
UNCLASSIFIED

Rapid solution of the Schrödinger equation: Towards
a study of the utility of the Bohm filter

Daniel L. Whittenbury 1 2, Ayse Kizilersu 1 2,
Anthony W. Thomas 1 2 and Samuel P. Drake 3

1 School of Physical Sciences, University of Adelaide
2 Centre for the Subatomic Structure of Matter (CSSM)

3 Cyber and Electronic Warfare Division

Defence Science and Technology Group

DST-Group–TR–3513

ABSTRACT

The second project report for the Efficient Generation and Evolution of Probability Density
Maps project is reproduced as a Defence Science and Technology Group technical report. Here
we focus on solving the Schrödinger equation numerically for several simple potentials using
Fourier and Chebyshev pseudo-spectral methods. The report has been written in such way to
be more pedagogical rather than complete.

RELEASE LIMITATION

Approved for public release.

UNCLASSIFIED

UNCLASSIFIED

Published by

Cyber and Electronic Warfare Division
Defence Science and Technology Group
PO Box 1500
Edinburgh, South Australia 5111, Australia

Telephone: 1300 333 362

c© Commonwealth of Australia 2018
AR-017-243
July, 2018

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

UNCLASSIFIED

Rapid solution of the Schrödinger equation: Towards
a study of the utility of the Bohm filter

Executive Summary
The Bohm filter as proposed by Drake [1] is an attempt to confront some of the shortcomings
of the well known Kalman filter and its variants. The underlying idea is to use a Schrödinger
equation to model the motion of an object we wish to track. This report is a first step
towards developing a filter based on such an approach. Analytic solutions to the Schrödinger
equation are only known for a few well known potentials. As a prerequisite to constructing
a filter based on this approach we will require accurate and efficient methods to solve the
second order differential equation for potentials relevant to tracking problems. This aspect
of implementing a Bohm filter is the focus of this report. Here we concentrate on finding
numerical solutions to the Schrödinger equation for several time-independent potentials using
Fourier and Chebyshev pseudo-spectral methods.

The report begins with a brief introduction to several relevant topics such as the reduc-
tion of the time-dependent Schrödinger equation to the time-independent equation for time-
independent potentials, collocation interpolation and numerical quadrature. We then proceed
to introduce Fourier and Chebyshev pseudo-spectral methods. We then apply them to sev-
eral time-independent Schrödinger equations. We then conclude and discuss future research
directions.

The report has been written in a pedagogical style with many illustrative examples given. For
this reason it may also be of use to a wider audience interested in solving other unrelated dif-
ferential equations. In the appendices we have provided a few additional pieces of information.
In particular, we have written several simple MATLAB R© scripts which illustrate various ideas
presented in the report. These scripts are stored in Govdex and are available upon request.
All figures found herein can be obtained using these scripts with either no or only minimal
modifications required.

UNCLASSIFIED

UNCLASSIFIED

THIS PAGE IS INTENTIONALLY BLANK

UNCLASSIFIED

UNCLASSIFIED

Authors

Daniel L. Whittenbury
School of Physical Sciences, University of Adelaide

Daniel L. Whittenbury recently obtained his PhD in theoretical
physics from the University of Adelaide in 2015. His dissertation
research focussed on a topic at the border of nuclear structure
and nuclear astrophysics. The underlying theme of which was
an investigation of the equation of state of strongly interacting
matter and the modelling of cold neutron stars. In addition to
this he also holds a Bachelor of Science from Flinders University,
a Graduate Diploma of Mathematical Science and a Master of
Science in theoretical physics both from the University of Ad-
elaide. Currently he works as a post-doctoral researcher in the
Physics department of the University of Adelaide.

Anthony W. Thomas
School of Physical Sciences, University of Adelaide

Anthony W. Thomas is a theoretical physicist who holds the
Elder Chair of Physics at the University of Adelaide. He serves
as Associate Director of the Australian Research Council (ARC)
Centre of Excellence for Particle Physics at the Terascale (CoEPP),
as well as Director of the Adelaide node. Within the University
of Adelaide he is Director of the University Research Centre
for Complex Systems and the Structure of Matter (CSSM).
From 2009-15 he held an ARC Australian Laureate Fellowship.
During the 6 year period from 2004-2009, Professor Thomas
served as Chief Scientist and Associate Director for Theoretical
and Computational Physics at the US Department of Energy’s
Thomas Jefferson National Accelerator Facility. He is currently
the Vice-Chair of the Asian Nuclear Physics Association and
past-Chair of the IUPAP Working Group on International Co-
operation in Nuclear Physics, having served as its inaugural
chair for the first 6 years.

UNCLASSIFIED

UNCLASSIFIED

Ayse Kizilersu
School of Physical Sciences, University of Adelaide

Ayse Kizilersu is a senior researcher in the physics department
at Adelaide University. She was the winner of the best student
in both her final undergraduate year and for her masters in the
physics department at Istanbul University. She was awarded a
British Council Research Scholarship and obtained her PhD in
theoretical particle physics from the Centre for Particle Theory,
University of Durham, England. After her PhD she completed
her habilitation and was award the title of Associate Professor.
Her research has spanned a range from topics from theoret-
ical nuclear physics to stock market analysis. She is currently
working on accurate probability modelling of rare events with
incomplete data.

Samuel P. Drake
Defence Science and Technology Group

Sam Drake is a senior research scientist in the Defence Sci-
ence and Technology (DST) group and an adjunct lecturer in
the physics department at Adelaide University. He obtained a
Bachelor of Science with first class honours majoring in phys-
ics from the University of Melbourne and completed his PhD
in General Relativity at the University of Adelaide. After do-
ing post-doctoral research in the Dipartmento di Fisica Galileo
Galilei at the University of Padova, Italy he began working as
a research scientist in DST group. The range of work he has
been involved in ranges from global satellite navigation to the
autonomous control of unmanned aerial vehicles (UAVs). He is
currently working on geolocation algorithms and applications of
relativity to satellite dynamics and signal processing.

UNCLASSIFIED

UNCLASSIFIED

Contents
1 INTRODUCTION . 1

2 SOLUTION OF THE TDSE . 3

3 THE NUMERICAL PROBLEM AT HAND . 5

4 A FEW PROPERTIES OF ORTHOGONAL POLYNOMIALS 9

5 INTERPOLATION . 12

5.1 The simplest approach . 12

5.2 Lagrange interpolation . 13

5.3 Barycentric Lagrange interpolation . 14

5.4 Runge phenomenon . 16

6 NUMERICAL QUADRATURE . 16

6.1 Gaussian quadrature . 18
6.1.1 Golub-Welsch algorithm . 22
6.1.2 A few simple examples . 26
6.1.3 Gauss-Radau and Gauss-Lobatto quadrature 31

6.2 Composite trapezoidal rule and periodic functions 34

6.3 Clenshaw-Curtis quadrature . 35

7 FOURIER PSEUDO-SPECTRAL METHOD . 43

7.1 Time-independent Schrödinger’s equation examples 57

8 CHEBYSHEV PSEUDO-SPECTRAL METHOD 62

8.1 Time-independent Schrödinger’s equation examples 73

8.2 Time-dependent Schrödinger equation examples. 86

9 DISCUSSION, CONCLUSIONS AND FUTURE WORK 87

10 REFERENCES . 92

APPENDIX A: ANALYTICAL SOLUTIONS FOR TOY POTENTIALS 95

A.1 Harmonic oscillator potential . 95

A.2 Linear potential . 96

APPENDIX B: CLASSICAL ORTHOGONAL POLYNOMIALS 97

B.1 Chebyshev polynomials . 97

B.2 Legendre polynomials . 99

B.3 Laguerre polynomials . 100

B.4 Hermite polynomials . 101

UNCLASSIFIED

UNCLASSIFIED

List of Figures

1 Runge’s function interpolated on an equispaced grid exhibiting Runge phenomenon. 17
2 Runge’s function interpolated on N + 1 unevenly spaced points. 17
3 Gauss-Legendre quadrature weights at nodes xj 27
4 Gauss-Legendre quadrature example error. 27
5 Gauss-Chebyshev quadrature weights at nodes xj 29
6 Gauss-Chebyshev quadrature example error. The blue curve corresponds to

Eq. 121 which has the integrand that includes the Chebyshev weight and the
red curve to Eq. 120 which does not. 29

7 Gauss-Laguerre quadrature weights at nodes xj . 30
8 Gauss-Laguerre quadrature example error. 30
9 Gauss-Hermite quadrature weights at nodes xj . 31
10 Gauss-Hermite quadrature example error. 32
11 A few periodic and non-periodic functions. 35
12 Error in using the trapezoidal rule for a selection of functions as shown in Figs. 11i

and 11ii. The last three functions in the legend are not integrated, they are merely
plotted to illustrate the rates of convergence. 36

13 Clenshaw-Curtis weights as computed by Chebfun’s chebpts() function [27]. . . 40
14 Comparison of error in calculating the example given in Eq. 120 using Clenshaw-

Curtis (black asterisks), Gauss-Legendre (blue circles) and Gauss-Chebyshev (red
asterisks) quadrature. 42

15 Approximation of the function u(x) = 2 cos x2 on the grid as described in the main
text. 44

16 The error in the spectral derivative of four functions with varying levels of smooth-
ness plotted as a function of N . 46

17 The derivative of the function u(x) = ecos 2x sinx, the derivative the interpolant
(INu(x))′ and interpolant of the derivative IN (u′(x)). The circles denote the
collocation points. 47

18 The maximum error of the interpolant of the function u(x) = ecos(2x) sin(x) as a
function of the number of grid points N . 48

19 The error in the harmonic oscillator eigenvalues using the Fourier pseudo-spectral
method. 59

20 The error in the harmonic oscillator eigenvalues. 59
21 Error in harmonic oscillator wave functions. 60
22 The first four harmonic oscillator wave functions calculated with L = 8 and

N = 72. The case of L = 16 and N = 174 looks essentially indistinguishable.
The circles mark the values at the collocation points, the blue curves are the
interpolants calculated using Chebfun’s trigBary() function and the green curves
are the corresponding exact harmonic oscillator wave functions. 60

23 The quartic potential with ε = 0.5 on the [−1, 1] and [−L,L] intervals. 62
24 The first four anharmonic oscillator wave functions calculated with L = 8 and

N = 72 compared with the corresponding exact harmonic oscillator wave func-
tions. The circles mark the values at the collocation points, the blue curves are
the interpolants calculated using Chebfun’s trigBary() function and the green
curves are the corresponding exact harmonic oscillator wave functions. 63

25 The error in the spectral derivative of four functions with varying levels of smooth-
ness plotted as a function of N . 65

UNCLASSIFIED

UNCLASSIFIED

26 The error in the spectral derivative of several functions with varying levels of
smoothness plotted as a function of N . 66

27 An example non-periodic function. 67
28 The derivative of the function f(x) shown in Fig. 27, the derivative the interpolant

(INf(x))′ and interpolant of the derivative IN (f ′(x)). The circles denote the
collocation points. 67

29 The maximum error of the interpolant of the function f(x) plotted in Fig. 27
shown as a function of N . 68

30 Error in harmonic oscillator eigenvalues found using the Chebyshev pseudo-spectral
method. 75

31 The error in the harmonic oscillator eigenvalues using the Chebyshev pseudo-
spectral method. 76

32 Error in harmonic oscillator wave functions using the Chebyshev pseudo-spectral
method. 76

33 Chebyshev coefficients for a few of the harmonic oscillator wave functions for
L = 8 and N = 72. The odd coefficients are in red and the even ones are in blue. 77

34 Chebyshev coefficients for a few of the harmonic oscillator wave functions for
L = 16 and N = 400. The odd coefficients are in red and the even ones are in blue. 77

35 Chebyshev coefficients for the square of a few of the harmonic oscillator wave
functions for L = 8 and N = 72. The odd coefficients are in red and the even
ones are in blue. 78

36 Chebyshev coefficients for the square of a few of the harmonic oscillator wave
functions for L = 16 and N = 400. The odd coefficients are in red and the even
ones are in blue. 78

37 Chebyshev coefficients for a few of the quartic potential wave functions for ε =
0.001, L = 16 and N = 400. The odd coefficients are in red and the even ones
are in blue. 79

38 Chebyshev coefficients for the square of a few of the quartic potential wave func-
tions for ε = 0.001, L = 16 and N = 400. The odd coefficients are in red and the
even ones are in blue. 79

39 Chebyshev coefficients for a few of the quartic potential wave functions for ε =
0.01, L = 16 and N = 400. The odd coefficients are in red and the even ones are
in blue. 80

40 Chebyshev coefficients for the square of a few of the quartic potential wave func-
tions for ε = 0.01, L = 16 and N = 400. The odd coefficients are in red and the
even ones are in blue. 80

41 Chebyshev coefficients for a few of the quartic potential wave functions for ε = 0.5,
L = 16 and N = 400. The odd coefficients are in red and the even ones are in
blue. 81

42 Chebyshev coefficients for the square of a few of the quartic potential wave func-
tions for ε = 0.5, L = 16 and N = 400. The odd coefficients are in red and the
even ones are in blue. 81

43 The first four wave functions of the linear potential with L = 16, N = 72.
The circles mark the values at the collocation points, the blue curves are the
interpolants calculated using Chebfun’s bary() function and the green curves are
the corresponding “exact” wave functons. The corresponding plots for L = 32,
N = 400 are essentially indistinguishable from these. 83

44 Error in the linear potential eigenvalues found using the Chebyshev pseudo-
spectral method. 83

UNCLASSIFIED

UNCLASSIFIED

45 The error in the linear potential wave functions using the Chebyshev pseudo-
spectral method. 84

46 Chebyshev coefficients for a few of the linear potential wave functions coefficients
for L = 16 and N = 72. The odd coefficients are in red and the even ones are in
blue. 84

47 Chebyshev coefficients for a few of the linear potential wave functions coefficients
for L = 32 and N = 400. The odd coefficients are in red and the even ones are
in blue. 85

48 Chebyshev coefficients of the square of a few of the wave functions for L = 16
and N = 72. The odd coefficients are in red and the even ones are in blue. 85

49 Chebyshev coefficients of the square of a few of the wave functions for L = 32
and N = 400. The odd coefficients are in red and the even ones are in blue. . . . 86

50 The circles mark the values at the collocation points, the obscured green curve is
the initial Gaussian state wave function and the blue curve is the reconstructed
initial state after being projected onto the truncated set of wave functions. 88

51 Coefficients An for the truncated harmonic oscillator wave function expansion.
The odd coefficients are in red and the even ones are in blue. 88

52 Coefficients An for the truncated anharmonic oscillator wave function expansion.
The odd coefficients are in red and the even ones are in blue. 89

53 The curves represent the evolution of the probability density in the harmonic
oscillator potential obtained by evolving the projected initial Gaussian state. The
different colours correspond to different instances of time and the time step is the
same as in Fig. 54. 90

54 The curves represent the evolution of the probability density in the quartic po-
tential with ε = 0.001 obtained by evolving the projected initial Gaussian state.
The different colours correspond to different instances of time and the time step
is the same as in Fig. 53. 91

List of Tables

1 Summary of the most common trial and test functions used to construct spectral
methods. 8

2 Summary of the most used orthogonal polynomials for Gaussian quadrature. . . 20

3 Summary of the tridiagonal terms in the Jacobi matrix and the zeroth moment
for the four most used orthogonal polynomials. The Chebyshev polynomials are
of the 1st kind and their nodes and weights can also be found using the analytic
formulas provided in Table 4. 28

4 Summary of quadrature formulas for Chebyshev polynomials [15]. 33

UNCLASSIFIED

UNCLASSIFIED

Glossary

SVM Stochastic variational method

TDSE Time-dependent Schrödinger equation

TISE Time-independent Schrödinger equation

UAV Unmanned aerial vehicle

Notation

An The nth coefficient in a wave function expansion.

χj The jth test function.

Cj The jth cardinal basis function.

D
(`)
N The `th order differentiation matrix.

en+1 Unit vector.

ε Quartic coupling.

En Energy eigenvalue.

g Acceleration due to gravity.

f̂j The jth coefficient of the function f(x).

H Hamiltonian.

Hn(x) The nth Hermite polynomial.

In(f) The approximation the integral of f(x) with an n-point

quadrature rule.

~ Planck’s reduced constant.

J Jacobi matrix.

kN Leading coefficient of an nth degree polynomial.

`(x) Node polynomial.

`j(x) The jth Lagrange basis polynomial.

L Linear differential operator.

L2([a, b]) The second Lebesgue space.

UNCLASSIFIED

UNCLASSIFIED

Notation

L2
w([a, b]) The second weighted Lebesgue space.

λn The nth eigenvalue.

Ln(x) The nth Laguerre polynomial.

m Mass.

µ Mean.

µ0 Zeroth moment.

pN (x) An algebraic polynomial of degree N .

Pn(x) The nth Legendre polynomial.

PN Projection operator.

φj(x) The jth degree polynomial of a set of orthogonal polynomials.

φ Vector of orthogonal polynomials.

Ψ(x, t) Time-dependent wave function.

ψ(x) Time-independent wave function.

q(x) Quotient polynomial.

r(x) Runge’s function in Sec. 5.4 and the remainder polynomial in Sec. 6.

R The residual.

Rn(f) The residual from approximating the integral of f(x) with an n-point

quadrature rule.

σ Standard deviation.

T Tridiagonal matrix.

Tn(x) The nth Chebyshev polynomial.

un(x) The nth eigenfunction.

V (x, t) Time-dependent potential.

V (x) Time-independent potential.

VAHO(x) Anharmonic or quartic potential

VHO(x) Harmonic oscillator potential.

VL(x) Linear potential.

V Vandermonde matrix.

ω Angular frequency.

w(x) Weight function.

xj The jth grid point.

UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

1 Introduction

Noisy measurements are prevalent throughout modern engineering and experimental science,
complicating the accurate determination of a system’s state or an object’s location and velocity.
Filtering noise is routinely performed using an assortment of filters, among them the most
commonplace is the Kalman filter and its variants. These filters are used in very diverse
applications which range from following a finger moving on a laptop’s track pad to locating an
unmanned aerial vehicle (UAV). The Kalman filter has been successfully applied in many varied
situations, in part due to its simplicity both conceptually and computationally. However, it is
somewhat limited by its assumptions of a linear motion model and measurement errors which
follow a Gaussian distribution. In real-world applications, these conditions are not always met
as motion is rarely linear nor are the measurement errors typically Gaussian.

In this report we aim to develop Sam Drake’s original idea, the Bohm filter, as communicated
in his private notes [1]. Our intent for this project is an investigation into the feasibility of
the Bohm filter from conception, through to application to realistic tracking problems. In this
phase of the project we focus on the solution of the Schrödinger equation. The Bohm filter
was suggested to address some of the inadequacies of the Kalman filter. It is formulated as a
Bayesian filter (making use of Bayes’ rule), just like the Kalman filter, but the fundamental
idea is to use Schrödinger’s equation for the motion model where Planck’s constant can be
varied based on the experimental uncertainty of the measured location and velocity of the
object being tracked.

Connecting classical and quantum mechanics is a long standing problem in the foundations
of quantum theory and has very profound implications for our understanding of the nature
of reality and how we should interpret quantum theory. Thus, the rigorous justification of
using quantum mechanics to describe a classical system is conceptually difficult. However,
it has been demonstrated in a series of works, see Refs. [2–8], that a classical system with
noise can be described by an equation, which takes exactly the same mathematical form as
the Schrödinger equation, the equation which underlies non-relativistic quantum mechanics.
This comes under the name of Stochastic Variational Method (SVM) and takes the form of
a generalised variational principle in order to unify classical and quantum mechanics in the
same mathematical framework. We take this unified treatment as a justification to examine
the usefulness of the Bohm filter and leave further scrutiny of the quantum–classical connection
to later exploration.

As we are taking a more utilitarian view, we will focus on the practical implementation of the
Bohm filter and with the aim of extending the current investigation to examine the usefulness of
the Bohm filter to tracking problems in the next phase of the project. Obviously, each tracking
problem will be described by a different potential and in general they will not be exactly
solvable or time-independent. An undeniable advantage of the Kalman filter over the present
filter is that much of the calculation for the Kalman filter can be simplified analytically because
of the assumptions of linear motion and Gaussian measurement errors. Whereas, for the
current filter much of the calculation will need to be performed numerically. Hence, the Bohm
filter will necessarily be much more demanding than the Kalman filter computationally. To
reduce the additional computational overhead of the Bohm filter we will need to use numerical
methods which minimise the number of floating point operations and the amount of memory
used for a given accuracy when solving the Schrödinger equation. The smooth nature of wave

UNCLASSIFIED
1

DST-Group–TR–3513
UNCLASSIFIED

functions leads us naturally to consider a class of methods called spectral methods, in particular
the subclass of pseudo-spectral (collocation) methods. This will be the most important aspect
of implementing the Bohm filter so we will develop this in immense detail.

In fact, the majority of this report will be concerned with introducing the ideas behind one of
the most useful and powerful approaches to solving differential equations when the unknown
function is anticipated to be smooth. We will not attempt a full review of the current state
of the art regarding this class of methods, but we will rather opt for a more pedagogical and
illustrative approach with a number of explicit examples which should be understandable to
a wider audience.

We will consider the Schrödinger equation with several potentials known to be analytically
solvable with the view of gauging the efficiency and accuracy of these methods. These po-
tentials would not necessarily be of any use in any real-world tracking problem, but rather
provide us with some useful models. The possibility of extending to more realistic potentials,
which may be used in real-world tracking problems, is reserved for future research.

The outline of this report is as follows. In section 2 we introduce the time-dependent Schrödinger
equation and its reduction to the time-independent Schrödinger equation for static potentials.
The material of the following sections is all very well known and can be found in a num-
ber of good textbooks on approximation theory, orthogonal polynomials, analysis, numerical
methods and spectral methods. In section 3 we summarise some of the important details of
spectral methods and in particular motivate the use of the so-called pseudo-spectral methods.
Section 4 is devoted to introducing the orthogonal polynomials and some of their important
properties. In Section 5 we will introduce some basic concepts such as the idea of a collocation
interpolation and define various approaches to polynomial interpolation. Section 6 discusses
numerical quadrature. Sections 7 and 8 introduce the Fourier and Chebyshev pseudo-spectral
methods and their application to a few simple potentials. The report then finishes with a
discussion and conclusions in Section 9.

Throughout this report all numerical calculations were performed using MATLAB R© [9]. Func-
tions implemented in MATLAB R© to investigate the pseudo-spectral methods can be found in
the cited literature. However, various example scripts have been written which can produce
the figures in this report. They are stored in Govdex and are available upon request. The
appendices also contain useful tid bits of information.

There is a vast literature dedicated to spectral methods, but through the course of this research
project we have found the following resources particularly useful:

• The two most useful references were Ref. [10], which is focussed entirely on pseudo-
spectral methods and Ref. [11] on approximation theory.

• There are a number of classic books on spectral methods, in particular, we draw the
readers attention to Boyd [12], Funaro [13], Canuto et al [14, 15], Fornberg [16] and also
Shen et al [17].

• Also the very useful mathematical handbook [18], particularly chapters 22 and 25 were
incredibly helpful.

2
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

2 Solution of the TDSE

We are interested in developing Drake’s Bohm filter to be used to filter noisy measurements
and track an unknown moving object. The idea of the Bohm filter (or tracker in this context)
is an alternative to the Kalman filter. To build a Bayesian tracker we need a motion model and
a sensor (or error) model. The Bohm filter uses Schrödinger’s equation for the motion model,
where Planck’s constant can be varied based on the experimental uncertainty of the measured
location and velocity of the object being tracked. Each tracking problem will be described by a
different potential and in general will not be exactly solvable or time-independent. To initiate
an investigation into how we may implement such a tracker in practice, we first need a fast
and accurate numerical method to solve the time-dependent Schrödinger equation (TDSE).
This will be the most important part of the Bohm tracker.

The TDSE is

i~
∂

∂t
Ψ(x, t) =

(
− ~2

2m
∇2 + V (x, t)

)
Ψ(x, t) ≡ HΨ(x, t) , (1)

where all the symbols have their usual meaning, i.e., Ψ(x, t) is the time-dependent wave
function, ~ is the reduced Planck’s constant, V (x, t) is the interaction potential, and H is the
Hamiltonian1. To begin with we will investigate a few familiar time-independent potentials.
These can be used as simple test cases to understand the efficiency and accuracy of the
numerical methods we use. Moreover, at a later stage these more pedagogical potentials
will allow us to evaluate the effectiveness of a Bayesian tracker based on the Schrödinger
equation.

All the potentials we will consider in this report, as mentioned, will have no time dependence,
i.e., V (x, t) = V (x). We will discuss the numerical solution of the TDSE equation for the
familiar harmonic, anharmonic and linear potentials, namely

VHO(x) =
1

2
mω2x2 , (2)

VAHO(x) =
1

2
x2 + εx4 , (3)

and

VL(x) =


∞ , x < 0

mgx , x > 0
. (4)

These potentials could possibly be used as part of a Bayesian tracker to track an object
that moves harmonically, almost harmonically or is falling in a gravitational potential. These
potentials would not necessarily be of any use in any real-world tracking problem, but are
rather useful toy models.

All of the potentials under consideration are time independent and therefore we can use the
separation of variables technique. For a general tracking problem we will not necessarily have
this simplification and may need to consider a modified approach to what we will discuss here.

1If the reader is unfamiliar with basic quantum mechanics see one of the many good undergraduate texts
on the subject, e.g., Powell and Crasemann [19] or Bohm [20].

UNCLASSIFIED
3

DST-Group–TR–3513
UNCLASSIFIED

However, many of the same ideas will carry over to this situation. The time evolution of each
eigenfunction is then simply given by an exponential factor

Ψn(x, t) = ψn(x) exp(−iEnt/~) , (5)

where Ψn(x, 0) = ψn(x) is the solution to the time-independent Schrödinger equation (TISE)(
− ~2

2m
∇2 + V (x)

)
ψn(x) = Enψn(x) . (6)

To obtain the spatial part of the solution of the TDSE, the time-independent Schrödinger
equation (TISE) must be solved. This is an eigenvalue problem, which in general is not
exactly solvable. However, the exact solution can be obtained for the harmonic oscillator
(Appendix A.1) and linear (Appendix A.2) potentials, but not for the anharmonic potential.
Nonetheless, perturbation theory combined with Padé summation can be used to extract an
approximate solution for the eigenvalues, which we will not discuss, see Refs. [21–23].

A general solution to the TDSE equation can be built from a linear combination of these
solutions. Thus, if we know the initial state of the system is for example a Gaussian,

Ψ(x, 0) = f(x) = Cexp(−(x− µ)2/2σ2) , (7)

we can project out this solution onto the eigenfunctions ψn(x) using the orthogonality of the
eigenfunctions,

An =

∫∞
−∞ f(x)ψn(x)dx∫∞
−∞ |ψn(x)|2dx

(8)

obtaining coefficients which allow us to write the initial state as

f(x) =

∞∑
n=0

Anψn(x) . (9)

This initial state then evolves in time by the exponential time evolution of each of the eigen-
functions, such that

Ψ(x, t) =

∞∑
n=0

Anψn(x)e−iEnt/~ . (10)

This straightforward evolution of the initial state in time is a result of the time independence
of the chosen potentials. Obviously, in practice we will be working with a finite number
of eigenfunctions and eigenvalues. Therefore the summation in Eqs. 9 and Eq. 10 will be
truncated. Ideally, it will be at an order where the coefficients An are small and below some
acceptable level of tolerance.

Above we have made the assumption that the initial state is Gaussian. This initial state is
what would be obtained through measurements and in general it may not be Gaussian. It is
not necessary to make this restriction to an initially Gaussian wave function, but we do so
for simplicity. There is no extra complication to extend to a non-Gaussian error model as the
integral in Eq. 8 will be done using numerical quadrature.

To solve the TISE we will use Fourier and Chebyshev pseudo-spectral methods. We may, how-
ever, need to extend to other polynomial bases in more realistic tracking problems depending
on the potential for a particular tracking problem. Each tracking potential will need to be

4
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

investigated separately. Possible polynomials worth considering are the Legendre polynomials
defined on [−1, 1], which can easily be extended to any finite domain, Laguerre polynomials
on the semi-infinite domain and also Hermite polynomials on the infinite domain. We will
be restricting our attention to just one dimension, but in higher dimension generalisations it
in may be advantageous to use a combination of pseudo-spectral methods, e.g., in two di-
mensions use of a Fourier grid for a bearing coordinate and a Chebyshev grid for the range
coordinate.

3 The numerical problem at hand

We are interested in efficiently obtaining an accurate numerical solution to the Time-Independent
Schrödinger equation (TISE), Eq. 6. More abstractly, this is an eigenvalue problem of the
form,

Lun(x) = λnun(x) , (11)

where L is a linear differential operator (the Hamiltonian), λn is an eigenvalue of L associated
with the eigenfunction un(x) defined on the interval Ω = [a, b]. In the special case of L
being self-adjoint (hermitian), its eigenvalues are real and the eigenfunctions corresponding
to different eigenvalues are orthogonal. The eigenfunctions are subject to two homomgeneous
boundary conditions

α1un(a) + β1u
′
n(a) = 0 (12)

α2un(b) + β2u
′
n(b) = 0 (13)

where if

• βi = 0, we have a Dirichlet boundary condition;

• αi = 0, a Neumann boundary condition;

• αi 6= 0 and βi 6= 0, a Robin boundary condition.

When using Chebyshev methods we will only be interested in Dirichlet boundary conditions.
However, when using Fourier methods the boundary conditions we impose will be periodic,
u(a) = u(b).

An acceptable solution to this problem (which we denote by un(x) and λn) is one that exactly
satisfies the boundary conditions and makes the residual

R ≡ Lun(x)− λnun(x) , (14)

that is the error, small. To define what we mean by small we use the method of weighted
residuals.

What we do is look for solutions in a finite dimensional subspace of some Hilbert space. As
an example, the trigonometric polynomials {eikx}∞k=−∞ are dense in C([a, b]) and also its
completion L2([a, b]). These trigonometric polynomials form a basis, generally referred to as
the Fourier basis. It then follows that a function f ∈ L2([a, b]) can then be approximated
by the partial sums of its Fourier series representation. This is effectively a truncation of
the Fourier series representation to a finite sum of N terms or equivalently the projection of

UNCLASSIFIED
5

DST-Group–TR–3513
UNCLASSIFIED

the function onto a subspace of L2([a, b]) spanned by the first N trigonometric polynomials,
1, cosx, sinx,

The Fourier basis is not the only basis of L2([a, b]). There are in fact many bases, of particular
interest are the Legendre polynomials which are traditionally defined on the interval [−1, 1],
but can be extended to other intervals by simple mappings. The theorem which lies at the
heart of this is the Weierstrass approximation theorem. One begins with the monomials
1, x, x2, . . . and uses the Gram-Schmidt orthogonalisation procedure, the result of which are
the normalised Legendre polynomials. Thus every function f ∈ L2([−1, 1]) can be written as
an infinite series of Legendre polynomials, i.e.,

f(x) =

∞∑
j=0

f̂jPj(x) (15)

and approximated by its truncation or equivalently its projection onto the subspace spanned
by P0, P1, . . . , PN . This subspace is the vector space of polynomials of degree no greater than
N denoted hereafter as PN .

More generally, a sequence of orthogonal polynomials {φn}∞n=0 defined to be orthogonal on
the interval [a, b] with respect to a positive weight function w(x) ∈ L1([a, b]) are particularly
useful. They span a set which is dense in and forms a basis of the weighted space L2

w([a, b]) ≡
L2([a, b], w(x)dx) which is defined with the weighted inner product

(f, g)w =

∫ b

a
f(x)g(x)w(x)dx, ∀f, g ∈ L2

w([a, b]) (16)

with the associated norm ‖f‖2w ≡ (f, f)w. A function f ∈ L2
w([a, b]) can then once again be

approximated by its truncated series

f(x) '
N∑
j=0

f̂jφj(x) . (17)

The classical orthogonal polynomials summarised in Table 1 are the only ones we will mention
in this report. In App. B we include a summary of their most relevant properties. The nor-
malised orthogonal polynomials can be constructed using the Gram-Schmidt procedure with
monomials as mentioned above. However, it is common when using the these polynomials to
use other normalisation conventions. These conventions are also given in the appendix.

Orthogonal polynomials arise in many contexts in mathematics and physics. As a result they
can be introduced and defined a number of different ways. In particular, we mention that a
Gram-Schmidt orthogonalisation procedure is not the only way to define them. They can also
be defined through a three-term recurrence relation, which all orthogonal polynomials possess
or are a solution to a second order linear differential equation. As an example of the latter,
Hermite polynomials multiplied by a Gaussian are solutions to the Schrödinger equation with
a harmonic oscillator potential. The generalised Laguerre polynomials appear when solving
the Schrödinger equation describing the hydrogen atom.

Mostly we will be concerned with the Chebyshev polynomials of the first kind, Tn, whose
expansions have very nice convergence properties. They are a special case of the Jacobi

6
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

polynomials, like the Legendre polynomials, with the defining weight function w(x) = (1 −
x2)−1/2. They can also be defined explicitly as

Tn(x) = cos (n arccos(x)) . (18)

Through a change of variables, θ = arccosx, it is plainly seen that expansions in these poly-
nomials are intimately related to Fourier cosine series and their nice convergence properties
are largely a consequence of Fourier analysis.

We now introduce a very important type of operator called a projection operator, PN , which
can be defined for any orthogonal basis {φj}∞j=0 of a Hilbert space H as

PNu(x) =
N∑
j=0

ûjφj(x) (19)

which is said to project the function u ∈ H onto the finite space spanned by the basis
φ0, φ1, . . . , φN . The unknown coefficients in Eq. 19 are given by

ûj =
(φj , u)w
(φj , φj)w

=
(φj , u)w
‖φj‖2w

, (20)

where the weighted inner product is defined as in Eq. 16. This integral cannot, in general, be
calculated exactly.

We have now paved the way to be able to state the general procedure for the method of
weighted residuals. The method is as follows:

1. Choose a finite set of trial functions φ0, φ1, . . . , φN that form an N +1-dimensional basis
in terms of which we can expand un(x), i.e.,

un(x) =

N∑
j=0

û
(n)
j φj(x) (21)

and the N + 1 expansion coefficients û(n)j are yet to be determined. This will be referred
to as the expansion of the function in the spectral basis.

2. Choose a finite set of test functions χ0, χ1, . . . , χN and use these functions to define what
it means for the residual to be small by using the Hilbert space inner product. By which
we mean we require

(χj , R) = 0 ∀j = 0, 1, . . . , N . (22)

Various numerical methods follow from the choices made in (1) and (2), for example :

• Finite difference methods arise from choosing the trial functions to be overlapping poly-
nomials of low order.

• Spectral methods follow from choosing globally smooth functions as the trial functions.
By global we mean they extend over the whole spatial domain of interest. Examples of
common choices are given in Table 1 but others are also possible.

Spectral methods come in a variety of flavours which can be further classified in terms of the
choice of test functions used and hence the different approaches taken to minimise the residual
function. Two of the most familiar approaches are:

UNCLASSIFIED
7

DST-Group–TR–3513
UNCLASSIFIED

Table 1: Summary of the most common trial and test functions used to construct spectral
methods.

