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ABSTRACT 
The growing interest in the use of autonomous systems for both military and 
commercial applications has been accompanied by a concomitant increase in research 
involving human-agent interaction. Transparency has been investigated as one factor 
that could improve human trust in, and appropriate reliance on, autonomous systems. 
This report provides a review of studies that have examined how the transparency of 
an autonomous system affects key variables such as operator performance, response 
time, situation awareness, perceived usability, and subjective workload. Theoretical 
frameworks that support transparency in autonomous systems including Lyons’ 
models of transparency (2013) and the Situation Awareness-Based Agent Transparency 
(SAT) model (Chen et al., 2014) are also presented. Findings from these studies indicate 
that a certain amount of transparency seemed to improve operator performance, 
however too much transparency information could also decrease operator 
performance. Overall, the findings have not been clear-cut in terms of how much and 
what type of transparency information should be communicated to the operator. 
Future research should also examine the underlying mechanisms responsible for these 
transparency effects. 
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Executive Summary  
 
The growing interest in the use of autonomous systems for both military and commercial 
applications has been accompanied by a concomitant increase in research involving 
human-agent interaction. Transparency has been identified as one factor that could 
improve human trust in, and appropriate reliance on, autonomous systems (Hancock et 
al., 2011). This report examines how transparency has been operationalised in the 
literature, and reviews evidence of the impact of transparency on key human-autonomy 
teaming in order to guide future research.  

Transparency refers to an operator’s awareness of an autonomous agent’s actions, 
decisions, behaviour, and intention (e.g., Chen et al., 2014). Theoretical frameworks such 
as Lyons’ models of transparency (2013) and the Situation Awareness-Based Agent 
Transparency (SAT) model (Chen et al., 2014) have been proposed to support 
transparency, respectively, in human-robot interaction and human-agent teaming. 
Specifically, these models provide guidance on what information should be communicated 
to the human to support the interaction between the human and the autonomous system.  

There have been five studies that have manipulated different levels of transparency and 
investigated its effects on variables such as operator performance, response time, 
subjective workload, situation awareness, trust, and usability of the system (i.e., Mercado 
et al., 2015/2016; Selkowitz, Lakhmani, Larios, & Chen, 2016; Stowers et al., 2016; Wright, 
Chen, Barnes, & Boyce, 2015; Wright, Chen, Barnes, & Hancock, 2016a, 2016b). In general, 
these studies found that transparency information imparting information about an agent’s 
reasoning improved operator performance; however, some studies found that additional 
transparency information actually worsened operator performance (Wright et al., 2015, 
2016b). Transparency did not seem to affect operator response time and subjective 
workload (Mercado et al., 2015/2016; Selkowitz et al., 2016; Wright et al., 2015, 2016a, 
2016b). Out of these five studies, only one study included a measure of situation 
awareness and found that the additional transparency information (i.e., predicted 
outcomes and agent’s reasoning) improved operator situation awareness, but not when 
uncertainty information was also included (Selkowitz et al., 2016). These findings indicate 
that providing too much transparency information may overwhelm the operator. In terms 
of subjective trust and perceived usability, the results have been inconsistent. For example, 
Mercado et al. (2015/2016) found that subjective trust increased only when uncertainty 
information was given; however, Selkowitz et al. (2016) found that agent’s reasoning, but 
not the additional uncertainty information, increased subjective trust. Finally, while 
Mercado et al. found that perceived usability scores increased when an agent’s reasoning 
and uncertainty information were given, Stowers et al. (2016) found that the addition of 
uncertainty information actually lowered participants’ scores on perceived usability.  
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In summary, although operator performance, situation awareness, perceived usability, 
and trust seemed to be affected by agent transparency, the results from past studies have 
not been clear-cut in terms of how much and what type of information should be included 
and communicated to the operator. Some of these studies suggest that while higher levels 
of transparency may improve some of the human-autonomy teaming variables, the 
highest transparency level did not always produce the best outcome. Future research 
should further investigate this issue (i.e., to specify the type of information that would be 
beneficial for the operator in a given context), and further examine the underlying 
mechanisms that could explain these transparency effects. Understanding these 
psychological processes is fundamental to designing an interface that supports 
transparency in human-autonomy teaming.  
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1. Introduction 

The purpose of this report is to provide a detailed analysis of the key literature relating to 
agent transparency in human-autonomy teaming. In addressing this aim, this report starts 
with a brief introduction to automation and autonomous systems, and why transparency 
is a relevant issue worth investigating (Section 1). This report then examines how 
transparency has been operationalised in the literature and discusses the theoretical 
frameworks—Lyons’ models of transparency (2013) and the Situation Awareness-Based 
Agent Transparency (SAT) model (Chen et al., 2014)—that have been proposed to support 
transparency in human-autonomy teaming (Section 2). Following this, a critical review of 
the existing literature that has examined how transparency affects key human-autonomy 
teaming variables including operator performance, response time, situation awareness, 
perceived usability, and subjective workload is presented (Section 3). This review provides 
an overview of the experimental tasks, scenarios, and interfaces that were used in past 
studies; and aims to find commonalities and differences in how transparency has been 
implemented in an autonomous system and presented to the operator. This report ends by 
providing recommendations for future research on the basis of this review (Section 4). 

1.1 Automation and Autonomous Systems 

Automation has been used in many areas—such as manufacturing, health care, 
transportation, and aviation—to assist and enhance human performance (e.g., through an 
automated aid to reduce memory load), perform complex tasks that are beyond human 
capabilities (e.g., complex mathematical operations), and in hazardous environments 
where human safety could be compromised (e.g., mining; Wickens, Hollands, Banbury, & 
Parasuraman, 2013). One of the primary drivers of the use of automation is to reduce 
labour costs and increase productivity. Automated unmanned air vehicles, for example, 
cost less to fly and manufacture than manned airplanes (Cooke, Pringle, Pedersen, & 
Connor, 2006). 

The degree of automation in a system can vary across a continuum, from the lowest level 
in which the human takes all responsibility to the highest level in which the system 
decides everything and acts autonomously (see Cummings, Bruni, Mercier, & Mitchell, 
2007; Parasuraman, Sheridan, & Wickens, 2000; Ruff, Narayanan, & Draper, 2002; Sheridan 
& Verplank, 1978). Regardless of the different levels, higher levels of automation always 
imply more responsibility for the automated system, requiring less intervention by the 
human—and potentially resulting in less work for the human (Wickens et al., 2013).  

