased usage; 
particularly within military parlance. This paper explores the definition of NTS, some 
of the technologies that are typically associated with NTS and, ultimately, questions 
the need for NTS as a concept. Instead, it suggests that NTS is really an artefact of 
perception resulting from the natural and ongoing development of sensor systems 
towards higher levels of data and information fusion. A light-weight model that 
provides a generalised mapping between increasing sensor complexity and fusion is 
presented as an alternative to more formal models that have been proposed previously. 
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Expressing Sensor Maturity in Terms of Information 
Fusion: Re-defining Non-Traditional Sensing 

 
Executive Summary  

 
In recent years, the term ‘non-traditional sensing’, or NTS, has seen increased usage; 
particularly within military parlance. This paper explores the definitions of both 
traditional and non-traditional sensors, including providing a précis of historical sensor 
development. Having providing a baseline definition of traditional sensing, and the 
driving technologies behind some of the systems that are typically associated with non-
traditional sensing, the paper considers several sensing technologies that are presently 
associated with non-traditional sensing: hyper-spectral imaging; synthetic aperture radar 
and synthetic aperture sonar. Exploring what makes these technologies non-traditional, 
the paper ultimately questions the need for the concept of non-traditional sensing. Instead, 
it is suggested that NTS is simply an artefact of perception resulting from the natural and 
ongoing development of sensor systems towards higher levels of data and information 
fusion.  

Given this premise, a light-weight model that provides a generalised mapping between 
increasing sensor complexity and fusion is presented as an alternative to more formal 
models that have been proposed previously. Some examples of techniques and 
technologies that not only provide evidence for the validity of the proposed model, but 
that sit higher on the non-traditional sensing ‘spectrum’ than those techniques presently 
categorised as non-traditional, are presented. 
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Glossary 
 

ADF Australian Defence Force 

AESA Active Electronically Scanned Array 

AN/APG Designator for Airborne Fire Control Radars 

ANSI American National Standards Institute 

ARGO Autoregression with Google search data 

AVIRIS Airborne Visible / Infrared Imaging Spectrometer 

C3 Communications, Command, and Control 

DFIG Data Fusion Information Group 

EODAS Electro Optical Distributed Aperture System 

GPS Global Positioning System 

HSI Hyper Spectral Imaging 

ID Identification 

IEEE Institute of Electrical and Electronics Engineers 

IP Internet Protocol 

JDL Joint Directors of Laboratories 

MEMS Micro-Electro-Mechanical Systems 

NIST National Institute of Standards and Technology 

NTS Non Traditional Sens(or)ing 

SAS Synthetic Aperture Sonar 

SAR Synthetic Aperture Radar 

TS Traditional Sens(or)ing 

WIFI IEEE 802.11b wireless networking; term coined from Wireless 
Fidelity. 

Transducer An object that detects events or changes in an environment and 
provides a corresponding physical output (e.g. thermocouple). 

Sensor-system 
(Sensor) 

An object that contains one or more transducers, any associated 
signal processing and an output interface to detect and 
qualify/quantify those changes.  
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Single-transducer 

 
A sensor-system that utilises a single transducer as input to the back-
end processing of the system (e.g. thermocouple-based temperature 
sensor). 

Multi-transducer A sensor-system that utilises multiple transducers as input to the 
back-end processing of the system. The multiple transducers can be 
in the form of a localised array (e.g. AESA radar aperture) or in a 
wider distributed system (e.g. F-35 EODAS). 

Parameter The physical phenomenon being measured (e.g. temperature, 
pressure, distance).  

Single-parameter A sensor-system that provides sensing outputs of only only one 
parameter (e.g. pressure, distance). 

Multi-parameter A sensor-system that combines multiple input parameters and 
utilises those to provide multiple output parameters (e.g. ‘smart 
dust’, ‘Deep learning’ image analysis and SAR). 

Single-function A sensor-system that provides sensing output related only to a single 
parameter (e.g. Pressure, displacement). 

Multi-function A sensor-system that provides sensing output for multiple 
parameters based on the inference of higher-level constructs from a 
single parameter (e.g. radar ‘heading’ and ‘altitude’). 

Mixed-structure A sensor system that utilises both structured and unstructured 
data/information sources as ‘transducer’ inputs (e.g. crowd-sourced 
GPS augmentation). 
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1. Introduction 

1.1 What is Non-Traditional Sensing? 

In recent years the term ‘non-traditional sensing’ (NTS) has gained popularity within 
military parlance. This paper explores the definition of NTS and discusses some of the 
technologies that are typically associated with NTS. In this context, the paper then 
discusses whether NTS is a defined concept, or rather relates to the ongoing development 
of sensor systems towards higher levels of data and information fusion; ultimately 
trending towards more cognitive-like sensor systems in which multiple and disparate 
information sources provide an integrated semantic view of the sensed environment. 