Method Name Trial/Test functions Domain Weight w(x)

Fourier eikx, cos kx, sin kx [0, 2π] 1
Legendre Pn(x) [−1, 1] 1
Chebyshev Tn(x) [−1, 1] (1− x2)−1/2
Laguerre Ln(x) [0,∞) e−x

Hermite Hn(x) (−∞,∞) e−x
2

• Galerkin method: The test and trial functions are chosen to be the same and each
individually satisfies the boundary conditions. These are very important methods, but
we will not discuss them further.

• Pseudo-spectral or collocation method: The test functions are delta functions on grid of
points xj called collocation points,

χj(x) = δ(x− xj) . (23)

This choice enforces the residual to be exactly zero through the smallness condition

0 = (χj , R) = (δ(x− xj), R) = R(xj) . (24)

Thus increasing the number of points in the grid, the residual function will be smaller
throughout the domain. These methods are simpler than the Galerkin methods and are
better suited to non-linear problems.

The most common pseudo-spectral methods are the ones were the trial functions are either
the complex exponentials and trigonometric functions or the classical orthogonal polynomials.
The methods constructed from the former functions are most appropriately applied to periodic
problems. Nonetheless they can also be applied to non-periodic problems, but quite often dis-
continuities can arise through the artificial periodisation of the function. These discontinuites
diminish the fast convergence of these Fourier methods because of the appearance of Gibbs
phenomenon [10]. The methods constructed from orthogonal polynomials, like Chebyshev and
Legendre polynomials, are more appropriate to non-periodic problems and have been shown to
work effectively in a wide range of applications in fluid dynamics and general relativity.

Quadrature methods are used to approximately determine the expansion coefficients. In the
case of the Fourier method one uses the composite trapezoidal, rectangular or midpoint rules
which converge rapidly for periodic functions [12]. On the other hand, in the case of the
orthogonal polynomials the most accurate way to evaluate these integrals is to evaluate them
using an N + 1-point Gaussian quadrature rule which can exactly integrate polynomials up
to degree 2N + 1 [12]. Adapting the method to include the boundary points one uses a
Gauss-Lobatto quadrature rule which can exactly integrate a 2N−1 degree polynomial.

For the remainder of this report we will consider only the two most successful pseudo-spectral
methods based on the Fourier and Chebyshev polynomial bases. However, in later investig-
ations as we consider more realistic tracking problems and hence different potentials we may
need to extend to other, possibly more appropriate, bases depending on the geometry of the

8
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

tracking problem and the nature of potential. We will now introduce some mathematical
background on orthogonal polynomials, interpolation and numerical quadrature. After which,
we will introduce the Fourier and Chebyshev pseudo-spectral methods separately.

The material of the following sections is all very well known and can be found in a num-
ber of good textbooks on orthogonal polynomials, analysis, numerical methods and spectral
methods. We will not delve too deeply into the subtle mathematical arguments concerning
the convergence of spectral expansions and the general applicability of these methods. We
will only prove theorems and derive formulas that have considerable practical relevance to the
problem at hand. In lieu of this mathematical analysis we will instead illustrate important
concepts with examples and refer the reader to the mathematical literature for the technical
details.

4 A few properties of orthogonal polynomials

Polynomials are the most familiar of functions and are a joy to work with as they are so easy
to use. Most notably, they’re straight forward to differentiate and integrate, a fact that we
will rely on heavily. Orthogonal polynomials and collocation interpolation using them entirely
underlies the pseudo-spectral methods used in the latter sections of this report. This and the
following few sections are very brief, but very starchy. They contain definitions, theorems and
proofs to provide the reader with relevant background and to place them in the correct frame
of mind for what follows. The presentation of the material closely follows Ref. [17] and we
refer the reader there for further details.

Let {φj(x)}∞j=0 be a sequence of orthogonal polynomials with respect to the positive weight
function w(x) on [a, b] where φj is of degree j. Then there are a number of properties the
reader should be aware of, a few of the most important ones are summarised below.
Definition 4.1. (Algebraic polynomial) A polynomial of degree N in the monomial basis is
denoted

pN (x) = kNx
N + k

(N)
N−1x

N−1 + . . .+ k
(N)
0 , (25)

where the all the coefficients are real and the leading coefficient of pN (x), i.e., kN is non-zero.
Theorem 4.1. (Three term recurrence relation) Let {φj(x)}nj=0 be a sequence of orthogonal
polynomials with leading coefficient kj non-zero. Then there exist a three-term recurrence
relation of the form

φj+1(x) = (ajx+ bj)φj(x)− cjφj−1(x) , j ≥ 0, (26)

with φ−1 ≡ 0, φ0(x) ≡ k0 and

aj =
kj+1

kj
(27)

bj =
kj+1

kj

(xφj , φj)w
‖φj‖2w

(28)

cj =
kj−1kj+1

k2j

‖φj‖2w
‖φj−1‖2w

. (29)

UNCLASSIFIED
9

DST-Group–TR–3513
UNCLASSIFIED

Proof: For the proof of this theorem we refer the reader to Refs. [17] and [24]. �

The recurrence relations of classical polynomials are usually given in this form in books such
as Abramowitz and Stegun [18]. However, other normalisations are possible and can be useful
in various situations, e.g., monic and orthonormal normalisations.
Theorem 4.2. (Roots of orthogonal polynomials) If φn is an orthogonal polynomial defined
as above, then φn has exactly n roots and they are real, simple and lie in the interval [a, b].

Proof: For the proof of this theorem we refer the reader to Refs. [17] and [24]. �
Lemma 4.1. A polynomial φn+1 as defined above is orthogonal to any polynomial q ∈ Pn.

Proof: For the proof of this theorem we refer the reader to Refs. [17] and [24]. �
Theorem 4.3. (Christoffel-Darboux formula) The following formula for a set of orthogonal
polynomials {φj}nj=0 is known as the Christoffel-Darboux formula

φn+1(x)φn(y)− φn(x)φn+1(y)

x− y
=
kn+1

kn

n∑
j=0

‖φn‖2w
‖φj‖2w

φj(x)φj(y) . (30)

Proof: The Christoffel-Darboux formula is proved by using the three-term recurrence relation,
Eq. 26, of a set of orthogonal polynomials [17]. It follows from the Eq. 26 that

φj+1(x)φj(y)− φj(x)φj+1(y) = [(ajx+ bj)φj(x)− cjφj−1(x)]φj(y)

−φj(x) [(ajy + bj)φj(y)− cjφj−1(y)]

= aj [xφj(x)φj(y)− φj(x)yφj(y)]

+bj [φj(x)φj(y)− φj(x)φj(y)]

−cj [φj−1(x)φj(y)− φj(x)φj−1(y)]

= ajφj(x)φj(y)(x− y)− cj [φj−1(x)φj(y)− φj(x)φj−1(y)] .

(31)

Then using

aj =
kj+1

kj
and cj =

kj−1kj+1

k2j

‖φj‖2w
‖φj−1‖2w

(32)

from Eq. 27 and Eq. 29 we obtain

φj+1(x)φj(y)− φj(x)φj+1(y) =
kj+1

kj
φj(x)φj(y)(x− y)

−kj−1kj+1

k2j

‖φj‖2w
‖φj−1‖2w

[φj−1(x)φj(y)− φj(x)φj−1(y)] .

(33)

Rearranging we get

kj
kj+1‖φj‖2w

φj+1(x)φj(y)− φj(x)φj+1(y)

x− y

+
kj−1

kj‖φj−1‖2w
φj−1(x)φj(y)− φj(x)φj−1(y)

x− y
=
φj(x)φj(y)

‖φj‖2w
.

(34)

10
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Now sum over j

n∑
j=0

kj
kj+1‖φj‖2w

φj+1(x)φj(y)− φj(x)φj+1(y)

x− y

+

n∑
j=0

kj−1
kj‖φj−1‖2w

φj−1(x)φj(y)− φj(x)φj−1(y)

x− y
=

n∑
j=0

φj(x)φj(y)

‖φj‖2w
(35)

and now shuffle summation indices,

n∑
j=0

kj
kj+1‖φj‖2w

φj+1(x)φj(y)− φj(x)φj+1(y)

x− y

+
n−1∑
j=−1

kj
kj+1‖φj‖2w

φj(x)φj+1(y)− φj+1(x)φj(y)

x− y
=

n∑
j=0

φj(x)φj(y)

‖φj‖2w
,

(36)

to finally get

kn
kn+1‖φn‖2w

φn+1(x)φn(y)− φn(x)φn+1(y)

x− y
=

n∑
j=0

φj(x)φj(y)

‖φj‖2w
. (37)

To get this result note that the sums on the left hand side are a telescoping series and φ−1 ≡ 0,
which means the first term in the second sum is zero and the rest of the terms in the second
series cancel all the terms in the first, except for the last, leaving the final result. Rearranging
terms then gives Eq. 30. �
Proposition 4.1. (Christoffel-Darboux formula (y = x)) The special case of y = x for the
Christoffel-Darboux formula is

φ′n+1φn(x)− φ′n(x)φn+1(x) =
kn+1

kn

n∑
j=0

‖φn‖2w
‖φj‖2w

φ2j (x) . (38)

Proof: Take the limit of the Christoffel-Darboux formula such that the right hand side
evaluates to

lim
y→x

φn+1(x)φn(y)− φn(x)φn+1(y)

x− y
= lim

y→x

n∑
j=0

‖φn‖2w
‖φj‖2w

φj(x)φj(y) =
n∑
j=0

‖φn‖2w
‖φj‖2w

φ2j (x) . (39)

To evaluate the left hand side limit note that the left hand side can be re-written as

lim
y→x

φn+1(x)− φn+1(y)

x− y
.φn(y)− φn(x)− φn(y)

x− y
.φn+1(y) (40)

and note that the limits of the quotients are nothing other than the definition of the derivative
of the polynomials. Thus, Eq. 38 is obtained. �

UNCLASSIFIED
11

DST-Group–TR–3513
UNCLASSIFIED

5 Interpolation

Interpolation is the process of finding a function that fits a set of given data points and then
evaluating it at intermediate points. When this function is constrained to pass through each
point this approach is called collocation. Interpolation can be done in a number of different
ways, but we will be mostly concerned with polynomial interpolation in this section. However,
it can also be done, for example, using Fourier series and generalisations thereof.

A whole slew of numerical methods depend on polynomial interpolation, in particular many
numerical integration and differentiation methods make use of it. They use it because polyno-
mials can be evaluated, differentiated and integrated with great ease. In fact, interpolation will
under lie everything we do in this report. Polynomial interpolation has had a somewhat bad
reputation in the past, but if done correctly it is extremely good. In particular, see Ref. [25]
and the appendix “Six myths of polynomial interpolation and quadrature" of Ref. [11].

A polynomial of order N that passes through N +1 points is unique, but there are many ways
this interpolating polynomial can be expressed, i.e., through

• a solution of a linear system of equations

• Lagrange’s interpolation formula

• Newton’s divided differences

• Hermite’s interpolation formula

• barycentric interpolation formulas .

We will use the latter, but we will also discuss the first two of these. The first is the simplest
and most obvious approach which turns out to be numerically unstable, whereas the second
has great analytic applicability but is more computationally demanding than one may like.
The generalisation of Lagrange’s interpolation formula to the barycentric formula addresses
both concerns of stability and efficiency.

To illustrate these different approaches to constructing the Nth degree interpolating polyno-
mial and to highlight their fundamental flaws and strengths we will define a few terms. Let
{xj}Nj=0 be N +1 distinct nodes with corresponding data values fj , which need not be distinct
and, for our purposes, may be considered as evaluations of a function f , i.e., fj = f(xj). This
set of ordered pairs, (xj , fj), j = 0, 1, . . . N will be referred to as the interpolation points. For
simplicity, we will assume that the xj are real and we will make no assumption about the
spacing of this grid of nodes. The problem at hand is to find the unique polynomial pN ∈ PN
that interpolates the function f at the interpolation points, meaning

pN (xj) = f(xj) = fj . (41)

5.1 The simplest approach

The simplest approach is to formulate the interpolation problem as a linear system of equations.
This leads to a situation where the matrix to be inverted is a Vandermonde matrix, i.e.,
a matrix where in each row there is a geometric progression of terms. This approach is

12
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

very simple, but susceptible to round off errors for large N because of the ill conditioned
Vandermonde matrix.

An Nth order polynomial can be written down in the monomial basis as

pN (x) =
N∑
j=0

ajx
j . (42)

As pN (x) is required to pass through the N + 1 points (xj , f(xj)), we obviously have the
following N + 1 algebraic equations

pN (x0) = a0 + a1x0 + a2x
2
0 + . . .+ aNx

N
0 (43)

pN (x1) = a0 + a1x1 + a2x
2
1 + . . .+ aNx

N
1 (44)

...
... (45)

pN (xN) = a0 + a1xN + a2x
2
N + . . .+ aNx

N
N (46)

which when expressed in matrix form are written as

f = V a . (47)

The terms in Eq. (47) are the following: f is the vector of function values at the nodes xj ,

f = [f0 f1 . . . fN]> , (48)

V is the Vandermonde matrix

V =



1 x0 x20 xN0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
1 xN x2N xNN


(49)

and a is the vector of unknown coefficients

a = [a0 a1 . . . aN]> . (50)

The unknown coefficients can then be found using basic linear algebra. However, the matrix to
be inverted is ill conditioned because of the increasing number of powers of x with increasing
N .

5.2 Lagrange interpolation

Lagrange’s Nth degree interpolating polynomial is defined by the following formula

pN (x) =
N∑
j=0

fj`j(x) , `j(x) =
N∏
k=0
k 6=j

(x− xk)
(xj − xk)

. (51)

UNCLASSIFIED
13

DST-Group–TR–3513
UNCLASSIFIED

This formula is known as Lagrange’s interpolation formula and `j(x) is the jth Lagrange basis
polynomial. It is the Nth degree interpolating polynomial that satisfies

`j(xk) = δjk =

{
1, j = k
0, otherwise , j, k = 0, 1, . . . N . (52)

Obviously, the denominator in `j(x) is a constant and the numerator is a degree N polynomial
with zeros at the nodes xk, with k 6= j. Moreover, by direct substitution of Eq. 52 into Eq. 51
we can show that pN (x) defined as in Eq. 51 does indeed interpolate the data fj on the grid
xj ,

pN (xk) =
N∑
j=0

f(xj)`j(xk) =
N∑
j=0

f(xj)δjk = fk , (53)

for j, k = 0, 1, . . . , N .

A clear strength of writing the interpolating polynomial as in Eq. 51 is that one does not need to
solve a linear system of equations to evaluate the interpolating polynomial. Moreover, it has a
rather simple structure that can be easily programmed. It also proves to have great analytical
applicability being used in various proofs and derivations such as in Gaussian quadrature.
However, it is not very efficient computationally. It takes O(N2) operations to evaluate pN (x)
for a single point. Also, if we are given another interpolation point we will have to calculate
the interpolating polynomial again from scratch.

5.3 Barycentric Lagrange interpolation

The Lagrange interpolation formula can be massaged into a form which is more efficient and
can be updated more easily, although it is rarely mentioned in numerical analysis textbooks.
This brief presentation closely follows Ref. [25] and [11] and we refer the reader to these for
a more complete description. To familiarise ourselves with this more profitable approach we
begin by defining the node polynomial

`(x) =

N∏
j=0

(x− xj) ∈ PN+1 (54)

for the grid {xj}Nj=0. The node polynomial can be used to write the numerator of `j(x) as

N∏
k=0
k 6=j

(x− xk) =
`(x)

x− xj
. (55)

Thus, if we define the so-called barycentric weights λj as the denominator of `j(x), i.e.,

λj =

N∏
k=0
k 6=j

(xj − xk)−1 , (56)

we can write the jth Lagrange polynomial `j(x) as

`j(x) = `(x)
λj

x− xj
. (57)

14
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Substituting this into Eq. 51 we can pull the node polynomial outside of summation yield-
ing

pN (x) = `(x)

N∑
j=0

λj
x− xj

fj . (58)

Equation 58 is known as the first barycentric formula. This formula can be further manipu-
lated into a more appealing form, but already in Eq. 58 we can see an increase in efficiency.
The barycentric weights are independent of x and only need to be computed once. Moreover,
for some important special cases such as Chebyshev grids these weights are known analytic-
ally.

To further improve the efficiency we can interpolate the function which maps every point to
1, i.e.,

1 =
N∑
j=0

`j(x) =
N∑
j=0

`(x)λj
x− xj

= `(x)
N∑
j=0

λj
x− xj

(59)

and use this to divide the jth Lagrange polynomial, then expand and cancel the node poly-
nomial `(x),

`j(x) =
`j(x)

1
=

`j(x)
N∑
j=0

`j(x)

=

`(x)λj
x−xj

N∑
j=0

`(x)λj
x−xj

=

`(x)λj
x−xj

`(x)
N∑
j=0

λj
x−xj

=

λj
x−xj

N∑
j=0

λj
x−xj

. (60)

Substituting Eq. 60 into the formula for the Lagrange interpolating polynomial, Eq. 51, we
obtain the second form of the barycentric interpolation formula

pN (x) =

N∑
j=0

λj
x−xj fj

N∑
j=0

λj
x−xj

. (61)

We must supplement this formula with the special case pN (xj) = fj to avoid the division of
infinity by infinity. It is not self-evident that Eq. 61 defines an Nth degree polynomial, let
alone a polynomial. It is, however, a polynomial for specific choices of barycentric weights.
With regards to its efficiency to evaluate pN (x), it only takes O(N) operations for each x once
the barycentric weights are known.