Higher levels of automation are commonly referred to as autonomous systems and are often 
differentiated from the less complex, lower levels of automation. Automation refers to rule-
based systems that have been programmed to achieve specific, pre-defined outcomes (e.g., 
modern programmable thermostats). Autonomous systems, however, have the ability to 
learn from the environment, have a degree of self-governance and self-directed behaviour, 
and are able to evolve and perform tasks or functions on their own. As a result, they are 
not directly predictable in their behaviour (e.g., self-learning robot that taught itself how to 
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walk; Hancock, 2017; Scharre, 2015). Additionally, as autonomous systems possess higher 
levels of independent intelligence, they have a greater capacity to make decisions in 
uncertain and unplanned circumstances (Schaefer, Chen, Szalma, & Hancock, 2016).  

Agents can be implemented in both automation and autonomous systems. Agents are 
hardware or software-based computer systems possessing the following characteristics: (a) 
autonomy (they are able to operate without human intervention for a significant length), 
(b) social ability (they are able to interact and communicate with humans or other agents), 
(c) observability and reactivity (they are able to perceive the environment through sensors 
and react to it), (d) proactiveness (they are able to self-direct behaviour in anticipation of 
future events and to achieve mission goals; see Lakhmani, Abich, Barber, & Chen, 2016; 
also Chen & Barnes, 2014). Agents can vary in complexity—from simple reflex agents (e.g., 
thermostats) to autonomous agents (e.g., intelligent agents that can learn and evolve, Chen 
& Barnes, 2014). 

The intelligence of an autonomous agent, however, is not as flexible or as robust as human 
intelligence in the capacity to understand patterns of behaviour, human intentions, 
implications, and ethical responsibilities (see Chen & Barnes, 2014). As tasks in 
autonomous system require higher levels of planning, judgment and decision making, and 
remote operations (also Cummings, Bruni, Mercier, & Mitchell, 2007; Goodrich & 
Cummings, 2015) the role of humans becomes more important. The involvement of human 
control in higher-level-knowledge-based behaviours (as opposed to lower-level-skill-based 
behaviours) is known as human supervisory control (Goodrich & Cummings, 2015).1 More 
specifically, human supervisory control is the process by which the human and the system 
are inter-dependent: the human interacts with the agent, monitoring its actions, receiving 
feedback, and providing commands for future actions (Goodrich & Cummings, 2015; 
Wickens, Hollands, Banbury, & Parasuraman, 2013). The degree of human monitoring that 
is required also varies with the level of automation; for example, as the automation takes 
on more responsibility, the human requirement for monitoring increases (Parasuraman, 
1987, as cited in Wickens et al., 2013). This human supervisory control is also referred to as 
human-agent teaming (Chen, Barnes, & Harper-Sciarini, 2011).  

In the military aerospace domain, one of the primary goals of using an autonomous 
system is to minimise the number of operators, or to have a single operator supervising 
multiple unmanned assets (Shaw et al., 2010). However, managing multiple assets of 
differing constraints and capabilities (e.g., monitoring system performance, supporting 
frequent re-planning, and re-tasking in response to evolving mission needs and 
operational environment) increases cognitive workload and places significant demands on 
the operator’s attentional resources. These could lead to (a) the operator losing situation 
awareness, (b) complacency or overreliance on the autonomous systems, or (c) skill 
degradation of the operator (Endsley & Kiris, 1995; Parasuraman et al., 2000; Parasuraman 
& Riley, 1997). Furthermore, due to the complexity of these autonomous systems, 
operators often have difficulty in understanding how the system works or why a certain 
decision has been made by an autonomous agent (Linegang et al., 2006). Consequently, 

                                                      
1 Also known as human-on-the loop (Chen & Barnes, 2014), as compared to human-in-the loop. 
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operators sometimes question the accuracy and effectiveness of the agent’s action; this in 
turn can decrease their trust in the autonomous agent (Lakhmani et al., 2016).  

Implementing system transparency (e.g., Chen & Barnes, 2014) has been proposed as one 
method of addressing some of the problematic aspects associated with the interaction 
between humans and autonomous systems. In a transparent system, information 
regarding the autonomous agent’s actions, decisions, behaviour, and intentions is 
communicated to the operator through an appropriate interface with the aim of improving 
trust in the system, performance, and situation awareness (e.g., Mercado et al., 2015; 
Selkowitz, Lakhmani, Chen, & Boyce, 2015; Wang, Jamieson, & Hollands, 2009). The next 
section presents definitions and models of transparency that have been proposed in the 
literature. 

2. Transparency in Autonomous Systems 

Transparency refers to an operator’s awareness of an autonomous agent’s behaviour, 
reliability, and intention. Specifically, transparency is about understanding why an 
autonomous agent behaved in a particular way (Kim & Hinds, 2006), understanding an 
agent’s reliability (Wang et al., 2009), an agent’s tendency for errors (Dzindolet, Peterson, 
Pomranky, Pierce, & Beck, 2003), and an agent’s intended action (Ososky, Sanders, Jentsch, 
Hancock, & Chen, 2014). Transparency has been further described as a means of sharing 
intent and awareness between the operator and the autonomous agent (Lyons, 2013). 
Essentially, the purpose of transparency is to facilitate an operator’s comprehension of an 
autonomous agent’s intent, performance, abilities, future plans, and reasoning process 
(Chen et al., 2014). Two models of transparency have been proposed in the literature: 
Lyon’s (2013) models of transparency for human-robot interaction, and Chen et al.’s (2014) 
Situation Awareness–Based Agent Transparency Model. 

2.1 Lyons’ Models of Transparency (2013)  

Lyons (2013) suggested several factors that are important to support effective human-robot 
interaction. These factors fall under two key aspects of transparency: the robot 
communicating to the operator about its knowledge of the system and its view of the 
world (robot-to-human), and the robot communicating its awareness about the state of the 
human operator (robot-of-human).  

2.1.1 Robot-to-Human Transparency 

In robot-to-human transparency, the information that it is crucial to convey to an operator 
can be described in terms of (a) an intentional model, (b) a task model, (c) an analytical 
model, and (d) an environmental model. According to the intentional model, it is 
important for the human operator to fully understand the design, purpose, and intent of 
the robotic system (and how these match with the operator’s expectations). In other words, 
the operator needs to clearly understand why and for what purpose the robot was created, 
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and how the system seeks to perform these actions. For example, if the robot was to 
override a human directive, the operator should be aware that this could occur, and also 
understand why it occurred and when. 

The task model relates to specific actions of the robot. Once the operator understands the 
design, purpose, and intent of the robotic system, he or she can begin to analyse the 
actions of the robot. According to the task model, the robot must communicate to the 
human an understanding of the task at hand, its intent in terms of what goals it is trying to 
accomplish, its progress in achieving those goals, as well as its capabilities and tendency 
for errors.    