1.2 What is a Sensor? 

The terms ‘sensor’ and ‘transducer’ are – perhaps wrongly – often used interchangeably. 
The definition of a transducer, from the American National Standards Institute (ANSI), is 
‘a device which provides a usable output in response to a specific measurand’, where the 
output is typically an electrical signal and the measurand is a physical quantity, property, 
or condition [2]. That is, a transducer is a physical item that transforms one physically 
measurable parameter1 (measurand) to another physically measurable parameter. 

A sensor, on the other hand, is defined by the American National Institute of Standards 
and Technology (NIST) as ‘a transducer that converts a physical, biological or chemical 
parameter into an electrical signal...’ [3].   

However, such definitions are somewhat unfulfilling and ambiguous. For instance, do 
sensors have to have an electrical signal as their output? Surely mechanical ideal-gas-law 
pressure and temperature sensors are still sensors?  

The above definitions are understandable, given the overwhelming number of transducers 
and sensors that are electrical in nature. It is perhaps partly because of this that the terms 
transducer and sensor have come to be used so interchangeably over time. However, for 
the purposes of this paper, it is important that we clearly delineate transducers and 
sensors. 

To avoid ambiguity, the following, less presupposing, definitions for transducer and 
sensor will be used throughout this paper: 

• Transducer: ‘a device that receives a signal in the form of one type of energy and 
converts it to a signal in another form.’ [4] 

• Sensor: ‘a device which detects or measures a physical property and records, 
indicates, or otherwise responds to it.’ [5] 

                                                      
1 The terms parameter and measurand are variously used throughout the literature. The term parameter will 
be used throughout the remainder of this paper. 
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Using these definitions, the output from a transducer is used as input to a sensor that can 
use the data/information from the transducer (or multiple transducers) to perform a range 
of functions; from simple reporting to complex control.  

It is important to note that the actual output of a transducer has limited utility until it is 
put into context (e.g. calibrated). That is, it is typically the output of the sensor, not the 
transducer, which is used as a source of information for decisions, control or visualisation. 
Throughout this paper, we delineate the transducer from the combined sensor (and 
system), with the latter being referred to as the sensor-system, or just sensor. 

1.2.1 Early Sensing and Defining Traditional Sensors 

Throughout history, humankind has discovered, or invented, methods to sense and 
qualitatively or quantitatively describe our physical surroundings, such as wind and rain. 
The Romans are known to have utilised windsocks for transduction and sensing purposes 
as far back as one hundred and five AD [6]; though windsocks originated much earlier in 
China and Japan [7] and may well have been used as sensors even then. The Romans used 
the equivalent of windsocks as both a military ensign and way to gauge wind direction 
and speed, a system that is still in use today at airports and high wind areas. 

Another example of an early sensor system was that of the Anemometer. In 1450, Leon 
Alberti is said to have invented the first Anemometer, which consisted of a disk placed 
perpendicular to the wind that rotated when the wind was present. The speed of rotation 
was used as the measurable parameter for the wind speed, with a 'wind vane' being used 
for direction [8, 9]. While the anemometer has been refined several times throughout 
history, its basic principles are still used today for weather stations, albeit that they are 
more sensitive and accurate now through the use of modern electronics and signal 
processing. 

The utility of electrical transduction was realised early in the development of electrical 
systems, with the first electrically based sensors evolving around the transduction of 
single-parameter physical phenomena such as heat, light, pressure, radiation, magnetism 
and sound. These sensors generally worked on the production of electrical signals from 
either simple electro-mechanical or electro-resistivity properties. The application of the 
known sensitivity of electrical resistance to temperature by Wilhelm von Siemens in 1860 
to develop a temperature sensor based on copper is perhaps the first recorded instance of 
an electrical-based sensor [10]. Development of multiple sensors based on the electrical 
transduction of other physical parameters followed [10, 11]. In the early 20th century the 
first use of radio energy transduction to detect the return time of radio signals, and 
transduce these into an electrical signal that could be detected on an oscilloscope, 
produced the first usable radar sensor [12]. 