For the special case of a Chebyshev extrema grid, the barycentric weights are

λj =


2N−2

N (−1)j j = 0, N

2N−1

N (−1)j otherwise
. (62)

As the second form of the barycentric formula as given in Eq. 61 is scale invariant, the constants
cancel and one accordingly obtains [25]

pN (x) =

N∑′′

j=0

(−1)jfj
x−xj

N∑′′

j=0

(−1)j
x−xj

, (63)

UNCLASSIFIED
15

DST-Group–TR–3513
UNCLASSIFIED

where we have used the convention of placing a double prime on the summation symbol to
indicate that the first and last terms are halved.

The trigonometric version is similar and their corresponding formulas for the barycentric in-
terpolant can found for example in Ref. [26]. In our later calculations we use Chebfun’s
trigBary() and bary() functions [27].

5.4 Runge phenomenon

Polynomial interpolation underlies our approach to solving the Schrödinger equation. There-
fore this report would not be complete without mentioning Runge’s phenomenon [28]. It is the
problem of large oscillations near the boundaries which can occur when performing high degree
polynomial interpolation on a set of equally spaced points. We illustrate this phenomenon in
Fig. 1 for Runge’s function

r(x) =
1

1 + (5x)2
. (64)

In Fig. 1 we see the polynomial interpolation of Runge’s function in evenly spaced points. As
the degree of the polynomial interpolant N is increased, larger and larger oscillations occur
near the boundaries.

From Weierstrass’ approximation theorem, see for example Ref. [29], it is known that if a
function f is continuous on [a, b], then there exists a sequence of polynomials pn such that

lim
n→∞

pn(x) = f(x) (65)

uniformly on [a, b]. However, it can be shown that when interpolating Runge’s function in
equally spaced points the interpolation error can increase without bound

lim
n→∞

‖f − pn‖∞ = lim
n→∞

max
a≤x≤b

|f(x)− pn(x)| =∞ . (66)

One way to combat this problem is to change the interpolation points. Choosing points
clustered more at the boundaries and generally distributed according to the following density
per unit length [10]

density ∼ N

π
√

1− x2
, as N →∞ . (67)

Several sets of points can be used. In Fig. 2 we illustrate this with the Chebyshev points of
the second kind and the zeros of Legendre polynomials. Both work well. The point we wish
the reader to take away from this is the following. Interpolation can be very useful, but if you
choose the wrong points to perform the interpolation in you will be sorry.

6 Numerical quadrature

The material in this section is discussed in many textbooks, in particular, we refer the reader
to Refs. [10–12, 17, 24, 30] and the references cited herein.

16
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Figure 1: Runge’s function interpolated on an equispaced grid exhibiting Runge
phenomenon. This plot is produced by using the MATLAB R© script
Ex_Script_1_RungePhenomenon.m.

(i) Runge’s function interpolated on N + 1
Chebyshev points of the second kind.

(ii) Runge’s function interpolated on the N + 1
zeros of the Legendre polynomial LN+1.

Figure 2: Runge’s function interpolated on N + 1 unevenly spaced points. These plots are
produced by using the MATLAB R© script Ex_Script_1_RungePhenomenon.m.

UNCLASSIFIED
17

DST-Group–TR–3513
UNCLASSIFIED

6.1 Gaussian quadrature

Quadrature rules are used to approximate definite integrals by a finite sum of the following
form ∫ b

a
w(x)f(x)dx =

n∑
j=0

wjf(xj) +Rn(f) = In(f) +Rn(f) , (68)

where w(x) is a positive weight function over the domain [a, b], the n+1 numbers xj are called
the quadrature nodes, the n + 1 numbers wj the weights and Rn(f) the error or residual of
the approximation In(f) of the exact integral. The quadrature rule given by In(f) is said to
be exact if the residual Rn(f) is zero.

Gaussian quadrature, which was named after the mathematician Carl Friedrich Gauss, is
designed to be exact for all polynomials of degree 2n+ 1 or less. This is a significant improve-
ment over other quadrature rules, such as Newton-Cotes, for the n + 1 function evaluations
performed. There are 2n+ 2 parameters, i.e., the nodes xj and weights wj , in the quadrature
rule given by Eq. 68 which we can adjust to exactly integrate a polynomial of degree 2n + 1
which has 2n+ 2 coefficients. The nodes are, in general, not equally spaced but rather given
by roots of orthogonal polynomials.

Given a set of fixed nodes xj , the degree n interpolating polynomial pn(x) ∈ Pn of the func-
tion f(x) on this grid is given by the Lagrange interpolation formula, Eq. 51. Making this
approximation we find∫ b

a
w(x)f(x)dx '

∫ b

a
w(x)pn(x)dx =

n∑
j=0

f(xj)

∫ b

a
w(x)`j(x)dx . (69)

Thus the quadrature rule

In(f) =
n∑
j=0

wjf(xj) (70)

with the weights defined as

wj =

∫ b

a
w(x)`j(x)dx (71)

will be exact for polynomials of degree n or less regardless of the nodes we choose to use.
These nodes are the roots of an arbitrary polynomial.

We would like to be able to integrate polynomials of largest degree possible. The quadrature
nodes are n + 1 degrees of freedom that we can adjust allowing us to integrate a polynomial
p ∈ P2n+1 exactly. To this end, we introduce a set of orthogonal polynomials {φj(x)}n+1

j=0

which are defined to be orthogonal with respect to the inner product

(f, g)w =

∫ b

a
f(x)g(x)w(x)dx (72)

for a positive weight function w(x) ∈ L1(a, b) which is only zero on a set of measure zero, e.g.,
a finite set.

If we employ polynomial division, the 2n+ 1 degree polynomial p(x) can be written as

p(x) = φn+1(x)q(x) + r(x) , (73)

18
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

where the quotient and remainder polynomials q(x), r(x) ∈ Pn and depend in particular on
p(x). Using this fact we can rewrite the weighted integral of p(x) as∫ b

a
p(x)w(x)dx =

∫ b

a
φn+1(x)q(x)w(x)dx+

∫ b

a
r(x)w(x)dx (74)

= (φn+1, q)w +

∫ b

a
r(x)w(x)dx (75)

=

∫ b

a
r(x)w(x)dx , (76)

where the third equality follows from the fact that the polynomial φn+1(x) is orthogonal to all
q ∈ Pn. Equation 76 is exact, we would like to apply the quadrature rule to the left hand side
of this equation and get the exact value by choosing the nodes appropriately. Application of
the n+ 1 point quadrature rule to the weighted integral of p(x) gives

In(p) =
n∑
j=0

wjp(xj) (77)

=
n∑
j=0

wjφn+1(xj)q(xj) +
n∑
j=0

wjr(xj) (78)

=

n∑
j=0

wjφn+1(xj)q(xj) +

∫ b

a
r(x)w(x)dx . (79)

The third equality follows from the fact r(x) ∈ Pn and the quadrature rule will exactly integrate
a polynomial in Pn. Thus, since q(x) will vary depending on p(x), for the quadrature rule to
be exact the nodes should be chosen to be the n+ 1 roots of φn+1(x), so that

n∑
j=0

wjφn+1(xj)q(xj) = 0 . (80)

However, since we are integrating over [a, b] these roots need to be real, distinct and lie in [a, b].
The crucial specification that the set of polynomials {φj}n+1

j=0 be orthogonal has the important
consequence that φj(x) has exactly j real and distinct roots in the interval [a, b].
Theorem 6.1. (Gaussian Quadrature) If we define a Gaussian quadrature rule for the definite
integral ∫ b

a
w(x)f(x)dx (81)

by

In(f) =

n∑
j=0

wjf(xj) (82)

where the nodes xj are the n + 1 roots of a degree n + 1 orthogonal polynomial, which is
orthogonal on [a, b] with respect to the positive weight function w(x) ∈ L1

(a,b) that is only zero
on a set of measure zero (e.g., a finite set), and the weights are defined as

wj =

∫ b

a
w(x)`j(x). (83)

Then In(f) is exact for all polynomials f of degree 2n+ 1 and less.

UNCLASSIFIED
19

DST-Group–TR–3513
UNCLASSIFIED

Table 2: Summary of the most used orthogonal polynomials for Gaussian quadrature.

Polynomial Name Symbol Domain Weight w(x)

Legendre Pn(x) [−1, 1] 1
Chebyshev (1st kind) Tn(x) [−1, 1] (1− x2)−1/2

Laguerre Ln(x) [0,∞) e−x

Hermite Hn(x) (−∞,∞) e−x
2

Proof: The proof is provided by the preceding text in this section, see also [17, 24]. �
Theorem 6.2. Let f ∈ C2n+2

[a,b] and In(f) be the Gaussian quadrature rule given in Theorem 6.1.
Then the residual is

Rn(f) ≡
∫ b

a
w(x)f(x)dx− In(f) =

f (2n+2)(s)

(2n+ 2)!

∫ b

a
`2(x)w(x)dx (84)

for some s ∈ [a, b] and `(x) is the node polynomial constructed from the points of Gaussian
quadrature, i.e., the roots of the n+ 1 degree orthogonal polynomial.

Proof: For the proof of this theorem we refer the reader to Ref. [24]. �

Gaussian quadrature is based on the exact weighted integration of polynomials, so if the
function in the integrand is well approximated by the orthogonal polynomials used to construct
the quadrature method, it should make a reliable approximation to the exact integral. We
have presented Gaussian quadrature in terms of an arbitrary orthogonal polynomial, but quite
often when Gaussian quadrature is discussed the use of Legendre polynomials is implied. As
we are striving to be slightly more general we will refer to this specific form of Gaussian
quadrature as Gauss-Legendre quadrature. It is a particularly useful method and the most
common because Legendre polynomials are orthogonal with respect to the simplest possible
weight function, namely w(x) = 1. Legendre polynomials are defined on interval [−1, 1] but
the Gauss-Legendre method can easily be extended to work on any finite interval [a, b] or even
a semi-infinite or infinite interval through the use of a domain map.

A drawback of using this particular set of orthogonal polynomials is that their roots are only
known analytically for the first few polynomials and then the roots for the higher degree Le-
gendre polynomials must be found numerically. The need to calculate the roots and weights
numerically is also present for other classical orthogonal polynomials that are commonly used,
like the Laguerre and Hermite polynomials. However, in the special case of Chebyshev poly-
nomials formulas for both the roots and weights are known analytically. By choosing the
orthogonal polynomial used to construct a Gaussian quadrature method carefully, one can
hide some of the nastiness (or non-polynomial behaviour) in the weight function which defines
the polynomial. For a summary of the domains and weight functions for the most com-
mon polynomials used to construct Gaussian quadrature methods see Table 22. Appendix B
contains a summary of the properties of the four previously mentioned classical orthogonal
polynomials.
Proposition 6.1. (Positive Weights) The weights of Gaussian quadrature wj, j = 0, 1, . . . , n
are all positive.

2The Legendre and Chebyshev polynomials are special cases of the more general Jacobi polynomials, Pα,βn (x)
which are defined by the weight function w(x) = (1− x)α(1 + x)β where α, β > −1 [18].

20
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Proof: Consider the polynomial p(x) = `2j (x) ∈ P2n, where `j(x) is the jth Lagrange poly-
nomial as given in Eq. 51. Since the weight function w(x) is positive on [a, b] and the n + 1
point Gaussian quadrature method is exact for all polynomials in P2n+1 then

0 <

∫ b

a
`2j (x)w(x)dx =

n∑
k=0

`2j (xk)wk =

n∑
k=0

(δjk)
2wk = wk . (85)

�
Proposition 6.2. (Gaussian Weights) The weights of an n + 1 point Gaussian quadrature
method, as defined in Theorem 6.1, i.e., constructed from the set of orthogonal polynomials
{φj}nj=0, can be expressed as

wj =
kn+1

kn

‖φn‖2w
φn(xj)φ′n+1(xj)

, (86)

where kj is the leading coefficient in the orthogonal polynomial φj(x).

Proof: The xj are the roots of the orthogonal polynomial φn+1, thus the Christoffel-Darboux
formula with y = xj simplifies to

φn+1(x)φn(xj)

x− xj
=
kn+1

kn

n∑
i=0

‖φn‖2w
‖φi‖2w

φi(x)φi(xj) . (87)

Now perform the weighted integral over [a, b]

φn(xj)

∫ b

a

φn+1(x)

x− xj
w(x)dx =

kn+1

kn

∫ b

a
dxw(x)

n∑
i=0

‖φn‖2w
‖φi‖2w

φi(x)φi(xj)

=
kn+1

kn
‖φn‖2w

n∑
i=0

1

‖φi‖2w

∫ b

a
dxw(x)φi(x)φi(xj)

=
kn+1

kn
‖φn‖2w

n∑
i=0

1

‖φi‖2w
(φi(x), φi(xj))

=
kn+1

kn
‖φn‖2w

(φ0(x), φ0(xj))

‖φ0‖2w

=
kn+1

kn
‖φn‖2w . (88)

Since xj are the zeros of φn+1, the node polynomial `(x) constructed from this grid is simply
related to φn+1 by

`(x) =
φn+1(x)

kn+1
, (89)

where kn+1 is the leading coefficient of φn+1. Thus, we have

`j(x) =
`(x)

`′(xj)(x− xj)
=

φn+1(x)

φ′n+1(xj)(x− xj)
. (90)

Rearranging to obtain
φn+1(x) = φ′n+1(xj)(x− xj)`j(x) (91)

UNCLASSIFIED
21

DST-Group–TR–3513
UNCLASSIFIED

and substituting this result into the left hand side of Eq. 88 we find

φn(xj)

∫ b

a

φn+1(x)

x− xj
w(x)dx = φn(xj)

∫ b

a

φ′n+1(xj)(x− xj)`j(x)

x− xj
w(x)dx

= φn(xj)φ
′
n+1(xj)

∫ b

a
w(x)`j(x)dx

= φn(xj)φ
′
n+1(xj)wj . (92)

Putting Eq. 88 and 92 together we have

φn(xj)φ
′
n+1(xj)wj =

kn+1

kn
‖φn‖2w (93)

and therefore upon rearrangement we obtain

wj =
kn+1

kn

‖φn‖2w
φn(xj)φ′n+1(xj)

. (94)

There exists another way to prove this result. The prove relies on the orthogonality with
lower degree polynomials and l’Hospital’s rule, see Wikipedia page on Gaussian quadrature.

�

6.1.1 Golub-Welsch algorithm

In the previous section we gave two formulas for the weights of Gaussian quadrature. However,
there is a better way to calculate these weights which also provides the nodes. It relies on using
the three-term recurrence relation that all orthogonal polynomials possess and reformulating
the problem of finding the weights and nodes as an eigenvalue problem. This method can
be used if the coefficients in the three-term recurrence relation are know. For the classical
orthogonal polynomials much is known including this relation. The method is known as
the Golub-Welsch algorithm and it is suitable when n is not too big. This is for reasons of
computational efficiency and accuracy. When n is large other approaches should be considered
instead, see later discussions in the examples of this section. We will not discuss these other
approaches. In this report, we will not use this algorithm in later sections. However, it is
included here because its use, or an extension of it, will allow the use of other orthogonal
polynomials such as Legendre, Laguerre or Hermite which do not have simple closed form
expressions for their Gaussian quadrature nodes and weights.

Given the first two polynomials and a three-term recurrence relation , i.e.,

φ−1(x) ≡ 0 (95)
φ0(x) ≡ 1 (96)

φj+1(x) = (ajx+ bj)φj(x)− cjφj−1(x) , j = 0, 1, . . . (97)

with aj > 0, cj > 0 a set of orthogonal polynomials is generated. If we re-write the three-term
recurrence relation with xφj−1(x) on the left hand side we have

xφj(x) =
cj
aj
φj−1(x)− bj

aj
φj(x) +

1

aj
φj+1(x) . (98)

22
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

We immediately see that we have a system of n+ 1 equations

xφ0(x) =
c1
a1
φ−1(x)− b1

a1
φ0(x) +

1

a1
φ1(x) = − b1

a1
φ0(x) +

1

a1
φ1(x)

xφ1(x) =
c2
a2
φ0(x)− b2

a2
φ1(x) +

1

a2
φ2(x)

xφ2(x) =
c3
a3
φ1(x)− b3

a3
φ2(x) +

1

a3
φ3(x)

...

...

xφn−1(x) =
cn
an
φn−2(x)− bn

an
φn−1(x) +

1

an
φn(x)

xφn(x) =
cn+1

an+1
φn−1(x)− bn+1

an+1
φn(x) +

1

an+1
φn+1(x)

(99)

for j = 0, . . . , n. This system of equations can be written in terms of matrices and vectors
as

x



φ0(x)
φ1(x)

...

...

...
φn(x)


=



−b1/a1 1/a1
c2/a2 −b2/a2 1/a2 ©

. . .
. . .

. . .
. . .

. . .
. . .

© 1/an
cn+1/an+1 −bn+1/an+1





φ0(x)
φ1(x)

...

...

...
φn(x)


+



0
0
...
...
0

φn+1(x)/an+1


(100)

or in more succinct matrix form as

xφ(x) = Tφ(x) + (1/an+1)φn+1(x)en+1 . (101)

In Eq. 101 T is the tridiagonal matrix in Eq. 100, φ is the vector (φ0(x), φ1(x), . . . φn(x))>

and en+1 is the unit vector (0, 0, . . . , 1)>. From Eq. 101 we see that φn+1(x) = 0 if and only
if

Tφ(x) = xφ(x) , (102)

where x is the eigenvalue of the tridiagonal matrix T .