The analytical model is concerned with understanding the underlying analytical structure 
of the robot’s decision process (i.e., how the robot is doing the analysis and how it makes 
decisions). Here, the robot needs to communicate to the human and share details about the 
rationale for its behaviour or system recommendations, as well as provide an 
understanding of the programming of the technology. According to Lyons (2013), such 
awareness will be useful in uncertain situations, as this enables humans to take over 
manual control when necessary. For example, knowing that a robot fuses information 
from satellite imagery and ground sensors (in order to detect the location of potential 
emergency zones) would be useful in cases where the ground sensor networks had been 
compromised.  

Finally, the environmental model involves educating the operator about how the system 
senses information in the environment. More specifically, this involves communicating to 
the operator about the robot’s understanding of the dynamics of its surrounding 
environments (e.g., for potential hostility and temporal constraints). According to Lyons 
(2013), this will help enhance operator situation awareness during uncertainty, and help 
calibrate the operator’s reliance on the robot. 

2.1.2 Robot-of-Human Transparency 

While robot-to-human transparency focuses on the robot communicating to the operator 
about its knowledge of the system and its view of the world, robot-of-human transparency 
focuses on the robot communicating its awareness about factors relating to the human. 
Lyons (2013) robot-of-human transparency is explained through (a) the teamwork model 
and (b) the human state model. According to the teamwork model, both the human and 
the robot need to have a shared understanding of each other’s role (i.e., about who is 
responsible for a given task or set of tasks), and of the level of autonomy that the system is 
operating under. Once a shared awareness has been established, the human state model 
explains that the robot needs to communicate an understanding of the humans’ cognitive, 
emotional, and physical state. For instance, the robot needs to sense when the human is 
distressed or fatigued (e.g., through monitoring the human’s cognitive workload) so that 
the robot could execute an alert to the human, and either recommend a higher level of 
autonomy or assume autonomous control if human limitations present a safety concern. In 
summary, Lyons’ models of transparency suggest that for overall human-robot systems to 
function effectively, the human users need to understand information about the robot 
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(robot-to-human transparency), as well as having the robot communicate its awareness 
and understanding of human-centric factors (robot-of-human transparency).  

2.2 Situation Awareness-Based Agent Transparency Model 

Following Lyons’ models of transparency (2013), Chen and colleagues (2014) have 
proposed a model of transparency called the Situation Awareness-Based Agent 
Transparency (SAT) model. Similar to Lyons’ models of transparency, the SAT model 
provides guidance on what information should be communicated to human operators to 
promote agent transparency. The SAT model was influenced by: Endsley’s (1995) theory of 
Situation Awareness (SA); the Beliefs, Desires, Intentions (BDI) Agent Framework (Rao & 
Georgeff, 1995); and the three factors considered fundamental to human automation trust 
(purpose, process, and performance; Lee & See, 2004). Before presenting a detailed 
overview of the SAT model, each of these theoretical frameworks will first be briefly 
discussed. 

2.2.1 Theory of Situation Awareness  

Endsley’s (1995) theory of situation awareness (SA) involves three levels of awareness: (1) 
perception of elements in the environment, (2) comprehension of those elements, and (3) 
projection of their status in the near future. According to Endsley, the first step in 
achieving SA is to perceive the status, attributes, and dynamics of relevant elements in the 
environment. These elements could be perceiving aircraft, mountains, or warning lights 
(alongside their relevant characteristics such as colour, size, speed, and location). The 
second step in achieving SA is to comprehend or understand the situation by integrating 
various Level 1 SA elements in light of operator goals. For example, if a military pilot sees 
three enemy aircraft within a certain proximity of one another and in a certain 
geographical location, he or she must understand that this situation indicates certain 
things about the aircraft’s objectives (Endsley, 1995). The third step in achieving SA is to 
project the future actions of the elements in the environment. For example, from observing 
behaviour patterns and the location of a threat aircraft, a fighter pilot should be able to 
project its likelihood of attack. 

According to Endsley (1995), SA is built over time and the projection of future actions 
(Level 3 SA) is achieved through the knowledge of the status, attributes, and dynamics of 
the relevant elements (Level 1 SA) and the comprehension of the situation (Level 2 SA). In 
other words, SA goes beyond simply perceiving information about the environment, it 
also involves integrating and comprehending the meaning of that information, comparing 
it with operator goals, and projecting future states of the environment.  

2.2.2 Purpose, Process, and Performance 

The SAT model also incorporates purpose, process, and performance factors. These three 
factors have been identified as the antecedents for trust development in the context of 
human-agent interaction (Lee & Moray, 1992; Lee & See, 2004). As described in Lee and 
See’s (2004) summary of the human-automation trust literature, purpose represents motives 
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or intent—it describes the extent to which the automation is being used according to the 
designer’s intent. Process represents an understanding of the underlying qualities or 
characteristics that govern how the system behaves—it describes the extent to which the 
automation’s algorithms are appropriate for a given task and situation and for achieving 
operator’s goals. Performance represents the expectation of consistent, stable, and desirable 
performance or behaviour—it refers to the current and historical operation of the 
automation. On the basis of these three factors, under the SAT model Chen et al. (2014) 
argue that to promote agent transparency an operator should understand (a) the purpose 
of the automation or why it was developed, (b) the uses and limitations of the automation 
and whether it is capable of achieving the operator’s goals in a given task, and (c) the 
reliability, predictability, and capability of the system.  

2.2.3 Beliefs, Desires, Intentions  

Finally, the development of the SAT model is also influenced by the Beliefs, Desires, 
Intentions (BDI) Agent Framework (Rao & Georgeff, 1995). BDI is a framework used to 
describe the behaviour of rational agents. Beliefs represent the information the agent has 
about the word; desires represent the motivational state of the system and information on 
the goals to be achieved; and intentions represent the desires that the agent has committed 
to achieving. According to the BDI framework, the agent’s beliefs are updated based on its 
perception of the environment, communications with other agents or humans, and its 
inference mechanisms (also see Briggs & Scheutz, 2012). Once the agent’s beliefs are 
updated, the agent continues with goal-selection (desires), and executing action plan 
(intentions). Accordingly, the SAT model states that to promote agent transparency, an 
operator should be informed about the agent’s beliefs, desires, and intentions (Ososky et 
al., 2014).   

2.2.4 The SAT Model: SAT Levels 1, 2, and 3 

Following Endsley’s (1995) theory of SA, the SAT model consists of three levels: SAT 
Levels 1, 2, and 3. The main difference between the SAT model and Endsley’s SA model is 
that the SAT model focuses on operator’s SA when there is an autonomous agent 
involved. When an autonomous agent is involved, the operator needs to have situation 
awareness of the autonomous agent, and according to Chen et al. (2014), this can be 
attained through agent transparency. Specifically, to support his or her SA, the operator 
needs to understand the agent’s parameters, logic, and predicted outcomes (Ososky et al., 
2014). The SAT model thus attempts to identify features of the environment and 
transparency requirements necessary to support operator’s SA when an agent is 
involved—through the following three levels.  