Within this paper, we define the measurement of a single physical parameter at a single 
point in time and space, such as the examples presented above, to be Traditional Sensors 
(TS). Furthermore, we will use this as a baseline for the broader discussion of traditional 
and non-traditional sensing that follows. 
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1.2.2 The Development of Modern Sensors 

Materials processing developments and technologies in the 20th century resulted in 
sensors that provided greater sensitivity and bandwidth (e.g. silicon, barium titanate, 
gallium nitride), while advances in micro-processing provided sensor size and cost 
reductions [4, 13, 14]. The increased packing density and sensitivities provided by these 
materials and microfabrication advances enabled another major step in sensing; 
transducer arraying. Transducer arraying allowed data from more than one transducer to 
be utilised simultaneously through multiplexing, such as used in sonar arrays, phased-
array radars and imaging cameras [5, 6].  

Meanwhile, the utility and flexibility of the electrical transduction of signals ensured their 
dominance throughout the 20th century [15]. Indeed, the development of large-scale 
silicon processing in the 1980s heralded a new era in sensor development. Silicon was 
found to be suitable for transduction of a wide range of physical phenomena into an 
electrical output while also typically increasing the stability and reducing the size and cost 
of these sensors [6, 12, 13, 16]. 

Materials processing and microfabrication developments throughout the 20th Century also 
enabled the development of the digital microprocessor. Not only did digital processing 
increase the efficacy of existing sensors, it provided the speed and flexibility to unlock new 
sensor techniques and paradigms, such as multi-point sensing (e.g. transducer arraying) 
and multi-parameter sensing that were unrealisable (or theoretical only) beforehand [12]. 
Indeed, advanced sensor techniques such as hyperspectral imaging (HSI), synthetic 
aperture radar (SAR) and global-positioning system (GPS) simply could not have been 
realistically realised without digital processing [11, 17, 18].  

While materials fabrication and miniaturisation of sensors led to significant improvements 
in single-parameter sensors, it was the advent of digital processing that provided the most 
significant advances in sensor utility in the 20th century: allowing more (and higher level) 
information to be extracted, stored and processed from the raw sensor feed and driving 
the natural evolution toward more complex sensor-systems. Digital processing allowed 
higher-level information (or understanding) to be obtained – or inferred – through the use 
of data processing in the back-end sensor system attached to the transducer(s).  

An illustrative example of this evolution can be seen in the historical advances in radar systems, as 
illustrated in  

Figure 1. Early pulsed radars were relatively simple, using minimal electronic processing 
of the transducer signal and using the human brain as the signal processor. A cathode-ray 
tube was used to display the radar signal return time (calibrated to distance) as the Y-axis 
of the cathode ray tube display, while the X-axis was connected to a time-base generator 
that swept the spot across the display, matched to the pulse repetition frequency of the 
radar [19]. These early radars provided an indication of the distance from the sensor only, 
with the direction (and hence position) being provided by manual alignment or dead-
reckoning. There was no indication, other than what an operator might intuitively infer, of 
target kinematics such as velocity, manoeuvre or height. 
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Subsequent improvements to radar sensor-systems allowed increasingly more information 
regarding scanned objects to be measured (or at least inferred) by the system from the received data. 
As can be seen in  

Figure 1, a number of the most significant improvements made to radar have occurred as a 
result of digital processors and processing, including developing and improving ways to 
measure (or infer) higher-level information constructs from the transducer signal. This 
includes altitude, velocity, acceleration, synthetic imaging and even target ID. 

Arguably one of the most significant improvements to radar has been the development of 
Active Electronic Scanned Array (AESA) radars [18]. Combining the strengths of both 
digital processing and transducer arraying, advanced AESA radars offer capabilities that 
simply cannot be matched by earlier radar systems [20] including: electronic steering; 
multiple simultaneous beams; pulse-to-pulse frequency- and spatial-agility; per target 
power management; and waveform flexibility. AESA radars are recognised as one of the 
major challenges to, and developmental drivers for, future electronic warfare systems. 
Notably, electronic warfare systems are themselves critically enabled by digital processing 
and, increasingly, distributed transducers. 

Just as with radar, as many other advanced sensors developed over time there has been a 
movement towards the aggregation of multiple transducer inputs. This is natural, since 
multiple transducers provide multiple benefits to the sensor including, improved signal-
to-noise performance – and hence sensitivity – transducer redundancy and spatial 
discrimination. These benefits, in turn, provide better object discrimination performance to 
the sensor. 

It is this quest for increased object discrimination that inexorably led to one of the next 
major paradigm advances in sensor development, which we will discuss in the next 
section. 
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Figure 1: Some major historical radar system developments 
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1.2.3 The Continuing Sensor Evolution 

Object/target discrimination is a primary driver for military sensor applications as it plays 
a critical role in any engagement: from the ability to unambiguously identify a contact by 
satisfying the so-called ‘rules of engagement' to enabling weapons-quality targeting. 
 