Roots of orthogonal polynomials are very important in pseudo-spectral methods as they are
used to define collocation grids. If we are only interested in the roots of an orthogonal poly-
nomial then we can stop here. However, we are currently interested in Gaussian quadrature
and therefore we need to also determine the weights. To find these weights it is convenient
reformulate the three-term recurrence relation in terms of orthonormal polynomials. This can
be accomplished either by dividing Eq. 97 by the norm of φj or equivalently by performing a
diagonal similarity transformation. The resulting similar matrix J is symmetric whereas T , in
general, is not. The symmetrised matrix J (commonly called a Jacobi matrix) corresponding

UNCLASSIFIED
23

DST-Group–TR–3513
UNCLASSIFIED

to T is given by

J = DTD−1 =



α0 β1
β1 α1 β2 ©

.
.

© βn−1
βn−1 an


(103)

where

αj = − bj
aj
, βj =

(
cj

aj−1aj

)1/2

. (104)

Moreover, each of the weights can be obtained from the first component of the eigenvectors of
the Jacobi matrix.

We will now confirm this well known result by first finding the corresponding three-term re-
currence relation for the normalised polynomials and hence the analogous eigenvalue problem.
We divide the original three-term recurrence relation as given in Eq. 98 by ‖φj‖w,

xψj(x) ≡ xφj(x)

‖φj‖w

=
1

‖φj‖w

(
cj
aj
φj−1(x)− bj

aj
φj(x) +

1

aj
φj+1(x)

)
=

1

‖φj‖w

(
cj
aj
‖φj−1‖w

φj−1(x)

‖φj−1‖w
− bj
aj
‖φj‖w

φj(x)

‖φj‖w
+

1

aj
‖φj+1‖w

φj+1(x)

‖φj+1‖w

)
=

cj
aj

‖φj−1‖w
‖φj‖w

ψj−1(x)− bj
aj
ψj(x) +

1

aj

‖φj+1‖w
‖φj‖w

ψj+1(x) . (105)

Now we use Eq. 27 and 29 and simplify

xψj(x) =
kj−1kj+1‖φj‖2wkj
k2j ‖φj−1‖2wkj+1

‖φj−1‖w
‖φj‖w

ψj−1(x)− bj
aj
ψj(x) +

kj
kj+1

‖φj+1‖w
‖φj‖w

ψj+1(x)

=
kj−1
kj

‖φj‖w
‖φj−1‖w

ψj−1(x)− bj
aj
ψj(x) +

kj
kj+1

‖φj+1‖w
‖φj‖w

ψj+1(x)

≡ βjψj−1(x) + αjψj(x) + βj+1ψj+1(x) , (106)

where we have defined

αj = − bj
aj

(j ≥ 0) and βj =
kj−1
kj

‖φj‖w
‖φj−1‖w

(j ≥ 1) . (107)

It is easily confirmed that βj is as given in Eq. 104 using Eq. 27 and Eq. 29, i.e.,

√
cj

ajaj−1
=

√√√√√ kj−1kj+1

k2j

‖φj‖2w
‖φj−1‖2w

kj
kj−1

kj+1

kj

=

√
k2j−1
k2j

‖φj‖2w
‖φj−1‖2w

=
kj−1
kj

‖φj‖w
‖φj−1‖w

= βj . (108)

24
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

The new three-term recurrence relation for the orthonormal polynomials ψj , j = 0, 1, . . . , n
gives rise to a new system of linear equations,

xψ0(x) = α0ψ0(x) + β1ψ1

xψ1(x) = β1ψ0(x) + α1ψ1(x) + β2ψ2(x)

... =
...

xψn(x) = βnψn−1(x) + αnψn(x) + βn+1ψn+1(x) (109)

and the new matrix equation is

x



ψ0(x)
ψ1(x)

...

...

...
ψn−1(x)
ψn(x)


=



α0 β1
β1 α1 β2 ©

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
© βn−1 αn−1 βn

βn αn





ψ0(x)
ψ1(x)

...

...

...
ψn−1(x)
ψn(x)


+



0
0
...
...
...
0

βn+1ψn+1(x)


. (110)

This is a tridiagonal symmetric matrix whereas T , in general, is only tridiagonal. Thus, for
x a root of ψn+1 and hence also a root of φn+1, we have the matrix equation

xψ(x) = Jψ(x) , (111)

where the ψ(x) = (ψ0(x), ψ1(x), . . . , ψn(x))> =
(
φ0(x)
‖φ0‖w ,

φ1(x)
‖φ1‖w , . . . ,

φn(x)
‖φn‖w

)>
.

It is straightforward to see that J is related to T by a diagonal similarity transformation. The
vector φ which contains the unnormalised polynomials as its elements can be transformed to
ψ by multiplying by the diagonal matrix,

D = diag
(

1

‖φ0‖w
,

1

‖φ1‖w
, . . . ,

1

‖φn‖w

)
(112)

containing the reciprocal of the norms of the polynomials φj . Its inverse is simply the diagonal
matrix which contains each of the norms along the main diagonal. Therefore applying D to
the unnormalised eigenvalue equation, Eq. 102,

xψ ≡ xDφ = DTφ = DTD−1Dφ = DTD−1ψ = Jψ , (113)

we see that they are indeed related by a diagonal similarity transformation with the diagonal
matrix given by Eq. 112.

When solving for the eigensystem of the matrix J numerically using Matlab’s function eig(),
the function returns unit eigenvectors χ(xj) corresponding to the eigenvalue xj normalised as
χ>(xj)χ(xj) = 1.

If we invert Eq. 86 for the weights of Gaussian quadrature,

1

wj
=

kn
kn+1

φn(xj)φ
′
n+1(xj)

‖φn‖2w
(114)

and use the Christoffel-Darboux formula evaluated at x = y = xj , and φn+1(xj) ≡ 0 we
see

UNCLASSIFIED
25

DST-Group–TR–3513
UNCLASSIFIED

1

wj
=

kn
kn+1

1

‖φn‖2w
kn+1

kn

n∑
i=0

‖φn‖2w
‖φi‖2w

φ2i (xj) =
n∑
i=0

φ2i (xj)

‖φi‖2w
= ψ(xj)

>ψ(xj) . (115)

This leads us to
1 = wjψ(xj)

>ψ(xj) (116)

and since ψ(xj) is also an eigenvector of J , corresponding to the eigenvalue xj , it only differs
from χ(xj) by a constant, clearly

χ(xj) =
√
wjψ(xj) . (117)

Considering just the first component of each eigenvector in Eq. 117 one obtains a simple
expression for the Gaussian weights,

wj =

(
(χ(xj))0
(ψ(xj))0

)2

=

(χ(xj))0
φ0(x)
‖φ0‖w

2

=
(χ(xj))

2
0

φ20(x)
‖φ0‖2w

=
(χ(xj))

2
0

k20
(φ0, φ0)

=
(χ(xj))

2
0

k20

∫ b

a
φ20(x)w(x)dx

=
(χ(xj))

2
0

k20
k20

∫ b

a
w(x)dx

= (χ(xj))
2
0

∫ b

a
w(x)dx

≡ (χ(xj))
2
0 × µ0 , (118)

where in the last line we have defined the constant µ0 as the zeroth moment, i.e.,

µ0 ≡
∫ b

a
w(x)dx . (119)

This constant for the four classical polynomials already mentioned are given in Table 3 along
with the tridiagonal terms appearing in the Jacobi matrix.

6.1.2 A few simple examples

Example 6.1. (Gauss-Legendre Quadrature) As an example application of Gauss-Legendre
quadrature we evaluate the analytically known integral∫ 1

−1
dx

x2

5 + x2
= 2− 2

√
5 arctan

(
1√
5

)
. (120)

26
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Figure 3: Gauss-Legendre quadrature weights at nodes xj. These plots are produced by using
the MATLAB R© script Ex_Script_2_Numerical_Quadrature.m.

Figure 4: Gauss-Legendre quadrature example error. This plot is produced by using the
MATLAB R© script Ex_Script_2_Numerical_Quadrature.m.

UNCLASSIFIED
27

DST-Group–TR–3513
UNCLASSIFIED

Table 3: Summary of the tridiagonal terms in the Jacobi matrix and the zeroth moment for
the four most used orthogonal polynomials. The Chebyshev polynomials are of the
1st kind and their nodes and weights can also be found using the analytic formulas
provided in Table 4.

Quadrature Name αj βj µ0

Gausss-Legendre αj = 0, j = 0, 1, . . . , n βj = j√
2j2−1

, j = 1, 2, . . . , n 2

Gauss-Chebyshev αj = 0, j = 0, 1, . . . , n β1 = 1√
2
, βj = 1

2 , j = 2, 3, . . . n π

Gauss-Laguerre αj = 2j + 1, j = 0, 1, . . . n βj = j, j = 1, 2, . . . , n 1

Gauss-Hermite αj = 0, j = 0, 1, . . . , n βj =
√

j
2 , j = 1, 2, . . . , n

√
π

The weights and nodes of Gauss-Legendre quadrature are found for several values of n and
plotted in Fig. 3. We also evaluate the absolute error for the integral in Eq. 120 which is shown
in Fig. 4. It is clear that Gauss-Legendre performs very well for this integral.

For large n, better algorithms are available such as Glaser et al. [31], Hale and Townsend [32]
and [33], the latter replacing the two former methods in the more recent version of Chebfun’s
legpts() function [27].
Example 6.2. (Gauss-Chebyshev Quadrature) We apply Gauss-Chebyshev quadrature to two
analytically known integrals. The first is∫ 1

−1

dx√
1− x2

x2

5 + x2
= π

(
1− 1√

5

)
, (121)

which contains the Chebyshev weight function in the integrand and the second is given by
Eq. 120 which does not contain the Chebyshev weight function. The weights and nodes of
Gauss-Chebyshev quadrature are found for several values of n and plotted in Fig. 5. They
can alternatively be found by the their known analytic expressions as given in Table 4. We
also evaluate the absolute error for the two integrals in Eq. 121 and 120 which is shown in
Fig. 6. It is clear that Gauss-Chebyshev performs very well for the integral which contains the
Chebyshev weight, but nowhere near as well for the integrand which does not contain it. We
will return to this when we discusss Clenshaw-Curtis quadrature [34, 35] in Section 6.3.
Example 6.3. (Gauss-Laguerre Quadrature) The obvious choice for an example of Gauss-
Laguerre quadrature is the gamma function which interpolates n!,

Γ(α) =

∫ ∞
0

tα−1e−tdt . (122)

Choosing α = 13, the exact answer is Γ(13) = (13 − 1)! = 12! = 479 001 600. We compute
the weights and nodes for several values of n and plot them in Fig. 7. We also evaluate the
error for this integral which is shown in Fig. 8. It is clear that Gauss-Laguerre performs very
well for this integral which contains the Laguerre weight. However, the natural domain of this
quadrature method is the semi-infinite interval, so the nodes become very widely spaced and
the weights become correspondingly small very quickly. This eigenvalue method of finding the
nodes and weights is not ideal when n is large. To avoid inaccurate values other methods could
be used, such methods are provided by Glaser et al [31] and Vanlessen [36] and implemented
in Chebfun’s lagpts() function [27].

28
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Figure 5: Gauss-Chebyshev quadrature weights at nodes xj. These plots are produced by using
the MATLAB R© script Ex_Script_2_Numerical_Quadrature.m.

Figure 6: Gauss-Chebyshev quadrature example error. The blue curve corresponds to Eq. 121
which has the integrand that includes the Chebyshev weight and the red curve to
Eq. 120 which does not. This plot is produced by using the MATLAB R© script
Ex_Script_2_Numerical_Quadrature.m.

UNCLASSIFIED
29

DST-Group–TR–3513
UNCLASSIFIED

Figure 7: Gauss-Laguerre quadrature weights at nodes xj. These plots are produced by using
the MATLAB R© script Ex_Script_2_Numerical_Quadrature.m.

Figure 8: Gauss-Laguerre quadrature example error. This plot is produced by using the
MATLAB R© script Ex_Script_2_Numerical_Quadrature.m.

30
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Figure 9: Gauss-Hermite quadrature weights at nodes xj. These plots are produced by using
the MATLAB R© script Ex_Script_2_Numerical_Quadrature.m.

Example 6.4. (Gauss-Hermite Quadrature) As an example application of Gauss-Hermite
quadrature we evaluate the analytically know integral∫ ∞

−∞
dx e−x

2 1

1 + x2
= eπErfc(1) . (123)

The weights and nodes of Gauss-Hermite quadrature are found for several values of n and
plotted in Fig. 9. We also evaluate the error for the integral in Eq. 123 which is shown in
Fig. 10. Despite the integral being over the infinite interval it is clear that Gauss-Hermite
quadrature performs reasonably well for this integral. Moreover, the weight function dies off
fast as a function of x, even faster than the Laguerre weight function, so the nodes are not
as far apart as for Gauss-Laguerre quadrature. The fast methods of Glaser et al. [31] and
Townsend et al. [37] are implemented in Chebfun’s [27] hermpts() function. These methods
would be more appropriate than the Golub-Welsch algorithm for large N .

6.1.3 Gauss-Radau and Gauss-Lobatto quadrature

For our application of solving a differential equation using pseudo-spectral methods we will be
using the nodes of a form of Gaussian quadrature as our collocation grid. This will be discussed
further in Section 8. As we have presented in the previous sections, the nodes of Gaussian
quadrature all lie in the interior of the interval [a, b]. Extending Gaussian quadrature by
preassigning some of the nodes, particularly including the boundary points, is a very important
consideration. This is especially so for some applications such as boundary value problems,
where one will want to implement boundary conditions. The two most common examples

UNCLASSIFIED
31

DST-Group–TR–3513
UNCLASSIFIED

Figure 10: Gauss-Hermite quadrature example error. This plot is produced by using the
MATLAB R© script Ex_Script_2_Numerical_Quadrature.m.

of this kind of extension are known as Gauss-Radau and Gauss-Lobatto quadrature, where
one or both of the boundary points are included as preassigned nodes, respectively. Once the
preassigned nodes are chosen, the remaining nodes and quadrature weights are then adjusted
to maximise the degree of exactness of the quadrature rule. Obviously, for each preassigned
node the largest degree polynomial that can be integrated exactly is reduced by one. Therefore,
if all n + 1 points of an n + 1 point quadrature rule are preassigned then the largest degree
polynomial that can be exactly integrated is 2n+ 1− (n+ 1) = n. This is something we have
already shown in Eqs. 69–71.

As we have already seen, the nodes of an n + 1 point Gaussian quadrature rule are zeros
of the n + 1 degree polynomial φn+1(x) of a set of polynomials defined to be orthogonal on
[a, b] with respect to the weight function w(x). The Gauss-Radau nodes are one (and only
one) of the boundary points and what turns out to be the zeros of an associated orthogonal
polynomial,

ϕn(x) =
φn+1(x) + αnφn(x)

x− a
, (124)

where the constant αn is chosen such that numerator of ϕn evaluates to zero for a the left
boundary point, i.e., φn+1(a) + αnφn(a) = 0 . This polynomial defines a new sequence of
polynomials which are orthogonal with respect to a modified weight function w̃(x) = (x −
a)w(x). Alternatively, taking the right boundary point b we have

ϕn(x) =
φn+1(x) + αnφn(x)

b− x
, (125)

where the constant αn is once again chosen such that numerator of ϕn evaluates to zero at the
included boundary point. The modified weight function is then w̃(x) = (b− x)w(x).

32
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Table 4: Summary of quadrature formulas for Chebyshev polynomials [15].

Quadrature Name Nodes xj Weights wj

Gauss-Chebyshev cos
(
(j+ 1

2
)π

n+1

)
wj = π

n+1

Gauss-Radau-Chebyshev cos
(

2πj
2n+1

)
w0 = π

2n+1 , wj = 2π
2n+1 for j ≥ 1

Gauss-Lobatto-Chebyshev cos
(
πj
n

)
w0 = wn = π

2n , wj = π
n for j = 1, . . . , n− 1

The nodes of Gauss-Lobatto quadrature are the boundary points and the zeros of a similarly
defined polynomial

ϕn−1(x) =
φn+1(x) + αnφn(x) + βnφn−1(x)

(x− a)(b− x)
, (126)

where the constants are chosen such that numerator equals zero on the boundary points.
Analogously, this polynomial defines a new sequence of polynomials which are orthogonal
with respect to the modified weight function w̃(x) = (x − a)(b − x)w(x). In the case of
Chebyshev and Legendre polynomials the nodes are boundary points and the extrema of the
polynomial φn(x), i.e., the zeros of (1− x2)φ′n(x).

For the special case of the Chebyshev polynomials not only the nodes and weights of Gaussian
quadrature are known analytically, but closed form expressions for the nodes and weights of
Gauss-Radau and Gauss-Lobatto quadrature are known as well. All three are summarised
in Table 4, see also [12–16]. For other orthogonal polynomials a modified version of the
Golub-Welsch algorithm can be used, see Ref. [38] for details. In what follows we will only
use the Gauss-Lobatto quadrature when solving the Schrödinger equation with a Chebyshev
pseudo-spectral method, using the preassigned nodes to enforce the boundary condition that
the wave function be zero on the boundary. Nonetheless, in applying pseudo-spectral methods
to the Schrödinger equation with a more diverse set of potentials and to alternative evolution
equations, the other quadrature methods may be more relevant.
Proposition 6.3. (Gauss-Lobatto-Chebyshev nodes) The nodes of the n + 1 point Gauss-
Lobatto-Chebyshev quadrature are given by ±1 and the extrema of Tn(x).