In the SAT model, the first level should provide the operator with basic information about 
the agent’s current state, goals, intentions, and proposed actions. This information is 
presented to the operator through an interface. More specifically, Level 1 includes the 
agent’s purpose (the current goal), process (the agent’s intent, planning process, and the 
agent’s current progress), current performance, and status (see Figure 1; Chen et al., 2014). 
The second level of the SAT model should provide the operator with information about 
the agent’s reasoning process or rationale behind its actions or decisions. According to 
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Chen et al., such rationale can be displayed on an interface through a representation of 
“resource limitations, constraints/affordances (environmental, situational, vehicular, etc.), 
feasibility, risk, trade-offs between alternatives, and history of past performance” (p. 10). 
Finally, the third level of the SAT model should provide the operator with information 
regarding the agent’s projection of the future state, such as predicted consequences and 
the likelihood of a plan’s success or failure, and uncertainty associated with these 
projections. More specifically, the visualisation of Level 3 in the interface includes the 
projection to future states (e.g., expected outcomes, probabilities of success with a 
confidence interval) as well as limitations (e.g., reliability, likelihood of error, history of 
past performance; Chen et al., 2014).  

 
Figure 1. SA-based Agent Transparency model 

 

Chen et al. (2014) stated that incorporating these three levels should improve operator SA 
of the autonomous agent, as they allow the operator to gain understanding of the agent’s 
intent, reasoning process behind its action, projected outcomes, and uncertainty.2 This 
would not only help the operator make informed decisions as to whether he or she should 
intervene, but should also lead to improving the operator’s subjective trust as well as trust 

                                                      
2 Although note that Chen et al. (2014) have also stated that the SAT model differs from Endsley’s (1995) SA 
model, in that with the SAT model, the three levels may not be absolutely necessary to achieve transparency, 
and that the requirements to achieve system transparency are context dependent. For example, in a 
time-sensitive situation, the operator may only need to know the agent’s proposed action (Level 1) and the 
projected outcome (Level 3) to make a decision.    
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calibration (i.e., proper reliance when the agent is correct [hit rates] and correct rejection 
when the agent is incorrect; Lee & See, 2004). A number of studies have investigated the 
effects of transparency in autonomous systems; these studies are reviewed in the next 
section.  

3. Past Studies on Transparency in  
Autonomous Systems 

This section contains a review of the existing literature concerning transparency in 
autonomous systems. To date, there have been five studies that have examined how 
transparency affects key human-autonomy teaming variables such as operator 
performance, response time, situation awareness, trust, perceived usability of the interface, 
and workload (i.e., Mercado et al. 2015/2016; Selkowitz et al., 2016; Stowers et al., 2016; 
Wright et al., 2015, 2016a, 2016b). This section is structured as follows. Section 3.1 starts by 
providing an overview of the experimental tasks, scenarios, and interfaces that were used 
in these studies. Section 3.2 then describes in more detail how transparency was 
investigated, operationalised, and implemented in these studies. Section 3.3 ends by 
presenting the results from these studies and discussing the extent to which transparency 
might facilitate human-autonomy teaming.    

3.1 Overview of the Experimental Tasks 

Different experimental scenarios, interfaces, and tasks were used in these five studies. In 
Mercado et al.’s (2015/2016) and Stowers et al.’s (2016) studies, participants took on the 
role of an operator supervising unmanned vehicles. Participants’ task was to direct these 
vehicles to carry out missions while managing a commander’s intent, as well as vehicle 
and environmental constraints. Similarly, in Wright et al.’s (2016a, 2016b) study, 
participants guided a convoy of a manned- and unmanned-vehicles through a simulated 
urban environment—with an agent assisting with the route planning task. Here, 
participants’ task was to re-route the convoy as necessary according to events that 
occurred. In contrast, in Selkowitz et al.’s (2016) study, participants’ task was to use the 
interface to gain information about an autonomous agent known as the Autonomous 
Squad Member (ASM), and its status, as they completed a route containing obstacles. 
Finally, in Wright et al.’s (2015) study, the experimental task involved route planning in a 
simulated urban environment. Specifically, participants had to direct a simulated 
dismounted soldier team to take an appropriate route as it moved from checkpoint to 
checkpoint. Participants’ task was to ensure that the soldier team arrived at the final 
destination with the least required amount of resources possible.  

In three of these five studies (i.e., Mercado et al., 2015/2016; Stowers et al., 2016: Wright et 
al. 2016), participants were required to make a decision and assess their decision based on 
the available information provided to them both through the environment and by the 
agent. Specifically, they were given a choice—between Plan A and Plan B—to follow or 
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reject the recommendation provided by the agent. When evaluating each plan, participants 
in Mercado et al.’s (2015/2016) and Stowers et al.’s (2016) studies had to take into account 
parameters such as speed, coverage, and capabilities of the vehicles suggested in each 
plan. Prior to receiving the mission objective, participants’ task was to monitor unmanned 
vehicle positions and status, and received four intelligence messages containing either 
patrol report, updates on vehicle status, or commander intel messages (two of which were 
relevant to the task). In Wright et al.’s (2016a, 2016b) study, in addition to the route 
selection task, participants in their study had to (a) maintain communication with 
command (this included messages directed at other units which participants should 
disregard, and requests for information which required a response) and (b) maintain local 
security and detect threats.   

In contrast, participants in the other two studies (i.e., Selkowitz et al., 2016; Wright et al., 
2015) were not presented with two choices to make a decision. For example, participants’ 
main task in Selkowitz et al.’s (2016) study was to monitor the interface (at varying levels 
of transparency) to gain information about the ASM and its status as they completed a 
route containing obstacles. During an obstacle encounter, the ASM would react by 
performing an action and participants’ SA was then measured through SAGAT (Situation 
Awareness Global Assessment Technique) queries. While monitoring the interface, 
participants were also required to detect a target object that appeared in the environment. 
In Wright et al.’s (2015) study, participants’ only task was to direct the soldier team to take 
an appropriate route as it moved from checkpoint to checkpoint. Participants were given a 
choice to select from three different routes to ensure that the soldier team arrived at the 
final destination using the least amount of resources.  

3.2 Varying Levels of Transparency 

Regardless of the differences in experimental scenarios, interfaces, and tasks, all of these 
five studies have manipulated transparency information at either three or four levels. 
Transparency information contains plans (or suggestions or explanations) made by an 
agent and communicated to the human operator through a computer interface. 
Transparency level increases as the amount of information presented to the operator 
increases (i.e., transparency information presented at higher levels would typically include 
transparency information presented at the lower level). However, it is important to note 
that the amount of transparency information provided at each level vary across studies. 
For example, some but not all of these studies used the SAT model to discriminate 
between transparency levels (i.e., Mercado et al. 2015/2016; Selkowitz et al., 2016; Stowers 
et al., 2016). Accordingly, these studies used different naming convention to denote 
different levels of transparency. For the purpose of this review, a more general term of 
low, medium, high, and very high transparency would therefore be used; and information 
presented at each level of transparency is further described below.  