While aggregation of multiple transducers helps to improve sensor performance, it is 
ultimately performance-limited insomuch as it is constrained by the physical boundaries 
of the sensor and the physical parameter the sensor is measuring. For sensors to continue 
to provide ever-greater object discrimination they need to grow past the confines of single 
platform systems. They need to incorporate data from a wider range of transducers and 
include a wider spatial distribution of transducers.  

Distributed sensors offer significant advantages over single sensor systems. In general, 
single sensors generally suffer from [21]:  

1. Sensor Deprivation (including interference): The loss of the sensor results in a loss of 
perception of the measurable parameter. This includes both intentional and 
unintentional interference. 

2. Limited spatial and temporal coverage: A single sensor will only measure in a small 
region and may give an incorrect assessment of the measurable parameter in the 
entire area. A single sensor will also typically have a particular acquisition time or 
update rate, which will limit the frequency of measurement. 

3. Accuracy and Precision: Both the accuracy and precision of the measurable parameter 
output is limited to the precision of the single sensor system making the 
measurement. 

Distributed sensor networks help resolve many of single sensor issues, including [21]: 

• Reduced Sensor Deprivation (including interference): Distributed sensors overcome the 
deprivation issue by utilising multiple sensors and implementing fault-tolerance 
logic which provides redundancy. In addition, sensor systems that utilise different 
sensor types are also more tolerant to interference.  

• Increased spatial and temporal coverage: Additional sensors allow sensing to be 
undertaken in multiple locations and at differential times to overcome sensor lag; so 
that one sensor may be acquiring data while another may be preparing to acquire 
data.  

• Improved Accuracy and Precision: The measurable parameter is available from multiple 
positions for confirmation and improved precision and resolution. The availability of 
multiple measured values may be used to increase measurement precision (that is, 
reduce uncertainty).  

In general, distributed single-parameter sensors may improve the precision, reliability, 
spatial and temporal coverage of a parameter. That is, a performance improvement is 
gained from aggregating sensor data (or information derived from sensor data) such that 
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the resulting information is in some sense better than would be possible when these 
sources are used individually [21, 22]. However, it should be noted that while the 
aggregation of single-parameter sensors provides for increased sensor performance, in 
general these performance increases are not as great as those obtained from the 
aggregation of multiple transducers in a single sensor. Regardless, distributed sensors 
provide significant capability, performance and architectural flexibility increases 
compared with their non-distributed counterparts. 

In addition to aggregating single-parameter sensor outputs, distributed sensors allow 
multiple sensor outputs to be aggregated in distributed multi-parameter sensor systems. 
The aggregation of multiple sensor data, commonly known as ‘sensor fusion’ [22, 23] helps 
to reduce sensor deprivation while providing potential increases in distributed sensor-
system performance, including spatial and temporal coverage, accuracy and precision. 
Appropriate sensor-fusion processes provide the potential for improving parameter 
measurement accuracy while not changing the original distributed sensors. As a result, 
any improvement or development in sensor materials or manufacturing techniques that 
result in improved sensors should ultimately also result in improved sensor-systems when 
utilising networked sensor and information fusion. This increased performance is driving 
the trend towards increased data and information fusion in sensors. 

1.2.4 Fusion 

In 1991, White proposed a definition of data fusion to be: 

 ...a process dealing with the association, correlation and combination of data 
and information from single and multiple sources to achieve refined position 
and identity estimates... [22]. 

The rapid advancements in technology in the late twentieth century saw a shift from 
traditional processing of data from a single sensor to fusing the data from multiple 
sensors. This paradigm shift redefined data fusion to be viewed as processes of correlating 
and combining data and information from multiple sensors and associating information 
from databases and other sources. Further advances in technology and data fusion 
techniques not only improved the accuracy of data fusion, but also the emergence of real-
time fusion. 

Hall and Linas [24] asserted that the data fusion process involves a hierarchical data 
transformation: data fusion begins with observed parameters to obtain the kinematics of 
an entity and concludes with the contextual interpretation of the entity, based on the 
environment and relationship between other entities. This view is supported by the Joint 
Directors of Laboratories (JDL) who proposed the most widely accepted model which 
conceptualises and identifies the processes, functions and techniques that are necessary in 
data fusion. The preliminary JDL model consisted of three levels of data fusion: sensing, 
situation assessment and threat assessment.  