Proof: The constants αn and βn are defined such that the numerator in Eq. 126 is zero when
x = a or x = b, i.e.,

φn+1(a) + αnφn(a) + βnφn−1(a) = 0 (127)
φn+1(b) + αnφn(b) + βnφn−1(b) = 0 . (128)

Equations 127 and 128 can be re-written as the matrix equation(
φn(a) φn−1(a)
φn(b) φn−1(b)

)(
αn
βn

)
= −

(
φn+1(a)
φn+1(b)

)
. (129)

The solution of Eq. 129 is easily found to be(
αn
βn

)
=

1

φn(a)φn−1(b)− φn(b)φn−1(a)

(
φn−1(a)φn+1(b)− φn−1(b)φn+1(a)
φn(b)φn+1(a)− φn(a)φn+1(b)

)
. (130)

UNCLASSIFIED
33

DST-Group–TR–3513
UNCLASSIFIED

Substituting the boundary points ±1 and the solution for the constants αn and βn given in
Eq. 130 into Eq. 126 we find

ϕn−1(x) =
Tn+1(x) + Tn−1(−1)Tn+1(1)−Tn−1(1)Tn+1(−1)

Tn(−1)Tn−1(1)−Tn(1)Tn+1(−1) Tn(x) + Tn(1)Tn+1(−1)−Tn(−1)Tn+1(1)
Tn(−1)Tn−1(1)−Tn(1)Tn−1(−1)Tn−1(x)

1− x2
.

(131)
Using the properties of Chebyshev polynomials given in Appendix B.1, specifically

Tn(1) = 1 and Tn(−x) = (−1)nTn(x) , (132)
Eq. 131 simplifies to

ϕn−1(x) =
Tn+1(x)− Tn−1(x)

1− x2
. (133)

At this point we use the recurrence relation for the derivative of Chebyshev polynomials
(Eq. B14) and the three-term recurrence relation (Eq. B13) to simplify and rearrange Eq. 133
to

(1− x2)ϕn−1(x) = Tn+1(x)− Tn(x) = − 2

n
(1− x2)T ′n(x) . (134)

Thus the nodes are the extrema of Tn(x) and the boundary points ±1. �

6.2 Composite trapezoidal rule and periodic functions

The composite rectangular/midpoint and trapezoidal rules are very widely known, so we will
not discuss them in any detail. We will define them and simply point out their importance for
periodic functions and hence for the Fourier pseudo-spectral method. The N point quadrature
rules approximating the integral

I(f) =

∫ b

a
f(x)dx (135)

is given by

In(f) = h
N∑
j=1

f(xj) (136)

for the composite rectangular rule and

In(f) = h

N∑
j=1

′′f(xj) (137)

for the composite trapezoidal rule. The function evaluations are performed on the uniformly
spaced grid xj = jh where

h =
b− a
N

(138)

and the double prime on the summation symbol indicates that the first and last terms of the
series are multiplied by half.

It turns out that despite what may be said in introductory numerical analysis texts, the
composite trapezoidal rule is not necessarily O(N−2). In fact, it can be a very accurate
approximation to an integral. That is, if the integral is over the period of a periodic function.
However, for non-periodic functions it is still O(N−2).

The composite trapezoidal rule as well as the composite rectangular rule are the analogues
of Gaussian quadrature for periodic functions. For N quadrature points the rule will exactly

34
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

(i) A few periodic functions. (ii) A non-periodic function.

Figure 11: A few periodic and non-periodic functions. These plots are produced by using the
MATLAB R© script Ex_Script_3_Trapezoidal_Rule.m.

integrate trigonometric polynomials of degree 2N − 2, i.e., for polynomials composed of a
constant, the first N − 2 cosines and the first N − 2 sines [12, 39]. For this reason we will
be using these rules for normalising wave functions on the Fourier grid. We will also use the
trapezoidal rule in defining Clenshaw-Curtis quadrature in the next section.

We illustrate these statements by applying the composite trapezoidal rule to integrate several
functions. In Figs. 11i we show several periodic functions and in Fig. 12 we show the error in
using the composite trapezoidal rule to integrate these functions over [0, 2π]. In Fig. 11ii we
show a non-periodic function and in Fig. 12 we show the corresponding error of integrating
this function over [−1, 1]. The last three functions in the legend of Fig. 12 are not integrated,
they are merely plotted to illustrate the rates of convergence. As can clearly be seen in Fig. 12,
the typical statement that the trapezoidal rule is O(N−2) is certainly pessimistic.

6.3 Clenshaw-Curtis quadrature

Interpolatory quadrature rules rely on being able to interpolate the integrand accurately and
then integrating the resulting interpolant easily. An idea we want to drive home is that poorly
choosing the distribution of nodes can lead to disastrous consequences and that this choice is
dependent on the nature of the function being interpolated.

Gaussian quadrature as presented in earlier sections is an interpolatory quadrature method.
As we saw in Section 6.1, to optimally integrate polynomials up to degree 2n + 1 for an
n + 1 quadrature rule, not only were the quadrature weights adjusted but also the nodes as
well. The nodes turned out to be zeros of an orthogonal polynomial which in most cases
must be computed numerically. This can be accomplished using the algorithm of Golub and
Welsch which translates the root-finding problem to an eigenvalue problem requiring ∼ O(n2)
operations in principle. The matlab implementation we used is actually O(n3) because it
didn’t exploit the tridiagonal form of the Jacobi matrix [35, 40].

Recall in Section 5.4 where we looked at Runge’s function and we tried to interpolate it on

UNCLASSIFIED
35

DST-Group–TR–3513
UNCLASSIFIED

Figure 12: Error in using the trapezoidal rule for a selection of functions as shown in Figs. 11i
and 11ii. The last three functions in the legend are not integrated, they are merely
plotted to illustrate the rates of convergence. This plot is produced by using the
MATLAB R© script Ex_Script_3_Trapezoidal_Rule.m.

a uniformly spaced grid. This non-periodic function interpolated on this equally spaced grid
led to the infamous Runge phenomenon, i.e., wild oscillations near the boundaries. This
phenomenon is responsible for the divergence of the well known Newton-Cotes quadrature
rule in many situations and only converges when the integrand is analytic in a large region
about interval of integration [35]. By using a more appropriately distributed set of nodes
for this function, such as Chebyshev points of the second kind (i.e., ±1 and the extrema of
Tn(x))

xj = cos

(
jπ

n

)
, (139)

which are not uniformly distributed and clustered more around the boundaries Runge phe-
nomenon can be avoided.

In 1960 Clenshaw and Curtis suggested a numerical integration technique which is not tech-
nically as efficient as Gaussian quadrature, but in many situations it can compete very well
with it. What they did was to expand the integrand in a Chebyshev series and integrate it.
Their method works very well because it is very easy to integrate Chebyshev polynomials and
more importantly if the function f to be integrated is even a little smooth (Lipschitz continu-
ous), then the series will converge meaning that the integral should also be increasingly more
accurate as we increase the degree of the interpolating polynomial [11].

36
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

If we let f be a continuous function on [−1, 1] of bounded variation, then without loss of
generality we consider the approximation of the integral

I(f) =

∫ 1

−1
f(x)dx (140)

by the n+ 1 point quadrature rule

In(f) =

n∑
j=0

wjf(xj) . (141)

Equation 141 can be written in matrix form as w>f where w and f are the n+ 1-dimensional
vectors of weights wj and function evaluations f(xj), respectively.

Clenshaw-Curtis quadrature uses the Chebyshev points of the second kind as the interpolation
grid. As we are not adjusting both the nodes and the weights to exactly integrate polynomials
of the largest degree possible but rather choosing the nodes to be the extrema of the Cheby-
shev polynomials, the maximum degree polynomial that this integration method can integrate
exactly is n rather than 2n + 1, as is the case for Gauss-Legendre quadrature. This can be
shown using the Lagrange form of the interpolant

pn(x) =
n∑
j=0

f(xj)`j(x) (142)

we see that ∫ 1

−1
f(x)dx '

∫ 1

−1
pn(x)dx =

n∑
j=0

f(xj)

∫ 1

−1
`j(x)dx =

n∑
j=0

wjf(xj) , (143)

where we have defined

wj =

∫ 1

−1
`j(x)dx . (144)

The Clenshaw-Curtis quadrature rule is therefore exact only for all polynomials up to and
including degree n, i.e., ∀p ∈ Pn.

It is not convenient to calculate the Clenshaw-Curtis quadrature weights by Eq. 144 and
since we are yet to discuss Chebyshev series, and more generally polynomial transforms, we
now instead rely on the readers knowledge of Fourier analysis to present Clenshaw-Curtis
quadrature because Chebyshev series are just Fourier Cosine series in disguise.

The integrand in Eq. 140, f(x), has not been assumed to be periodic, but we can make it
periodic by parametrising x through the following change of variables

x = cos θ , dx = − sin θdθ (145)

translating Eq. 140 to ∫ 1

−1
f(x)dx =

∫ π

0
f(cos θ) sin θdθ . (146)

The desired integral now has a 2π periodic integrand. However, unfortunately we are not able
to exploit the rapidly converging trapezoidal rule because the integration is not over the entire

UNCLASSIFIED
37

DST-Group–TR–3513
UNCLASSIFIED

domain of periodicity. Be that as it may, f(cos θ) does have a Fourier series representation
and since it is an even function only the cosine terms contribute,

f(cos θ) =
a0
2

+
∞∑
n=1

an cos(nθ) , (147)

where Fourier coefficients are given by

ai =
1

π

∫ 2π

0
f(cos θ) cos(iθ)dθ . (148)

Now we are in luck, because this integral is over a whole period so we can use the trapezoidal
rule. Making the observation that this integrand is an even function allows us to half the
domain of integration by just doubling the integral

ai =
2

π

∫ π

0
f(cos θ) cos(iθ)dθ . (149)

Applying the trapezoidal rule (Eq. 137) to Eq. 149 we obtain the approximate expression

ai '
2

π

(π − 0)

n

n∑
j=0

′′f(cos θj) cos(iθj) =
2

n

n∑
j=0

′′f(cos θj) cos(iθj) (150)

for the Fourier coefficients where the equally spaced points have been denoted by θj = jπ
n ,

j = 0, 1, . . . , n. To obtain a quadrature rule of the form of Eq. 141 this expression for the
Fourier coefficients must be written in terms of function evaluations on the unevenly spaced
Chebyshev points xj = cos θj , such that

ai '
n∑
j=0

′′Mijf(xj) , (151)

where we have defined

Mij ≡


1
n cos

(
ijπ
n

)
, j = 0 or n

2
n cos

(
ijπ
n

)
, j = 1, 2, . . . , n− 1

(152)

Thus the coefficients ai, i = 0, 1, . . . , n can be encapsulated in vector form

a = (a0, a1, . . . , an)> (153)

and calculated by matrix product between the matrix

M =
2

n



1
2 1 1 1

2
1
2 cos πn cos (n−1)π

n
1
2 cosπ

...
. . .

...
...

. . .
...

...
. . .

...
1
2 cos (n−1)π

n cos (n−1)2π
n

1
2 cos(n− 1)π

1
2 cosπ cos(n− 1)π 1

2 cosnπ


(154)

38
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

defined by Eq. 152 and the vector of function evaluations

f = (f(x0), f(x1), . . . , f(xn))> . (155)

Explicitly, that is
a = M f . (156)

Now returning to the our main calculation of I(f), using the Fourier Cosine representation of
f(cos θ) in Eq. 146 we find that

I(f) =

∫ π

0
f(cos θ) sin θdθ

=

∫ π

0

(
a0
2

+
∞∑
n=1

an cos(nθ)

)
sin θdθ

=
a0
2

∫ π

0
sin θdθ +

∞∑
n=0

an

∫ π

0
cos(nθ) sin θdθ

= a0 +

∞∑
n=0

an

(
1 + cosnπ

1− n2

)

= a0 +
∞∑
n=0
n even

2an
1− n2

. (157)

It well known that the Fourier coefficients for a smooth and periodic function decay extremely
fast. Thus, since our integral I(f) has been written in terms of a converging series of these
rapidly decaying Fourier coefficients we can confidently truncate this infinite series to obtain
an approximation to it. Truncating the series at order N defines the Clenshaw-Curtis approx-
imation to I(f). This finite series approximation of I(f) can obviously be written as a vector
inner product, i.e.,

IN (f) = a0 +
N∑
n=0
n even

2an
1− n2

= w̃>a (158)

where the elements of w̃ are

w̃j =


1 , j = 0
2

1−j2 , j 6= 0 and even
0 , j odd

. (159)

Employing the vector equation for the Fourier coefficients we obtained above in Eq. 156 the
Clenshaw-Curtis approximation to the integral can be obtained in terms of function evaluations
as follows

IN (f) = w̃>a = w̃>M f = w>f =

N∑
j=0

wjf(xj) . (160)

The explicit form of the Clenshaw-Curtis quadrature weights for even N are

wj =


1

N2−1 , j = 0 or N

2
N

[
1 +

N/2−1∑
i=1

(
2

1−4i2

)
cos
(
2ijπ
N

)
+ cos jπ

1−N2

]
, j = 1, 2, . . . , N − 1

(161)

UNCLASSIFIED
39

DST-Group–TR–3513
UNCLASSIFIED

Figure 13: Clenshaw-Curtis weights as computed by Chebfun’s chebpts() func-
tion [27]. These plots are produced by using the MATLAB R© script
Ex_Script_2_Numerical_Quadrature.m.

and similarly for odd N they are

wj =


1
N2 , j = 0 or N

2
N

[
1 +

(N−1)/2∑
i=1

(
2

1−4i2

)
cos
(
2ijπ
N

)]
, j = 1, 2, . . . , N − 1

. (162)

One may choose to work with the quadrature weights explicitly or utilise the FFT to calcu-
late the integral explicitly using Eq. 157. Reference [10] provides a simple matlab function
clencurt() to calculate these weights and nodes, whereas Ref. [35] gives the alternative mat-
lab function clenshaw_curtis() taking the path of the FFT to efficiently perform Clenshaw-
Curtis integration of a function using the Fourier coefficients. In our later calculations we will
use the Chebfun [27] function chebpts() to obtain the Clenshaw-Curtis weights. In Fig. 13 we
show the weights plotted at the nodes as calculated by chebpts(). We see that these weights
and nodes are strikingly similar to ones obtained using Gauss-Legendre quadrature.

Even though it cannot technically be exact for polynomials of degree greater than n + 1, in
many situations it is just as good as Gaussian quadrature, see Ref. [35] for thorough comparison
and discussion.

Now that we have presented Clenshaw-Curtis quadrature we would like to make a comparison
to Gaussian quadrature. Examples of Gauss-Chebyshev quadrature were shown in Section 6.1.
We saw that this quadrature rule works best if the integrand is the Chebyshev weight function
multiplied by a polynomial (or function which can be well approximated by a polynomial).

40
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

However, it can still be used to integrate other functions which are not explicitly defined as
such. This was done for the function given in Eq. 120. In this example, this was accomplished
by rewriting the function, i.e., pulling out the weight function, effectively defining a new
function. This new function is the one that is evaluated on the quadrature nodes. In Fig. 6,
we saw that Gauss-Chebyshev quadrature performs significantly better for Eq. 121 than it did
for the example given in Eq. 120. On the other hand, Gauss-Legendre quadrature which has
the simplest weight function, w(x) = 1, worked beautifully for this example as demonstrated
in Fig. 4.

The nodes of Gauss-Chebyshev quadrature are the Chebyshev points of the first kind, i.e, the
zeros of TN+1. The grid used in the Clenshaw-Curtis quadrature rule discussed here uses the
Chebyshev points of the second kind, i.e., ±1 and the extrema of TN . The corresponding
Gaussian quadrature on these nodes is Gauss-Chebyshev-Lobatto quadrature which includes
the boundary points but this quadrature rule works best if the integrand is of the form of the
Chebyshev weight function multiplied by a simple function. Thus, the closest Gaussian quad-
rature rule to compare Clenshaw-Curtis to is actually Gauss-Legendre quadrature, even though
the quadrature nodes in this instance are the zeros of the Legendre polynomial PN+1.

In Fig. 14 we compare the Clenshaw-Curtis, Gauss-Chebyshev and Gauss-Legendre quadrature
rules applied to Eq. 120. Gauss-Legendre is obviously the superior method for this example.
This is to be expected since it was defined as the n+1 point quadrature to optimally integrate
a polynomial of degree 2n+ 1. Whereas, Gauss-Chebyshev was defined to exactly integrate a
polynomial of degree 2n+ 1 multiplied by the Chebyshev weight function and as we discussed
in this section, Clenshaw-Curtis can only exactly integrate a polynomial of degree n. However,
we see in Fig. 14 that this expectation is rather cynical and in this case Clenshaw-Curtis quad-
rature is almost as good Gauss-Legendre. This is something which has been known for quite
some time. Even though Gauss-Legendre can exactly integrate polynomials of degree twice as
large as what can be exactly integrated with Clenshaw-Curtis, their rates of convergence are
approximately the same for non-analytic integrands. We will not discuss this further, instead
we refer the reader to Refs. [11, 35] for a more in depth analysis.

In Section 8 we will use a Chebyshev pseudo-spectral method to solve the Schrödinger equation.
Because we want to implement the Dirichlet boundary conditions that the wave function is
zero on the boundary, we use the Chebyshev points of the second kind as our collocation
grid. The anticipated behaviour of the wave functions, i.e., that they die off as they reach the
boundary, then leads us naturally to use Clenshaw-Curtis quadrature to normalise the wave
functions found.

UNCLASSIFIED
41

DST-Group–TR–3513
UNCLASSIFIED

Figure 14: Comparison of error in calculating the example given in Eq. 120 using Clenshaw-
Curtis (black asterisks), Gauss-Legendre (blue circles) and Gauss-Chebyshev (red
asterisks) quadrature. This plot is produced by using the MATLAB R© script
Ex_Script_2_Numerical_Quadrature.m.

42
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

7 Fourier pseudo-spectral method

A continuous Fourier transform of a function u(x), x ∈ R is defined3 as

û(k) =

∫ ∞
−∞

u(x)e−ikxdx , k ∈ R (163)

and the function can be reconstructed by using the the inverse Fourier transform

u(x) =
1

2π

∫ ∞
−∞

û(k)eikxdk , x ∈ R (164)

where x is the physical variable or coordinate and k is the Fourier variable or wavenum-
ber.