3.2.1 Low Transparency 

This is the lowest level of transparency and in all five studies, the transparency 
information typically contained only basic plan or basic information. For example, in 
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Selkowitz et al.’s (2016) study, at low transparency, participants were only provided with 
basic information such as status, camera, map, resource indicators, and the Autonomous 
Squad Member location. Similarly in Wright et al.’s (2015) study, participants were only 
shown routes, which were coloured (either red, yellow, or green) to denote relative energy 
and/or time usage requirements needed to traverse that section of the route. When a 
choice of two plans was suggested by the agent, participants were shown a basic plan, 
with no reasoning as to why a particular plan was recommended (e.g., “A1 sector search 
on friendly boat” [Mercado et al., 2015/2016] and “Change to convoy path recommended” 
[Wright et al., 2016b]).   

3.2.2 Medium Transparency  

At medium transparency, all five studies added agent’s reasoning in the transparency 
information. For example, in Mercado et al.’s (2015/2016) study, factors such as speed, 
coverage, capabilities, the environment, and the vehicle appropriateness—which would 
influence the agent’s recommendation of Plan A, were presented in the interface through a 
text box, as well as through a sprocket (containing different wedge sizes and colours 
denoting each metric). In Stowers et al.’s (2016) study, participants were shown—through 
the Projected Plan Success tile—how the agent weighs each parameter (i.e., time, 
fuel/endurance, vehicle capability, and sensor coverage) according to its importance. Two 
statements regarding the intelligent agent’s reasoning for Plan A and Plan B were also 
included (e.g., “Plan A: Hawk is the fastest UAV. Panther has pedestrian avoidance 
technology. Panther and Hawk are good for searching where visibility may be obscured”). 
Similarly, in Selkowitz et al.’s (2016), Wright et al.’s (2016b), and Wright et al.’s (2015) 
studies, (a) an icon depicting agent’s reasoning (b) an explanation (e.g., “Change to convoy 
path recommended. Activity in area: Dense Fog”), and (c) text boxes and a bar graph, 
respectively, were added to their interfaces to indicate the reasoning behind the agents’ 
decisions or suggestions.  

3.2.3 High Transparency 

At high transparency, additional information was presented through the computer 
interface. This information could relate to predicted outcomes, predicted consequences, 
uncertainty information, or additional reasoning of the agent’s decision.3 For example, the 
following studies included predicted outcomes or predicted consequences at high 
transparency (i.e., Selkowitz et al., 2016; Stowers et al., 2016; Wright et al., 2015). In Wright 
et al.’s (2015) study, a bar graph was added to the interface to show how specific route 
choices could impact the overall resource usage for mission completion. Likewise, in 
Selkowitz et al.’s (2016) study, predicted outcomes (of the agent’s decisions and reasoning) 
were shown through an icon; and the severity of the predicted resources outcome was 
indicated by the number of red blocks displayed next to the icon (e.g., one block indicated 
low predicted resource usage, two blocks indicated moderate predicted resource usage, 
and three blocks indicated severe predicted resource usage). Similarly, in Stowers et al.’s 
(2016) study, the projected plan success of each plan (regarding time, fuel/endurance, 

                                                      
3 Note that when two (instead of one) pieces of additional transparency information were presented to 
participants, the level of transparency increased to “very high transparency” (see Section 3.2.4).   
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vehicle capability, and sensor coverage) was displayed through the Projected Plan Success 
tile; and a projection statement was also added (i.e., “It is expected that Hawk will arrive 
the quickest, and Panther will move quickly on the base road”). 

In Mercado et al.’s (2015/2016) study, at high transparency, participants were told about 
the projection of uncertainty of the agent’s recommendation. This information was shown 
through a transparent sprocket wedge, a transparent vehicle icon, and a bulleted statement 
in a text table (e.g., “It is uncertain how fog will affect speed”). Finally, in Wright et al.’s 
(2016a, 2016b) study, the high transparency was an added reasoning, where participants 
were additionally told when the agent had received the information (e.g., “Change to 
convoy path recommended. Activity in area: Dense Fog. Time of Report: 1 [h]”). Wright et 
al. indicated that while this information did not imply any confidence or uncertainty on 
the part of the agent, such additional information appeared to create ambiguity for the 
operator.  

3.2.4 Very High Transparency  

At very high transparency, further information was added on top of the additional 
information already provided in high transparency. This was investigated in two studies: 
Selkowitz et al. (2016) and Stowers et al. (2016) included both projected outcomes and 
uncertainty information at very high transparency. More specifically, in Selkowitz et al.’s 
study, participants were presented with basic information (low transparency), reasoning 
of the agent’s decisions (medium transparency), predicted outcome (high transparency), 
and additional information regarding the uncertainty of the agent (very high 
transparency). The uncertainty of the agent was expressed through the use of semi-opaque 
blocks. For example, one solid red block and one semi-opaque red block indicate a 
certainty of low resource usage with the possibility of moderate resource usage. 
Uncertainty was also expressed through hazards and field events (displayed using icons 
surrounded by areas of effect). For example, if the exact location is uncertain, the icon is 
surrounded by a larger (cf. smaller), semi-opaque (cf. opaque) field to indicate that there 
might be a hazard or event in the general area. 

Similarly, in Stowers et al.’s (2016) study, participants were presented with the basic plan, 
reasoning behind the agent’s recommendation, projected plan success of each plan, and 
additional information regarding the uncertainty of the agent. Specifically, the uncertainty 
statement in their study contained two points: (a) the agent was uncertain about particular 
aspects of the tasking environment, and (b) the agent was making an assumption to deal 
with it (e.g., “It is uncertain how long the search will take. The agent assumes that the man 
will be found quickly”).  

3.3 Effects of Transparency on Autonomous Systems 

These five studies have investigated the effects of transparency on a number of variables: 
performance, response time, situation awareness, trust, usability, and workload. The 
results of these studies will be discussed in turn below. 
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3.3.1 Performance 

3.3.1.1 Performance Accuracy 

Three studies (Mercado et al., 2015/2016; Stowers et al., 2016; Wright et al., 2016a, 2016b) 
have measured operator performance in terms of the operator’s accuracy in accepting and 
rejecting the agent’s recommendation—through hit rates, correct rejection rates, false 
alarm rates, and miss rates.   