The JDL Data Fusion model was revised by [25], which is commonly referred to as the 
1992 Version of data fusion. This revision includes a newly-developed fourth level of data 
fusion, as well as amendments to the first three [23] [26], which were renamed to Object 
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Refinement, Situation Refinement and Threat Refinement. The new fourth level was 
labelled Process Refinement. Shahbazian [26] defines this level as a meta-process, where 
the real-time performance of data fusion is monitored and where information that can 
improve multi-level fusion are identified. An update of the 1992 version was initiated in 
1998 by Steinberg et al. [27], which is the current and most widely accepted version of the 
data fusion model. Each level needs to ensure the ability to i) be able to represent a variety 
of problems that are solved using different techniques and ii) maintain consistency. 
Therefore, Steinberg et al. [28] propose that instead of four fusion levels, there are actually 
five, and each level needs to be rephrased from earlier versions of the JDL data fusion 
model: 

• Level 0 — Sub-object assessment (source pre-processing): estimates and predicts 
observable states from signals and/or objects. Steinberg et al. [29]  believe this level 
is not concerned with the entities, but rather measurements. 

• Level 1 — Object Assessment (object refinement): estimates and predicts the states 
of entities based on their observation to track association and continuous and 
discrete state estimations (i.e. kinematics, target type, combat ID). This level is 
concerned with associating entities with identity, classification, attributes, 
activities, locations and dynamics. 

• Level 2 — Situation Assessment: addresses the interpretation of data the same way 
a human interprets sensor data. By examining this statement, Situation Assessment 
focuses on manipulating relational information to obtain the meaning of a group, 
or collection of entities. 

• Level 3 — Impact Assessment: estimations and predictions of the effects from 
participant, or user actions. 

• Level 4 — Process Refinement: utilises resource and sensor management and data 
acquisition to support mission objectives, where processes and fusion performance 
are refined. Process refinement needs to consider real-time control, long-term 
performance, the size and quality of information that is being produced. 
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Error! Reference source not found. illustrates this new version of the JDL data fusion 
model.  

 

Interestingly, Hall and Linas [24] believe the data fusion process must possess inference, or 
reasoning. This addition to the data fusion process is viewed not as pure data fusion, but 
rather the concept of Information Fusion (IF). 

The concept of information fusion relates to incorporating and establishing inference, 
decision making and situational assessment within data fusion systems [30], [31], [32]. Roy 
et al. [30] argue that information fusion is responsible for: 

• Extended spatial and temporal reporting which will improve confidence and entity 
detection and decrease ambiguity. 

• Managing vast amounts of uncertain information to form a coherent and 
representative situation for decision-making. 

• Assisting in dealing with complexity and uncertainties in dynamic environments. 

 
Figure 2: The proposed five level JDL fusion model. 
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There is still arguably significant debate regarding the delineation of data and information 
fusion. Many argue that data fusion and information fusion are the same, or 
interchangeable, however Steinberg et al. suggest that data fusion and information fusion 
are actually mutually exclusive [29]. Appriou et al. [33] and Wark and Roy [34] contend that 
the fusion process for information fusion fundamentally differs from data fusion. 
However, others believe that fusion is dependent on the information from the organic data 
processed within data fusion. 

While both data fusion and information fusion require an understanding of the 
environment and its information sources, [33] and [34] suggest the difference between 
information fusion and data fusion is that the former needs to possess an appreciation to 
the application of the information, requires life cycle support and the design of an 
information fusion system is more involved than data fusion. This is because information 
fusion is central to a decision being made, as illustrated in Figure 3. 

Blasch [35] argues that the ‘user’ is an integral part of a fusion system and suggests that 
without including the user within the model, there is no need to provide fusion of 
multisensory data. To support a user the fusion model must support the basic cognitive 
activities, in particular knowledge representation and reasoning. Without these two basic 
cognitive functions, inference and decision-making cannot occur. Blasch has proposed the 
addition of a Level 5 (Cognitive/User Refinement) to the JDL model. He views Level 5 as 
affording ‘…determination of who queries information and who has access to information 
(e.g. information operations) and adaptive data retrieved and displayed to support 
cognitive decision making and actions’. Blasch [35] continues, asserting that Level 5 is 
where the aggregation of Levels 0-3 data gathering and the user’s perception of the current 
social, political, and military arena occurs. The inclusion of this level turns the fusion 
model from resembling classical situation awareness to a more contemporary situation 
understanding model [36]. The difference between the two is that the latter allows the user 

 
Figure 3: Information fusion in the decision process [1]. 
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to be aware of, estimate, predict and prioritise events occurring within their environment. 

 

Figure 4: Target tracking as related to the Information Fusion Process levels: after  
Blasch et al [35]. 