If we restrict ourselves to considering only 2π periodic functions, i.e, u(x) = u(x + 2π), then
we only need to consider the function over the bounded spatial interval (0, 2π]. Moreover, the
assumption of 2π periodicity not only means the spatial domain is bounded, but also that the
Fourier space is discrete. This is because the spectral basis functions eikx are only periodic if
k is an integer. Making the further restriction of considering the function only on an evenly
spaced N -point grid

xj = jh , h =
2π

N
, (165)

where j = 1, 2, . . . , N and N ∈ Z+, then leads to the Fourier space being bounded as well.
This also follows from the spectral basis functions as

ei(k+N)x = eik+iNj
2π
N = eik+ij2π = eikx . (166)

This means we can restrict ourselves to k ∈ [−π
h ,

π
h]. The configuration and Fourier spaces are

now both discrete and bounded. If N is even then π
h = N

2 is an integer and if N is odd then
N−1
2 is an integer. Accordingly, if we then consider a discrete Fourier basis that includes the

first N basis functions eikx, where the wavenumbers are

k =

 −
(N−1)

2 , . . . , N−12 , N odd,

−N
2 + 1, . . . , N2 , N even.

(167)

then the Discrete Fourier transform (DFT) can be defined as

ũk = h
N∑
j=1

u(xj)e
−ikxj , (168)

which is essentially the rectangular rule applied to Eq. 163. Note that we denote these coef-
ficients with an overhead tilde rather than a hat, as they are not the exact coefficients in
Eq. 163. They are an approximation to them. The Inverse Discrete Fourier transform (IDFT)

3We use the convention for the Fourier transform pair as used in Ref. [10]. Please note that this is different
from the convention used in Refs. [12] and [15].

UNCLASSIFIED
43

DST-Group–TR–3513
UNCLASSIFIED

(i) The function u(x) = 2 cos x
2 and its

approximation on the grid.
(ii) The approximation of derivative of the

function u(x) = 2 cos x
2 on the grid.

Figure 15: Approximation of the function u(x) = 2 cos x2 on the grid as described
in the main text. These plots are produced using the MATLAB R© script
Ex_Script_4_DFT_Issue.m.

can then be defined as

u(xj) =



1
2π

N
2∑

k=−N
2
+1

ũke
ikxj , N even

1
2π

(N−1)
2∑

k=− (N−1)
2

ũke
ikxj , N odd

(169)

where j = 1, 2, . . . , N .

Note that there is a problem when N is even. In the summation over k the limits are not
symmetric, which means that ei

N
2
x is included but e−i

N
2
x is not. If we try to approximate the

function
2 cos

(
N

2
x

)
= ei

N
2
x + e−i

N
2
x (170)

it will be incorrectly approximated as
ei
N
2
x . (171)

However, there is no such issue if N is odd as the range of k is symmetric. When our example
is evaluated on the grid xj , j = 1, . . . N it is the sawtooth wave shown in Fig. 15i. Its derivative
on this grid is zero

d

dx

(
2 cos

(
N

2
x

))∣∣∣∣
x=xj

= N sin

(
N

2
xj

)
= N sin jπ = 0 . (172)

However, its derivative will only be approximated by

i
N

2
ei
N
2
x (173)

44
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

instead of zero on the grid points. This situation is illustrated in Fig. 15i and Fig. 15ii. As
explained in Ch. 3 of Ref. [10], this problem can be fixed by defining ũ−N

2
= ũN

2
and replacing

the above definition for even N by

u(xj) =
1

2π

N
2∑′′

k=−N
2

ũke
ikxj , j = 1, 2, . . . , N (174)

where the double prime once again indicates that the first and last terms are halved.

Given a grid xj where j = 1, 2, . . . , N and a set of function evaluations u(xj) on this grid, we
can approximate the function’s derivative on this grid by interpolating the function globally,
then evaluating the derivative of the interpolant on the grid. The first thing we need to do is
construct an interpolant. This can be done in either configuration space or Fourier space. We
are free to work in either space, but at times it can be simpler to work in one space rather
than the other. Nonetheless, they are related to each other by matrix transformations and
can be transitioned between efficiently by using the Fast Fourier Transform (FFT) and its
inverse.

The above issue concerning the definition of the IDFT does not mean that Eq. 169 cannot
be used to define the inverse. We use Eq. 174 for the purpose of deriving a band-limited
interpolant in configuration space of the form

INu(x) =
N∑
j=1

Cj(x)u(xj) (175)

where x ∈ R and the Cj(x) are the analogues of the Lagrange basis polynomials `j(x) referred
to hereafter as the cardinal functions or collectively as the cardinal basis.

Alternatively, if the coefficients ũk are known through Eq. 168, then using the IDFT we can
define an interpolant in Fourier space as

INu(x) =



1
2π

N
2∑′′

k=−N
2

ũke
ikx , N even

1
2π

(N−1)
2∑

k=− (N−1)
2

ũke
ikx , N odd

(176)

where x ∈ R. The derivative u(x) is then approximated as the derivative of interpolant of
u(x) on the grid in either space. We have chosen to work configuration space for this report.
The band-limited interpolant in configuration space is derived in Theorem 7.1 below. The
derivative on the grid is then approximated as

u′(xi) ' (INu(xi))
′ =

N∑
j=1

u(xi)C
′
j(x)|x=xi . (177)

Obviously, this can be formulated in terms of matrices. The first derivative of the function
can then be accomplished using a differentiation matrix defined as

(D
(1)
N)ij = C ′j(x)|x=xi . (178)

UNCLASSIFIED
45

DST-Group–TR–3513
UNCLASSIFIED

Figure 16: The error in the spectral derivative of four functions with varying levels of
smoothness plotted as a function of N . These plots are produced using the
MATLAB R© script Ex_Script_5_Fourier_Periodic_Diff.m.

The matrix multiplication of the differentiation matrix with a vector of function evaluations
will then return a vector containing the spectral approximation of the functions derivative
on the grid. Differentiation matrices for performing higher derivatives on the grid can be
similarly defined. The first and second order differentiation matrices are given in Theorem 7.2
below.

The extension to more general linear differential operators is straightforward. Consider the
following eigenvalue problem

Lun = λnu . (179)

The matrix representation of the linear differential operator L is simply

(LN)ij = (LCj(x))|x=xi , i, j = 1, 2, . . . , N . (180)

The eigenvalue problem can then be reduced to the following matrix eigenvalue problem

LNu = λnu , u = (un(x1), un(x2), . . . , un(xN))> , λn ' λn . (181)

Standard linear algebra routines can then be used to solve this linear system, e.g., eig() in
Matlab. Our eigenvalue problem, i.e., the Time Independent Schrödinger Equations (TISE)
can be solved in this way.

Accuracy of spectral differentiation using these differentiation matrices is impressive for smooth
functions, but can be greatly diminished for less regular functions. Every extra continuous
derivative a function possesses, the more accurate the spectral approach to differentiation will

46
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Figure 17: The derivative of the function u(x) = ecos 2x sinx, the derivative the inter-
polant (INu(x))′ and interpolant of the derivative IN (u′(x)). The circles de-
note the collocation points. These plots are produced using the MATLAB R© script
Ex_Script_6_Fourier_Interp.m.

tend to be. In the way of a few examples, in Fig. 16, we consider four functions with varying
levels of smoothness.

It is important to note that the derivative of the interpolant is not equal to the interpolant of
the derivative, i.e.,

(INu(x))′ 6= IN
(
u′(x)

)
, (182)

however as N → ∞ one cannot tell the difference, see Fig. 17 which illustrates this fact for
the function

u(x) = ecos 2x sinx . (183)

For comparison, in Fig. 18, we include a calculation of the maximum error in interpolating the
function, i.e.,

max
x∈(0,2π]

|INu(x)− u(x)| . (184)

Note that we used the chebfun function trigBary() to perform the interpolation which utilises
the second form of the barycentric formula.

To derive the the form of the cardinal basis functions appearing in the band-limited interpolant
for a periodic function we need Proposition 7.1.
Proposition 7.1. The following geometrically increasing series is a sum which can be ex-
pressed in closed form as

M∑
k=−M

rk =
r−M − rM+1

1− r
. (185)

UNCLASSIFIED
47

DST-Group–TR–3513
UNCLASSIFIED

Figure 18: The maximum error of the interpolant of the function u(x) = ecos(2x) sin(x)
as a function of the number of grid points N . This plot is produced using the
MATLAB R© script Ex_Script_7_Fourier_Interp_Error.m.

Proof: The proof is just a straightforward variant of summing the usual geometric series
where k = −M,−M + 1, . . . ,M − 1,M rather than k = 0, 1, 2, . . . ,M . Consider

(1− r)
M∑

k=−M
rk = (1− r)(r−M + r−M+1 + . . .+ rM−1 + rM)

= r−M + r−M+1 + . . .+ rM−1 + rM

−r−M+1 − r−M+2 − . . .− rM − rM+1

= r−M − rM+1 . (186)

If r 6= 1, then

M∑
k=−M

rk =
r−M − rM+1

1− r
. (187)

�
Theorem 7.1. (Band-limited Interpolant) The band-limited interpolant for a 2π periodic func-
tion u(x) is given by

INu(x) =
N∑
j=1

Cj(x)u(xj) , (188)

48
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

where xj = jh, h = 2π
N and the cardinal basis functions are

Cj(x) =


1
N sin N

2 (x− xj) cot 1
2(x− xj) , N even,

1
N sin N

2 (x− xj) csc 1
2(x− xj) , N odd.

. (189)

Proof: First of all we define the periodic delta function and find its band-limited interpolant,
which will be different for even and odd N . The periodic delta function is defined as

δj = δ(xj) =

{
1 , j ≡ 0(modN)
0 , otherwise . (190)

The discrete Fourier transform of the periodic delta function is simply a constant,

δ̃k = h
N∑
j=1

e−ikxjδj = h . (191)

Consider the case of even N first, then band-limited interpolant of the periodic delta function
is

p(x) =
1

2π

N/2∑′′

k=−N/2

eikxδ̃k

=
h

2π

N/2∑′′

k=−N/2

eikx

=
h

2π

1

2

N/2−1∑
k=−N/2

eikx +
1

2

N/2∑
k=−N/2+1

eikx


=

h

2π

1

2

 N/2−1∑
k=−N/2

eikx +

N/2∑
k=−N/2+1

eikx


=

h

2π

1

2

e−ix/2 N/2−1/2∑
k=−N/2+1/2

eikx + eix/2
N/2−1/2∑

k=−N/2+1/2

eikx


=

h

2π

1

2
(e−ix/2 + eix/2)

N/2−1/2∑
k=−N/2+1/2

eikx

=
h

2π
cos

x

2

N/2−1/2∑
k=−N/2+1/2

eikx . (192)

Let M = N
2 −

1
2 and r = eix, then

p(x) =
h

2π
cos

x

2

M∑
k=−M

(eix)k =
h

2π
cos

x

2

M∑
k=−M

rk . (193)

UNCLASSIFIED
49

DST-Group–TR–3513
UNCLASSIFIED

Using Prop. 7.1 we obtain

p(x) =
h

2π
cos
(x

2

) r−M − rM+1

1− r

=
h

2π
cos
(x

2

) e−iMx − ei(M+1)x

1− eix

=
h

2π
cos
(x

2

) e−i(N/2−1/2)x − ei(N/2−1/2+1)x

1− eix

=
h

2π
cos
(x

2

) ei(−N/2+1/2)x − ei(N/2+1/2)x

1− eix

=
h

2π
cos
(x

2

)
eix/2

e−iNx/2 − eiNx/2

1− eix

=
h

2π
cos
(x

2

) e−iNx/2 − eiNx/2
e−ix/2 − eix/2

=
h

2π
cos
(x

2

) sin
(
Nx
2

)
sin
(
x
2

)
=

h

2π
sin

(
Nx

2

)
cot
(x

2

)
=

1

N
sin

(
Nx

2

)
cot
(x

2

)
. (194)

Since a periodic grid function can be expanded in the basis of shifted periodic delta functions
by

u(xj) =

N∑
i=1

u(xi)δj−i , (195)

then for even N the band-limited interpolant to the function u(x) is

INu(x) =
N∑
j=1

Cj(x)u(xj) (196)

where the cardinal function is given by

Cj(x) =
1

N
sin

N

2
(x− xj) cot

1

2
(x− xj) . (197)

For odd N the calculation follows in a similar manner, except the N point interpolant for
the periodic delta function is given by

p(x) =
1

2π

(N−1)/2∑
k=−(N−1)/2

eikxδ̃k . (198)

50
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Following the same procedure as for even N . LetM = N−1
2 and r = eix, then we obtain

p(x) =
h

2π

(N−1)/2∑
k=−(N−1)/2

eikx

=
h

2π

M∑
k=−M

rk

=
h

2π

r−M − rM+1

1− r

=
h

2π

e−iMx − ei(M+1)x

1− eix

=
h

2π

e−i
(N−1)

2
x − ei(

N−1
2

+1)x

1− eix

=
h

2π
eix/2

e−Nx/2 − eiNx/2

1− eix

=
h

2π

e−Nx/2 − eiNx/2

e−ix/2 − eix/2

=
h

2π

sin
(
Nx
2

)
sin
(
x
2

)
=

h

2π
sin

(
Nx

2

)
csc
(x

2

)
=

1

N
sin

(
Nx

2

)
csc
(x

2

)
. (199)

Thus the cardinal function for odd N is given by

Cj(x) =
1

N
sin

N

2
(x− xj) csc

1

2
(x− xj) . (200)

�

The Fourier differentiation matrices are given in a number of works, see for example Refs. [12,
14, 15, 26]. Note however, there is a typo in Eq. 27 of Ref. [26] for the second order differen-
tiation matrix for odd N .
Theorem 7.2. (Fourier Differentiation Matrices) The first and second order differentiation
matrices for even N are

(D
(1)
N)ij =


0 , i = j

1
2(−1)i−j cot (i−j)h

2 , i 6= j

, (201)

and

(D
(2)
N)ij =


− π2

3h2
− 1

6 , i = j

1
2(−1)i−j+1 csc2 (i−j)h

2 , i 6= j

. (202)

Likewise for odd N we have

(D
(1)
N)ij =


0 , i = j

1
2(−1)i−j csc (i−j)h

2 , i 6= j

(203)

UNCLASSIFIED
51

DST-Group–TR–3513
UNCLASSIFIED

and

(D
(2)
N)ij =


− π2

3h2
+ 1

12 , i = j

1
2(−1)i−j+1 csc (i−j)h

2 cot (i−j)h
2 , i 6= j

, (204)

where i, j = 1, . . . , N .

Proof: The first and second order differentiation matrices are defined as

(D
(1)
N)ij = C ′j(xi) and (D

(2)
N)ij = C ′′j (xi) . (205)

In what follows we make repeated use of l’Hospitals rule and of the following:

sin

(
N(xi − xj)

2

)
= sin

(
N(i− j)h

2

)
= sin

(
N(i− j)

2

2π

N

)
= sin(i− j)π
= 0 (206)

and

cos

(
N(xi − xj)

2

)
= cos

(
N(i− j)h

2

)
= cos

(
N(i− j)

2

2π

N

)
= cos(i− j)π
= (−1)i−j , (207)

where i, j ∈ Z.

Even N , first order differentiation matrix:

• For i = j, we begin by calculating the derivative of the cardinal function for even N
given in Eq. 189,

C ′j(x) =
d

dx

(
1

N
sin

N

2
(x− xj) cot

1

2
(x− xj)

)

=
1

2
cot

(
x− xj

2

)
cos

(
N(x− xj)

2

)
−

csc2
(
x−xj
2

)
sin
(
N(x−xj)

2

)
2N

=
csc2

(
x−xj
2

)(
N sin(x− xj) cos

(
N(x−xj)

2

)
− 2 sin

(
N(x−xj)

2

))
4N

.