3.3.1.1.1 Hit Rates 

Three studies have calculated operator hit rates (for correctly accepting the agent’s 
recommendation) across the different levels of transparency conditions (i.e., Mercado et 
al., 2015/2016; Stowers et al., 2016; Wright et al., 2016b). Mercado et al. (2015/2016) found 
that proper agent usage rates were higher when participants were presented with agent’s 
reasoning (i.e., contained in both medium and high transparency conditions), compared to 
when they were presented with only basic plan (low transparency). However, proper 
agent usage rates did not differ between the medium transparency condition (usage rate at 
87%) and the high transparency condition (usage rate at 89%). In other words, the addition 
of reasoning information (medium transparency) increased proper use by 11% (cf. low 
transparency), but the addition of both reasoning and uncertainty information (high 
transparency) improved proper use only by an additional 2% (cf. medium transparency). 
These results suggest that the addition of reasoning information alone was sufficient to 
improve operator hit rates for correctly accepting the agent’s recommendation. 

The other two studies that have calculated hit rates either combined participants’ hit rates 
with correct rejection rates (Wright et al., 2016b), or did not provide a full report of their 
results (Stowers et al., 2016). When hit rates were combined with correct rejection rates, 
Wright et al. (2016b) found that these combined rates were only marginally higher in the 
medium transparency condition (when agent’s reasoning was present) than in the low 
transparency condition; and no difference was found between the medium transparency 
and the high transparency conditions. Between the three transparency conditions (i.e., 
medium transparency, high transparency, and very high transparency), Stowers et al. 
(2016) reported that the lowest and highest hit rates were found, respectively, in the 
medium transparency condition and the very high transparency condition. However, the 
statistical significance of these findings was not revealed, as the statistics and further 
details of these results were not reported in their study.   

Taken together, all of these three studies agreed that the poorest hit rates were found in 
the lowest transparency condition. However, the evidence from some of these studies 
suggests that higher levels of transparency information (e.g., uncertainty information) may 
not be necessary to improve operator hit rates after a certain amount of transparency (i.e., 
agent’s reasoning) has been provided (Mercado et al., 2015/2016; Wright et al., 2016b). In 
fact, the results from Mercado et al.’s (2015/2016) study indicate that providing agent’s 
reasoning to operators (at medium transparency) was sufficient to increase the operator hit 
rates for correctly accepting the agent’s recommendation. Although it was noted from 
Stowers et al.’s (2016) study that the highest hit rates were found when uncertainty 
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information was present, it was not clear from their study whether the presence of 
additional transparency information (i.e., projection plan success [high transparency], both 
projection plan success and uncertainty [very high transparency]) significantly improved 
operator hit rates over and above agent’s reasoning alone (medium transparency), and if 
they significantly differed from each other.   

3.3.1.1.2 Correct Rejection Rates 

With the exception of Wright et al.’s (2016b) study, Mercado et al. (2015/2016) was the 
only other study that reported correct rejection rates. They found that the addition of 
agent’s reasoning information (medium transparency) increased correct rejection rate 
significantly by 12% (cf. low transparency), but the addition of both reasoning and 
uncertainty information (high transparency) improved correct rejection rate even more by 
an additional 14% (cf. medium transparency). In short, participants were significantly 
more likely to correctly reject the agent’s recommendation when they were presented with 
high transparency information (correct rejection rate at 81%) compared to when they were 
presented with medium transparency information (correct rejection rate at 67%). These 
results indicate that while presenting agent’s reasoning to operators is important to 
improve their correct rejection rates, it was the additional uncertainty information that 
encouraged the operators to question and eventually reject the agent’s recommendation 
when it was incorrect.      

As mentioned in the previous section, correct rejection rates were also obtained in Wright 
et al.’s (2016b) study; however, in their study, correct rejection rates were analysed 
together with correct acceptance rates. Although they found that the rates in the medium 
transparency condition were higher than in the low transparency condition, the difference 
was marginal and no difference was found when these medium transparency and high 
transparency conditions were compared.  

3.3.1.1.3 False Alarm Rates and Miss Rates 

Wright et al. (2016b) was the only study that measured operator false alarm rates (where 
operators incorrectly accepted agent’s recommendation). They found that participants in 
the medium transparency condition (when agent’s reasoning was present) actually made 
significantly fewer incorrect acceptances than those in either the low transparency or the 
high transparency condition (when further reasoning was added). Although participants 
in the high transparency condition made fewer incorrect acceptances than participants in 
the low transparency condition, the difference was not significant. In other words, while 
the availability of agent reasoning helped reduce false alarm rates, providing additional 
transparency information in this case negated this effect. These results suggest that while 
access to agent reasoning in a decision-supporting agent can counter automation bias (i.e., 
false alarm), too much information could result in an out-of-the-loop situation and could 
increase complacent behaviour. 

Wright et al. (2016b) was, again, the only study that reported operator miss rates where 
operators incorrectly rejected the correct agent’s recommendation. No differences were 
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found between the three transparency conditions, suggesting that increased transparency 
information did not make any difference in terms of incorrect rejection rates. 

3.3.1.2 General Performance 

Wright et al. (2015) investigated the effect of transparency on operator performance (as 
defined by the total resources used in a route planning task). In Experiments 1 and 2, the 
route planning task involved participants directing a simulated dismounted soldier team 
to take an appropriate route; participants had to ensure that the team arrived at the final 
destination with at least the required amount of resources. Wright et al. found that the 
resource usage (in both Experiments 1 and 2) did not differ between the three 
transparency conditions. In Experiment 2, a robotic asset was added to the soldier team, 
and participants had to ensure that the team arrived at the final destination with sufficient 
resources of battery and fuel. They found that participants in the low transparency 
condition used significantly more fuel than those in either the medium transparency or the 
high transparency condition; however for battery usage, these significant differences were 
not found. For fuel usage, Wright et al. found that participants actually used significantly 
more fuel in the high transparency condition than those in the medium transparency 
condition, suggesting that the addition of predictive information in the high transparency 
condition may have actually hindered operator performance. 

In summary, the pattern of results from the four studies discussed above suggests that 
although presenting agent’s reasoning to participants may improve their performance, 
adding additional transparency information (in the form of projected outcomes or 
uncertainty information) did not reliably improve their performance further. The 
exception to this was the Mercado et al.’s (2015/2016) results, where they found that the 
additional uncertainty information increased participants’ correct rejection rates 
significantly over the presence of agent’s reasoning alone.    