 
By utilising situation understanding, Level 5 exploits knowledge representation, semantics 
and reasoning, therefore promoting the delivery and display of knowledge, creation of a 
mental model and representation of the current situation, as well as decision-making. 
Instead of being a consumer of the fusion process, level 5 allows the user 2to be part of the 
process. An example of level 5 is illustrated in Figure 4. Instead of merely collecting data 
and adding context based on the current situation, cognitive refinement allows the user to 
add value, priority, context and intent. In the case illustrated in Figure 4, a user is able to 
explore the allegiance (value), intention of the target (priority and context) and other 
ambiguous behaviours (intent) a target is exhibiting. In addition, this extension of the 
classical data and information fusion process is the enabler for a more distributed and 
shared fusion process amongst a group of users. 

  

                                                      
2 A user can human or machine. 
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2. What is a Non-Traditional Sensor? 

While it appears to be straightforward to define Traditional Sensing (TS), it is not so trivial 
to define Non-Traditional sensing (NTS) and, indeed, the difference between these two. 
Borbath [37] suggests that NTS is difficult to standardise and argues that the ability to 
distinguish a traditional sensor from a non-traditional sensor also depends on the context 
and indeed the organisation considering it. That is, one organisation's NTS could be 
considered another organisation's TS. Furthermore, in most cases, the delineation of TS 
from NTS is made based on the entity utilising the sensor(s) or data provided. Borbath 
further proposes a framework for the definition of TS and NTS systems, as shown in 
Table 1. 

A hyperspectral remote sensor is an imaging sensor that collects images for hundreds of 
contiguous narrow wavelength ranges. Essentially conducting a spatial scan of reflectance 
as a function of wavelength, to build a multi-wavelength representation of an area. It is 
typically represented as a so-called three-dimensional hyperspectral data cube [38]. These 
data cubes can then be processed on a pixel-by-pixel basis to identify spectral signatures 
for material and object identification [38, 39]. 

However, while the concept of hyperspectral imaging was first proposed in 1985 by Goetz 
[20], in essence the hyperspectral system utilises a photo-spectrometer to distinguish 
fundamental optical features as a function of wavelength. This underlying sensing 
technique has been utilised as far back as 1868 by Pierre J. C. Janssen [3], to observe the 
spectrum of the sun. Hyperspectral imaging logically extends the core photo-spectrometer 
concept to that of an imaging sensor array, with a photo-spectral array. This transducer 
array is coupled to a back-end hardware and software processing system and, together, 
they comprise the hyperspectral sensor-system.  

Table 1: Traditional Sensing and Non-Traditional Sensing Definitions 

Traditional Sensing (TS) Non-Traditional Sensing (NTS) 

Built for purpose Built primarily for other purposes 

Intentionally connected to a public or 
private network for data collection 

Connected to a network but accessed by non-
primary actors 

Controlled and maintained by the 
owner or agent of the sensor system 

Not owned or maintained by the non-primary 
actors 

Having achieved a mature, stable 
utility in an established architecture 

Inherently adaptable to novel applications and 
may not be mature or stable 

 
When considered in this way, several questions naturally arise. Firstly, ‘How non-
traditional is hyperspectral imaging?’  
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Figure 5: Defining traditional and non-traditional sensors as a spectrum. 

 
While it is clear that hyperspectral imaging provides increased information discovery and 
new possibilities for object discrimination, it is also clearly a logical extension of a 
traditional and well-understood sensing technique. Hyperspectral images could be formed 
by scanning a single-point photo-spectrometer: in fact, the first fielded hyperspectral 
imager AVIRIS [40] used point-wise raster scanning [17] of a photo-spectrometer.  

The second question we may ask is ‘How are the majority of the new capabilities that we 
attribute to hyperspectral imaging realised?’  

Even a cursory analysis reveals that it is in the aggregation and fusion of the data from the 
transducer array where the capabilities that have come to define the utility of 
hyperspectral sensing are realised. Goetz himself wrote [41]: 

Progress required developments in electronics, computing and software 
throughout the 1980's and into the 1990’s before a larger segment of the Earth 
observation community would embrace the technique. 

Let us consider two other sensor techniques that are sometimes referred to as NTS in 
military circles; namely Synthetic Aperture Radar (SAR) [42] and Synthetic Aperture Sonar 
(SAS) [43]. It may seem sensible to relate both sensing systems as non-traditional. 
However, it becomes less evident when one considers that, at its core, SAR actually utilises 
traditional radar transducers (apertures) in conjunction with advanced signal processing 
to realise the SAR capabilities. Similarly, SAS systems typically utilise established sonar 
transducers and leverage on advanced signal processing to produce the synthetic imagery 
associated with SAS [15]. Furthermore, bats utilise echolocation to produce acoustic 
imaging similar to that of SAS [44]. Does this mean that bats are using a non-traditional 
sensing system? 