3.3.2 Response Time 

Three studies have measured the effect of transparency on operator response time 
(Mercado et al., 2015/2016; Wright et al., 2015; Wright et al., 2016a, 2016b). In Mercado et 
al.’s (2015/2016) study, response time was defined as the time participants took to make a 
decision (whether to accept Plan A or reject and go with Plan B). Mercado et al. found that 
response time did not differ between the three transparency conditions. Similarly, Wright 
et al. (2016a, 2016b) also found that response time (the time taken between acknowledging 
the alert and selecting an appropriate route) did not differ between their three 
transparency conditions. Finally, Wright et al. (2015) measured, in Experiments 1 and 2, 
the time participants spent at each checkpoint as they guided a soldier team through their 
chosen route. Only in Experiment 2 did Wright et al. find that, as level-of-information 
increased, the time spent at each checkpoint also increased. Specifically, the time spent at 
each checkpoint in either the medium transparency or the high transparency condition 
was longer compared to the low transparency condition (when only basic information was 
presented), and no difference was found between the medium transparency condition 
(when agent’s reasoning was added) and the high transparency condition (when 
predictive information was also present). 
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In summary, out of these three studies, only one study (Experiment 2 by Wright et al., 
2015) indicated that operator response time may increase with additional transparency 
information). The other two studies (Mercado et al., 2015/2016; Wright et al., 2016a, 2016b) 
did not find evidence that the additional transparency information had any effect on 
operator response time.  

3.3.3 Situation Awareness 

Out of the five studies reviewed here, only one study included a measure of situation 
awareness (SA). In Selkowitz et al.’s (2016) study, participants were required to use the 
interface to gain information about the Autonomous Squad Member and simulated 
squad’s status as they completed a route containing obstacles. During an obstacle 
encounter, the simulation would pause and participants’ three levels of SA were assessed 
using SAGAT-style queries (Jones & Kaber, 2004) relating to the squad member’s status 
(Level 1 SA), reasoning (Level 2 SA), and projected outcomes of its action and reasoning 
(Level 3 SA). Selkowitz et al. found that SAGAT query responses for Level 1 SA did not 
differ across the four transparency conditions utilised in their study (i.e., low 
transparency, medium transparency, high transparency, and very high transparency). 
However, for Level 2 SA, the next-highest transparency condition (i.e., high transparency) 
had the highest score and was significantly higher than the medium transparency 
condition (no other differences between conditions were observed). For Level 3 SA, again 
the high transparency condition had the highest score, and was significantly higher than 
either the low transparency condition or the medium transparency condition (no other 
differences were reported). These results suggest that the predicted outcomes information 
(high transparency) improved operator Level 2 SA and Level 3 SA more so than when the 
uncertainty information was added (very high transparency), supporting the evidence that 
providing too much information to operators is not necessarily a good thing (see Miller, 
2014).  

3.3.4 Subjective Trust 

The effect of transparency on operator subjective trust has been investigated in three 
studies (i.e., Mercado et al., 2015/2016; Selkowitz et al., 2016; Wright et al., 2016a, 2016b). 
In Mercado et al.’s (2015/2016) study, subjective trust was measured using a modified Jian 
Trust Survey (Jian, Bisantz, & Drury, 2000). The modified Jian Trust Survey assessed 
participants’ trust of the system on each of four stages of human information processing: 
(a) information acquisition, (b) information analysis, (c) decision and action selection, and 
(d) action implementation (Parasuraman et al., 2000). Specifically, participants answered 
16 items and the aforementioned four stages were conceptualised in the scale as the 
following example: “The system is deceptive when… (a) gathering or filtering information, 
(b) integrating and displaying analysed information, (c) suggesting or making decisions, 
and (d) executing actions).” Participants rated each of these four stages on a 7-point Likert 
scale (1 [not at all], 4 [neutral], 7 [extremely]). In Mercado et al.’s study, only two subscales 
were analysed as their study only manipulated the display of information (trust during 
“information analysis”) and performed “decision and action selection.” The results from 
the “information analysis” subscale showed no significant differences between the three 
transparency conditions. Mercado et al. expected these results because although the 



UNCLASSIFIED 
DST-Group-TR-3413 

UNCLASSIFIED 
16 

reliability of the agent’s recommendation was not perfect, the information supporting 
agent transparency was always 100% accurate. However, the results from the “decision 
and action selection” subscale showed higher trust when high transparency information 
was presented compared to low transparency information (medium transparency 
condition did not differ from the other two conditions). These results suggest that operator 
trust in the agent’s recommendation increased as the system became more transparent 
(i.e., when agent’s reasoning and uncertainty were provided). 

Selkowitz et al. (2016) also used the modified Trust in Automated Systems questionnaire 
(Jian et al., 2000) to measure history-based trust score. Selkowitz et al. defined history-
based score as the ongoing, changing relationship of trust that is influenced by the 
operator’s interaction with the agent. They found that the average of history-based trust 
score was significantly higher when high transparency information was presented 
(compared to both low transparency and medium transparency conditions); however, the 
very high transparency condition did not differ from the other conditions. According to 
Selkowitz et al.’s results, presenting agent’s reasoning and the projected state of the system 
(the high transparency condition) increased trust, but not when uncertainty information 
was added (the very high transparency condition). 

Finally, Wright et al. (2016a, 2016b) investigated the effect of transparency on operator 
trust and found that trust scores did not differ between the three transparency conditions. 
However, they found a slight curvilinear trend to the data (p = .046); they found that the 
medium transparency condition had the lowest trust scores (slightly lower than in the low 
transparency condition) and was significantly lower than the high transparency condition 
(which had the highest trust scores). 

In summary, the trend from these three studies suggests that—up to a point—operator 
trust seems to increase as the level of transparency increases (e.g., Wright et al., 2016a, 
2016b). However, there have been inconsistencies in the type of information presented at 
the high transparency condition (e.g., uncertainty vs. predicted outcomes; see Section 
3.2.3), hence it is not clear which of the high transparency information was specifically 
responsible for improving operator trust. In Mercado et al. (2015/2016), providing 
information about agent’s reasoning did not make a difference on operator trust (when 
compared to when only basic information was provided), however operator trust 
increased when agent’s reasoning was also presented with uncertainty information. In 
contrast, the availability of predicted outcomes in Selkowitz et al.’s (2016) study 
significantly improved trust over and above agent’s reasoning alone; however, when 
uncertainty information was added on top of predicted outcomes, participants’ trust in the 
system waned slightly, resulting in no significant differences with the other transparency 
conditions.  