It is clear from the above that the framework proposed by Borbath is both inadequate, 
rather subjective and lacks granularity. A clearer method for defining and categorising 
sensing systems as Traditional or Non-Traditional Sensing systems is needed. 
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3. Defining TS and NTS using the  
Information Fusion Spectrum 

The ever-increasing complexity of sensor-systems brings with it an increasing need for 
data, data aggregation and fusion. Indeed, as discussed in the previous sections, it is 
arguably the data processing, aggregation from distributed transducers/sensors, and 
fusion that provides the greatest increases in sensor capability and drives the development 
of new paradigms for sensors. Ultimately, it is also likely to be the over-riding reason that 
has led to the perceived need for the term non-traditional sensing.  

Insomuch as we even need to define traditional and non-traditional sensing, it seems 
reasonable to consider categorising them by leveraging the concepts within the established 
information fusion framework described earlier [15].  

The premise is that as a sensing-system becomes more complex (i.e. moving from a single 
sensor through distributed and then to multi-function and multi-parameter sensor 
systems) the system itself naturally moves from being ‘traditional’ towards being more 
‘non-traditional’. The schema for categorising sensing systems in this way is shown in 
Figure 5.  

The concept naturally extends itself to multi-transducer and multi-sensor systems if we 
consider these systems in terms of their data/information aggregation and fusion 
capabilities, rather than their physical characteristics. 

As an example, the AN/APG-73 that is utilised in the classic F/A-18 uses a slotted radar 
waveguide array and is consider to be a traditional sensor system. However, the 
AN/APG-81 that is utilised in the F-35, uses an AESA phased array and is considered to 
have NTS attributes. However, the actual transducers that enable the radar functionality 
for both systems are similar – albeit the APG-81 utilises many hundreds of active 
transmitter/receiver modules, as opposed to the single transmitter and receiver modules 
used in the APG-73. It is the advanced signal processing, data aggregation and fusion that 
is used by the APG-81 (enabled by the distributed transducers) in the F-35 Mission System 
that provides the significantly enhanced functionality that gives the APG-81 radar sensor 
more NTS-like capabilities. 

The proliferation of mobile and always internet-connected devices has seen the 
introduction of many new sensors and sensor systems. The ability to categorise these new 
sensors and systems utilising the information fusion spectrum construct is valuable. That 
is, when a new sensor or sensor-system arises we can consider where it resides in the 
information hierarchy, and therefore categorise it appropriately. As an example, and as 
previously discussed, historically Hyperspectral sensing in the ADF has typically been 
classed as an NTS system. However, when considering it in the sensor fusion construct it 
can be considered to be an enhanced traditional sensing system since it possesses multi-
transducer, single-parameter and multi-function qualities.  

It is possible that the model proposed in Figure 5 will need to be extended in the future. 
This will be a natural result of any changes that occur to data and information fusion 
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models as they continue to evolve. Possible changes may include the extension of the 
fusion model to better capture advanced machine teaming concepts that differ from 
human teaming concepts and ‘hyper-cognition’, in which machine-learning and big-data 
constructs are effectively leveraged to provide predictive analysis beyond what humans 
are capable of today. This is not a failure of the model; rather it is simply an 
acknowledgement that the framework is simply a reflection of the JDL fusion model. 

4. Information as a Sensor 

There has been a proliferation of sensors and sensor-systems that has accelerated over the 
last two decades. Primarily driven by the consumer mobile market and the desire for 
interconnected lifestyle, this proliferation has produced not only cheaper sensors, but a 
data-rich sensor environment. This ‘Internet of Things’ (IoT) [45] potentially allows any 
device connected to the internet to act as a sensor. These sensors produce an abundant 
amount of information such as text, voice, images, video and location which, due to the 
nature of the devices that integrate these sensors, are distributable and aggregable. 

It is estimated that by 2020, 50 billion devices will be connected to the internet. This is 
driven heavily by commercial industry and is creating a ubiquitous, distributed and 
mobile sensing paradigm. The amount of data/information generated and transferred 
across networks in these environments is enormous. Much effort in the commercial sector 
has been directed towards the benefits of accessing and processing this data/information 
for varying and diverse applications [38, 46].  

An example of this is the WAZE [2, 47] application. While described as a turn-by-turn 
navigation system, WAZE diverges significantly from the traditional GPS in that it is 
community (or crowd-source) enabled; gathering complementary map data and traffic 
information from its users.3 In addition to providing real-time traffic and routeing 
updates, it also allows users to report multiple types of information, such as accidents, 
traffic jams, fuel prices, mobile traffic radars and many others [3]. These information 
services are only possible due to the data analytics that are being constantly applied across 
the mass amount of data and information produced by the Waze 'sensor' network. These 
sensors range from GPS to text and even human cognitive ‘sensors’. 

While Waze is a simple concept, it is an excellent example of the utility of fusion from 
multiple sensors, multiple parameters and multiple functions for the production of 
information overlays and provision of a common operating picture. 

As another example, in 2008, Google introduced a web service that used a software model 
that combined and utilised previous individual searches along with geographic data 
regarding the origin of those searches, to understand and model the spread of previous 
virus outbreaks. This information was then applied to a new virus outbreak to model the 

                                                      
3 Both Apple and Google (whom acquired WAZE in 2013) now incorporate similar crowd-sourcing constructs 
in their own mapping applications. 
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expected spread; with their initial results being able to, in near real-time, accurately 
predict the spread of the virus [48]. While Google Flu Trends is now deactivated, others 
have extended the approach by application of a learning model to account for changing 
search behaviours while also incorporating other sources of data from social media, such 
as twitter and Facebook to undertake the fusion process [17, 47]. 

This particular example, one of many, demonstrates the utility of analytics applied to 
structured and unstructured ‘big data’. In this situation, the analytics are being applied to 
unstructured information using a semantic fusion process. Referring back to Figure 5, we 
can see how this type of sensor-system takes us naturally further along the Non-
Traditional sensing spectrum and towards cognitive systems.   

Both WAZE and Google Flu Trends provide examples of a consistent trend. A trend in 
which data (or indeed information) itself has become a sensor. This is the concept of 
Information as a Sensor. This paradigm will continue to expand as machine intelligence, 
autonomous, behavioural and, indeed, cognitive systems continue to evolve and be 
realised. The concept of Information as a Sensor (IaaS), including drivers, benefits, issues, 
and potential uses will be covered in depth a separate report.  

5. Closing Remarks 

For centuries humankind has been developing transducers and sensor-systems to measure 
and understand the environment in which it resides. Over time these have evolved and 
increased in complexity so as to improve their performance; be it increasing speed, 
accuracy, reliability, precision or sensitivity. While many of these improvements were 
initially gained through materials fabrication and miniaturisation of sensors, the advent of 
digital processing in the second half of the twentieth century provided arguably the most 
significant evolution toward more complete and complex sensor-systems. Digital signal 
processing has allowed higher-level information to be gained via data processing in the 
back-end of the sensor-system and has allowed the seamless integration of multiple 
transducers and sensors in distributed multi-parameter systems. The aggregation and/or 
fusion of multiple transducer and sensor data provided further increases in sensor-system 
performance, including: spatial and temporal coverage; accuracy; and precision, while also 
helping to reduce sensor deprivation.  

While the term ‘non-traditional sensing’ (NTS) has somewhat recently gained popularity 
within military circles, the definition of NTS is somewhat ambiguous. Attempts by other 
authors to provide a definitive method for identifying a sensor or sensor system as TS or 
NTS appear incomplete and, in some cases, make the classification either ambiguous or 
arbitrary. In an attempt to overcome this confusion, it is proposed to recast our thoughts 
about how a ‘non-traditional’ sensor is classified by utilising the established JDL fusion 
framework. The principle being that, as a sensor (sensor-system) becomes more complex 
the system itself naturally moves up the JDL fusion ‘spectrum’ and, in doing so moves 
closer towards being a more so-called NTS system.  
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In fact, this raises the question of whether the term Non-Traditional Sensing (NTS) is itself 
a misleading term, since it is not so much the sensors that are non-traditional but rather 
the layering of multiple sensor inputs, data/information aggregation and fusion that 
provides the non-traditional characteristics of these sensor-systems. 

With the explosion of always-connected devices in the emerging Internet of Things (IoT), 
almost any device connected to the internet now has the potential to act as a sensor. This 
proliferation has produced a data-rich sensor environment and an abundant amount of 
potential information, which is both distributable and aggregable. The utility of applying 
analytics on this ‘big data’ (which consists of both structured and unstructured 
information) in a semantic fusion process has been proven to substantially increase the 
effectiveness of supplied sensor data/information. As this trend continues, spurred on by 
the global proliferation of smart devices and cloud computing services, these sensor-
systems will produce an expanding abundance of contextual information – such as text, 
voice, images and video; mobile, aggregated and geo-located by GPS, WiFi, IP or image 
analysis and driven by the consumer demand for location-based information services. The 
utility of machine-to-machine communications, machine learning and big-data techniques 
on this data will take us naturally further along the information fusion spectrum and 
towards cognitive-based inferencing systems.  
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