3.3.5 Perceived Usability 

Three studies have investigated the effect of transparency on operator perceived usability 
of the interface (i.e., Mercado et al., 2015/2016; Stowers et al., 2016; Wright et al., 2016b). 
The System Usability Scale (Brooke, 1996) was used in Mercado et al.’s (2015/2016) and 
Stowers et al.’s (2016) studies to measure users’ overall feelings of usability (efficiency, 
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efficacy, and satisfaction) with the interface (e.g., “I think that I would like to use this 
system frequently”). This scale contained 10 items, each to be rated on a scale ranging from 
1 (strongly disagree) to 5 (strongly agree). Mercado et al. found no difference in usability 
scores between the medium condition (when agent’s reasoning was present) and the high 
transparency condition (when agent’s uncertainty was added), although scores in these 
conditions were higher compared to the low transparency condition. However, between 
the three transparency conditions (i.e., the medium, high, and very high transparency), 
Stowers et al. found that while the high transparency condition (when projected plan 
success was added) had the highest perceived usability scores, the very high transparency 
condition (when uncertainty was further added) actually had the lowest perceived 
usability scores. Nonetheless, the significance of Stowers et al.’s results was not clear, as 
full results were not reported in their study. Finally, in Wright et al.’s (2016b) study, when 
agent’s reasoning was present, the usability scores were significantly lower than when 
either only the basic plan was given or when the level of transparency information was 
greatest (when basic plan, agent’s reasoning, and further reasoning were added).   

So far, the results from these past three studies on perceived usability have not been 
consistent. While Mercado et al. (2015/2016) found that presenting agent’s reasoning and 
agent’s uncertainty were perceived to be useful, Stowers et al.’s (2016) study indicated that 
the additional of uncertainty information seemed to decrease participants’ perceived 
usability. In contrast, Wright et al. (2016b) found that the presence of agent’s reasoning 
actually lowered operator perceived usability compared to when this information was not 
present. These inconsistent findings might be due to differences in the interfaces used in 
these studies, and the way the different levels of transparency information were presented.    

3.3.6 Subjective Workload 

Subjective workload was measured in three studies (i.e., Mercado et al., 2016/2015; 
Selkowitz et al., 2016; and Wright et al, 2016a) using the National Air and Space 
Administration Task Load Index (NASA-TLX; Hart & Staveland, 1998). Mercado et al. 
(2015/2016) found that workload did not differ across the three different levels of 
transparency (i.e., low, medium, high transparency). Similarly, Selkowitz et al., (2016) did 
not find any differences on the mean global weighted workload across the four 
transparency level conditions (i.e., low, medium, high, very high transparency). In line 
with these two studies, Wright et al. (2016a) found that transparency had no significant 
effect on Global NASA-TLX scores.   

3.3.7 Summary of Results 

This section contained a review of five recent studies that have tested the effects of 
transparency on variables such as operator performance, response time, situation 
awareness, trust, perceived usability of the interface, and workload. Transparency does 
not appear to affect either operator response time or subjective workload, and certain 
forms of transparency information (i.e., agent reasoning) appears to improve operator 
performance (e.g., Mercado et al., 2015/2016). Further, in some studies, operators actually 
performed better when agent’s reasoning was given without the addition of higher levels 
of transparency information (Wright et al., 2015, 2016a, 2016b). The exception to this was 
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Mercado et al.’s (2015/2016) results where they found higher performance (i.e., correct 
rejection rates) when uncertainty information was also presented in addition to 
information about agent’s reasoning (compared to when only agent’s reasoning was 
presented). For operator situation awareness, the addition of predicted outcomes 
improved operator Level 2 SA and Level 3 SA more so than when both predicted 
outcomes and uncertainty information were present.  

In terms of subjective trust and perceived usability, the results have been inconsistent. For 
example, Mercado et al. (2015/2016) found that subjective trust was significantly higher 
when participants were given information about agent reasoning and uncertainty 
compared to when they were only given information about agent’s reasoning. However, in 
Selkowitz et al.’s (2016) study, while agent’s reasoning and projected outcomes increased 
trust significantly, trust was lowered when uncertainty information was added. Similarly 
for perceived usability, while some studies found that higher transparency information 
produced higher perceived usability (Mercado et al., 2015/2016), others found that the 
additional uncertainty information produced the lowest perceived usability scores 
(Stowers et al., 2016).  

In summary, the general trends of results suggest that transparency does seem to affect 
operator performance, situation awareness, perceived usability, and trust. However, it is 
still unclear how much and what type of information should be given—as some of these 
studies suggest that while higher levels of transparency may improve some of these 
measures, the highest transparency level did not always produce the best outcome.   

4. Summary and Directions for Future Research 

Two models of transparency for human-robot interaction (Lyons, 2013) and human-agent 
teaming (the SAT model; Chen et al., 2014) have been proposed. Some of the studies 
reviewed here have used the SAT model to operationalise levels of transparency and 
investigate their effects on variables associated with human-agent teaming (i.e., Mercado 
et al. 2015/2016; Selkowitz et al., 2016; Stowers et al., 2016). Although the SAT model 
provides some guidelines for the types of information that could be included in each level, 
future research should further investigate exactly which type of information should be 
conveyed (and how much should be revealed) to the operator in a given situation. The 
findings of the studies reviewed in Section 3 suggest that appropriate care should be taken 
when presenting transparency information to avoid overwhelming the operator. Chen et 
al. (2014) argue that the requirements to achieve system transparency are context 
dependent, and that these three SAT levels may not be absolutely necessary to achieve 
transparency. For example, Chen et al. suggested that in a time-sensitive situation, an 
operator may only need to know the agent’s proposed action (Level 1) and the projected 
outcome (Level 3) to make a decision (Chen et al.). However, this has not been tested; 
additionally, future research needs to investigate whether time pressure or additional 
workload would compromise the transparency effect.  



UNCLASSIFIED 
 DST-Group-TR-3413 

UNCLASSIFIED 
19 

The fundamental assumption underlying the research discussed in this review is that 
providing transparency information to the operator (regarding the agent’s intent, 
performance, future plans, and reasoning process) will allow the operator to develop an 
accurate mental model of the system and its behaviour, leading to calibrated trust in (and 
more appropriate reliance on) the system—and ultimately leading to better operator SA 
and overall performance (Chen et al., 2014; Mercado et al., 2016). However, the studies that 
have been reviewed here have not directly tested whether agent transparency increased 
operator SA (except in Selkowitz et al., 2016’s study; see Section 3), or whether agent 
transparency improved the operator’s mental model. In order to provide greater insight 
into the psychological processes underlying operator performance, future research on 
agent transparency should directly measure operator SA and the accuracy of their mental 
models.  

With the development of more complex systems, researchers have started to investigate 
factors—such as agent transparency—that could improve human trust and reliance on 
autonomous systems. An empirically supported model would be of great utility in 
guiding the design of an interface that supports transparency, and in testing the varying 
effect of different forms of transparency on human-autonomy team performance. The SAT 
model proposed by Chen et al. (2014) provides a good starting point; however, future 
research needs to tease apart exactly what type of transparency information would be 
beneficial for the operator, and in what contexts. Perhaps more importantly, future 
research needs to also investigate the underlying processes that explain why transparency 
information facilitated operator performance (e.g., by providing direct evidence that 
operator mental model and SA improved as a result of agent transparency). 
Understanding the underlying psychological processes is fundamental to designing an 
interface that supports transparency in human-autonomy teaming.  
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