(208)

Naively evaluating the derivative of the cardinal function at xi will give an indeterminate

52
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

expression. To evaluate it we must use l’Hospital’s rule twice because of csc2(0), i.e.,

C ′j(xi) = lim
x→xi

C ′j(x)

=
1

4N
lim
x→xi

d2

dx2

(
N sin(x− xj) cos

(
N(x−xj)

2

)
− 2 sin

(
N(x−xj)

2

))
d2

dx2

(
sin2

(
x−xj
2

))
=

1

4N
lim
x→xi

1

16

(
2n(1− 2 cos(x− xj)) sin

(
1

2
n(x− xj)

)
−
(
n2 + 4

)
sin(x− xj) cos

(
1

2
n(x− xj)

))
/(

1

2
cos(x− xj)

= 0 . (209)

• For i 6= j, we note that in Eq. 208 the second term in the brackets is zero, so

C ′j(xi) =
1

2
cot

(
xi − xj

2

)
cos

(
N(xi − xj)

2

)
=

1

2
cot

(
(i− j)h

2

)
cos

(
N(i− j)

2

2π

N

)
=

1

2
cot

(
(i− j)h

2

)
cos ((i− j)π)

=
1

2
(−1)i−j cot

(
(i− j)h

2

)
. (210)

For even N , the second order differentiation matrix:

• For i = j, we begin by calculating the second derivative of the cardinal function as given
in Eq. 189

C ′′j (x) = −1

2
cos

N(x− xj)
2

csc2
(x− xj)

2
− N

4
cot

(x− xj)
2

sin
N(x− xj)

2

+
1

2N
cot

(x− xj)
2

csc2
(x− xj)

2
sin

N(x− xj)
2

(211)

=
1

32N
csc3

(x− xj)
2

(
(−8− 8N +N2) sin

(
(x− xj)(1−N)

2

)
−N2 sin

(x− xj)(3−N)

2
+ (8− 8N −N2) sin

(x− xj)(1 +N)

2

+N2 sin
(x− xj)(3 +N)

2

)
. (212)

Because of the csc3(0) we use l’Hospital’s rule three times. Thus, the limit of the third

UNCLASSIFIED
53

DST-Group–TR–3513
UNCLASSIFIED

derivative of the numerator divided by the third derivative of the denominator is

C ′′j (xj) = lim
x→xj

1

32N

(
−
(
N2 − 8N − 8

)(1−N
2

)3

cos

(
(1−N)(x− xj)

2

)
+

(
3−N

2

)3

N2 cos

(
(3−N)(x− xj)

2

)
−
(
N + 1

2

)3 (
−N2 − 8N + 8

)
cos

(
(N + 1)(x− xj)

2

)
−
(
N + 3

2

)3

N2 cos

(
(N + 3)(x− xj)

2

))

/

(
3

4
cos3

(
x− xj

2

)
− 21

8
cos

(
x− xj

2

)
sin2

(
x− xj

2

))

=
1/16(−2−N2)

3/4

= − 1

12
(2 +N2)

= − π2

3h2
− 1

6
. (213)

• For i 6= j, first note that the second and third terms in Eq. 211 are zero, so

C ′′j (xi) = −1

2
cos

N(x− xj)
2

csc2
(x− xj)

2

= −1

2
cos

N(i− j)
2

2π

N
csc2

(i− j)h
2

= −1

2
cos(i− j)π csc2

(i− j)h
2

=
1

2
(−1)i−j+1 csc2

(i− j)h
2

. (214)

For odd N , the first order differentiation matrix:

• For i = j, we begin by calculating the first derivative of the cardinal function given in
Eq. 189

C ′j(x) =
1

2
cos

(
N(x− xj)

2

)
csc

(
x− xj

2

)
− 1

2N

(
cot

(
x− xj

2

)
csc

(
x− xj

2

)
sin

(
N(x− xj)

2

))
(215)

=
1

4N
csc2

(
x− xj

2

)(
(1 +N) sin

(
(1−N)(x− xj)

2

)
+ (−1 +N) sin

(
(1 +N)(x− xj)

2

))
. (216)

Naively taking the limit to x→ xj leads to an indeterminate expression again because of
the csc2(0) out front of Eq. 216, so we must apply l’Hospital’s rule again twice. The limit

54
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

of the ratio of the second derivative of the numerator divided by the second derivative
of the denominator then gives

C ′j(xj) = lim
x→xj

(
1

4N

(
−
(

1

2
− N

2

)2

(1 +N) sin

(
(1−N)(x− xj)

2

)

−
(

1

2
+
N

2

)2

(−1 +N) sin

(
(1 +N)(x− xj)

2

)))

/

(
1

2
cos2

(
x− xj

2

)
− 1

2
sin2

(
x− xj

2

))
= 0 . (217)

• For i 6= j, from Eq. 215 we have that

C ′j(xi) =

1
2 cos

(
N(xi−xj)

2

)
sin
(
xi−xj

2

) − 1

2N

sin
(
N(xi−xj)

2

)
cos
(
xi−xj

2

)
sin2

(
xi−xj

2

)
=

1
2 cos

(
N(i−j)h

2

)
sin
(
(i−j)h

2

) − 1

2N

sin
(
N(i−j)h

2

)
cos
(
(i−j)h

2

)
sin2

(
(i−j)h

2

)
=

1
2 cos

(
N(i−j)

2
2π
N

)
sin
(
(i−j)h

2

) − 1

2N

sin
(
N(i−j)

2
2π
N

)
cos
(
(i−j)h

2

)
sin2

(
(i−j)h

2

)
=

1
2 cos ((i− j)π)

sin
(
(i−j)h

2

) − 1

2N

sin ((i− j)π) cos
(
(i−j)h

2

)
sin2

(
(i−j)h

2

)
=

1
2(−1)(i−j)

sin
(
(i−j)h

2

) − 0

=
1

2
(−1)(i−j) csc

(
(i− j)h

2

)
. (218)

For odd N , the second order differentiation matrix:

• For i = j, we begin by calculating the second derivative of the cardinal function given

UNCLASSIFIED
55

DST-Group–TR–3513
UNCLASSIFIED

in Eq. 189

C ′′j (x) = −1

2
cos

(
N(x− xj)

2

)
cot

(
x− xj

2

)
csc

(
x− xj

2

)
−N

4
csc

(
x− xj

2

)
sin

(
N(x− xj)

2

)

+
sin
(
N(x−xj)

2

)
4N

(
cot2

(
x− xj

2

)
csc

(
x− xj

2

)
+ csc3

(
x− xj

2

))
(219)

=
1

16N
csc3

(
x− xj

2

)(
(6− 2N2) sin

(
N(x− xj)

2

)
+ (−1− 2N −N2) sin

(
(1− N

2
)(x− xj)

)
+ (1− 2N +N2) sin

(
(1 +

N

2
)(x− xj)

))
. (220)

We apply l’Hospital’s rule three times to handle the csc3(0) term we have pulled out
front in Eq. 220. The limit of the third derivative of the numerator divided by the third
derivative of the denominator is then

C ′′j (xj) = lim
x→xj

1

16N

(
−1

8
N3(6− 2N2) cos

(
N(x− xj)

2

)
−(1− N

2
)3(−1− 2N −N2) cos

(
(1− N

2
)(x− xj)

)
−(1 +

N

2
)3(1− 2N +N2) cos

(
(1 +

N

2
)(x− xj)

))
/

(
3

4
cos3

(
x− xj

2

)
− 21

8
cos

(
x− xj

2

)
sin2

(
x− xj

2

))

=
1

16N

(
−1

8
N3(6− 2N2)

−(1− N

2
)3(−1− 2N −N2)

−(1 +
N

2
)3(1− 2N +N2)

)
/

(
3

4

)
=

1
16(1−N2)

3
4

=
1

12
(1−N2)

=
1

12
− π2

3h2
. (221)

56
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

• For i 6= j we have from Eq. 219

C ′′j (xi) = −1

2
cos

(
N(xi − xj)

2

)
cot

(
xi − xj

2

)
csc

(
xi − xj

2

)
−N

4
csc

(
xi − xj

2

)
sin

(
N(xi − xj)

2

)

+
sin
(
N(xi−xj)

2

)
4N

(
cot2

(
xi − xj

2

)
csc

(
xi − xj

2

)
+ csc3

(
xi − xj

2

))
.

(222)

Using Eq. 206 and Eq. 207 we find

C ′′j (xi) =
1

2
(−1)i−j+1 cot

(
xi − xj

2

)
csc

(
xi − xj

2

)
=

1

2
(−1)i−j+1 cot

(
(i− j)h

2

)
csc

(
(i− j)h

2

)
. (223)

�

To conclude this section we merely note the important property that the Fourier differentiation
matrices satisfy [26]

D
(`)
N = (D

(1)
N)` (224)

if N odd or if N even and ` odd, otherwise

D
(`)
N 6= (D

(1)
N)` . (225)

7.1 Time-independent Schrödinger’s equation examples

In this section we look at solving the TISE with two example potentials, the harmonic os-
cillator and the quartic or anharmonic oscillator potential. We do not consider the linear
potential because of the similarity of the resulting equation with Airy’s equation whose solu-
tions are known to be exponentially decaying in one direction and oscillating in the other. The
lack of periodicity of the wave functions will give rise to issues in trying to use the Fourier
method.
Example 7.1. (Harmonic Oscillator)

Our first example is the TISE with the harmonic oscillator potential. The exact solution to
the TISE with this potential is simply a Gaussian multiplied by a Hermite polynomial with
the correct normalisation, see for example Ref. [19] and App. A.1. We will use these exact
solutions to judge the accuracy of our numerical approach. The function HOWaveFunction()
which calculates these wave functions is included in Govdex. This function uses Matlab’s
hermiteH() function to evaluate the Hermite polynomials.

As the solution is well localised, we can simply consider solving the Schrödinger equation in
a large box of size [−L,L] rather than on the infinite interval. If we take L = 8, then the
Gaussian which multiplies the Hermite polynomials in the exact solution is approximately

e−L
2/2 ' 10−14 , (226)

UNCLASSIFIED
57

DST-Group–TR–3513
UNCLASSIFIED

so this should be a large enough interval to begin our analysis.

To be specific, we will be solving the following differential equation(
− d2

dx2
+ x2

)
ψn(x) = λ̃nψn(x) , (227)

where we have set the constants ~ = m = ω = 1 in Eq. A1 and we will impose the periodic
boundary conditions ψn(−L) = ψn(L). The exact eigenvalues are

λ̃n = 2(n+ 1) (228)

and the corresponding wave functions are

ψn(x) =
1√

2nn!
√
π
e−x

2/2Hn(x) . (229)

We will be using a Fourier pseudo-spectral method to solve the problem on the interval [−L,L].
This can be done by use of a simple domain map,

ξ = L
(x− π)

π
, (230)

where x ∈ [0, 2π] and ξ ∈ [−L,L].

The first step is to construct the matrix representation of the differential operator on the
evenly spaced N point grid and then solve for the eigensystem. The Fourier differentiation
matrix on the equispaced grid is given by Thm. 7.2. The potential on this grid is simply given
by the diagonal matrix

diag(ξ21 , . . . , ξ
2
N) . (231)

We find the eigensystem using Matlab’s in built command eig(). The system then must
be ordered according to ascending eigenvalues. Note that when solving for the eigensystem
numerically, wave functions may appear with the opposite sign than expected because ψn and
−ψn are both valid solutions to the Schrödinger equation with the same eigenvalue.

Each eigenvector u returned by eig() is normalised as a vector, that is u · u = 1. These
eigenvectors represent the wave functions on the grid and need to be normalised as a wave
function should be, i.e., ∫ L

−L
|ψn(x)|2dx = 1 . (232)

This requires an integration to determine the normalisation constant. This integral is done
using numerical quadrature, specifically the rectangular rule because we are working on the
equidistant grid.

We now have the eigenvalues and normalised eigenfunctions evaluated on the equidistant grid.
This grid may not be as fine as desired, so we can then interpolate these eigenfunctions on a
finer grid using trigonometric barycentric interpolation. In the example script Ex_Script_11_
Fourier_HO.m, we have used Chebfun’s trigBary() function to perform the interpolation, but
it could of course been done some other way, e.g., by using the cardinal functions.

In Figs. 19i and 19ii we show the error in the first 6 eigenvalues for L = 8 and L = 16. The
eigenvalues appear to become more accurately reproduced as N increases. However, as can

58
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

(i) Error in the first 6 eigenvalues for L = 8,
N = 72.

(ii) Error in the first 6 eigenvalues for L = 16,
N = 174.

Figure 19: The error in the harmonic oscillator eigenvalues using the Fourier pseudo-
spectral method. These plots are produced by modifying the MATLAB R© script
Ex_Script_11_Fourier_HO.m.

(i) Error in all eigenvalues for L = 8, N = 72. (ii) Error in all eigenvalues for L = 16, N = 174.

Figure 20: The error in the harmonic oscillator eigenvalues. These plots are produced by
modifying the MATLAB R© script Ex_Script_11_Fourier_HO.m.

UNCLASSIFIED
59

DST-Group–TR–3513
UNCLASSIFIED

(i) Error in the harmonic oscillator wave
functions for L = 8 and N = 72.

(ii) Error in the harmonic oscillator wave
functions for L = 16 and N = 174.

Figure 21: Error in harmonic oscillator wave functions. These plots are produced by modifying
the MATLAB R© script Ex_Script_11_Fourier_HO.m.

Figure 22: The first four harmonic oscillator wave functions calculated with L = 8 and
N = 72. The case of L = 16 and N = 174 looks essentially indistinguishable.
The circles mark the values at the collocation points, the blue curves are the in-
terpolants calculated using Chebfun’s trigBary() function and the green curves
are the corresponding exact harmonic oscillator wave functions. These plots are
produced by modifying the MATLAB R© script Ex_Script_11_Fourier_HO.m.

60
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

be seen in Fig. 20i and 20ii, the eigenvalues corresponding to more highly excited states, i.e.,
wave functions with more nodes, are less accurately calculated. Also it is clear from these
figures as we increase the box size, L, N must also be increased to achieve the same accuracy
for a given eigenfunction. This is illustrated quite clearly by the first mode, for L = 8 the
error drops to the round-off plateau at N = 30 whereas for L = 16 this does not occur until
N = 60. If we increase L holding N fixed, the N collocation nodes are then distributed in a
larger region. Since the wave functions are localised about the origin, this will inevitably lead
to fewer collocation nodes per wave length, resulting in a decrease in our ability to the resolve
wave functions. To maintain the same accuracy in a larger box, N must also be increased.

In Fig. 22, we show the first four wave functions calculated with L = 8 and N = 72. In this
figure we compare them to the exact solutions. Clearly, they agree well. We do not show the
wave functions for L = 16 and N = 174 as they are essentially indistinguishable. However, we
do calculate the maximum error on the grid {xj}Nj=1 for the eigenfunctions, i.e.,

max
∣∣∣ψn(xj)− ψ(HO)

n (xj)
∣∣∣ , (233)

where the exact wave function ψ(HO)
n (x) is calculated using HOWaveFunction(). The results

of which are shown in Figs. 21i and 21ii. The error increases very sharply as the eigenfunction
number is increased for L = 8, N = 72 with only the first 5 or so eigenfunctions being accur-
ately calculated. However, in Fig. 21ii we see the increase in L and N pays off substantially
with the first ∼ 80 eigenfunctions being calculated to around ∼ 10−10 accuracy.

Obviously, not all the wave functions can be accepted for a given N . In situations when we
do not have an analytic solution with which we can make a comparison. One could of course
make a comparison with successive approximations or look at the size of Fourier coefficients
of a wave function to get a handle on how accurate a particular wave function is. This is
a very important consideration, although, we will not discuss this further for the Fourier
pseudo-spectral method. However, we will take up such an analysis when considering the
Chebyshev pseudo-spectral method which is most likely to be more foreign to readers and
defer the investigation into the behaviour of the Fourier coefficients to later work.
Example 7.2. (Quartic Potential)

Our second example is the quartic or anharmonic potential,

VAHO(x) =
1

2
x2 + εx4 , (234)

where ε is the quartic coupling which could be a considered perturbation parameter.

Unlike the harmonic problem, this problem does not have an exactly known analytical solu-
tion. An attempt to obtain an approximate analytical solution using a naive application of
Rayleigh-Schrödinger perturbation theory one is, in this instance, confronted with a divergent
perturbation series for the eigenvalues of the Hamiltonian. However, all is not lost. Padé
summation can be used to extract something meaningful from this divergent series [23].

To be specific, we will be solving the following differential equation(
− d2

dx2
+ x2 + x4

)
ψn(x) = λ̃nψn(x) , (235)

UNCLASSIFIED
61

DST-Group–TR–3513
UNCLASSIFIED

(i) The harmonic and anharmonic oscillator
potentials on the truncated interval.

(ii) The harmonic and anharmonic oscillator
potentials on the larger interval.

Figure 23: The quartic potential with ε = 0.5 on the [−1, 1] and [−L,L] intervals. These plots
are produced by using the MATLAB R© script Ex_Script_12_Fourier_Quartic.m.

with the constants ~ = m = 1, ε = 1/2 and the periodic boundary conditions ψn(−L) = ψn(L).
The numerical procedure is then the same as for the harmonic oscillator problem.

In Fig. 23i and Fig. 23ii we plot the harmonic (x2) and anharmonic potential (x2 + x4) on
the truncated interval [−1, 1] and the larger interval [−L,L], respectively. As can be seen in
these figures the quartic potential increases very quickly for ε = 1/2. In a dynamical situation
where we might want to consider a system moving approximately harmonically ε should be
chosen to be small, otherwise the quartic term will overwhelm the harmonic term. Because
of the similarity to the harmonic problem and the faster rise of the potential with x, we
would intuitively expect the anharmonic wave functions to be of a similar shape, but more
compressed than, the harmonic wave functions. This is precisely what we see in Fig. 24 where
we have calculated with L = 8 and N = 72.

8 Chebyshev pseudo-spectral method

Much of what was said in the section on Fourier spectral methods carries over to the Chebyshev
pseudo-spectral method and more generally to methods based on other orthogonal polynomials.
In contrast to the Fourier method previously examined, these bases are more appropriately
suited to non-periodic problems.

As we discussed in Section 3 given a function u(x) in a Hilbert space H, its projection onto
a finite dimensional subspace spanned by a finite set of trial functions {φj}Nj=0, is defined
as

PNu(x) =
N∑
j=0

ûjφj(x) , (236)

62
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Figure 24: The first four anharmonic oscillator wave functions calculated with L = 8 and
N = 72 compared with the corresponding exact harmonic oscillator wave functions.
The circles mark the values at the collocation points, the blue curves are the in-
terpolants calculated using Chebfun’s trigBary() function and the green curves
are the corresponding exact harmonic oscillator wave functions. These plots are
produced by modifying the MATLAB R© script Ex_Script_12_Fourier_Quartic.m.

where the exact coefficients in the expansion follow from the Hilbert space inner product,

ûj =
(φj , u)w
(φj , φj)w

=
(φj , u)w
‖φj‖2w

, (237)

which, in general, cannot be exactly determined.

Pseudo-spectral methods approximate these inner products using numerical quadrature. In
the case of periodic functions, the Fourier basis is the natural choice and the corresponding
method of quadrature one should use is the midpoint or trapezoidal rule. However, when
orthogonal polynomials are chosen as the basis, the natural approximation to the integrals is
a form of Gaussian quadrature, i.e., Gauss, Gauss-Radau or Gauss-Lobatto quadrature based
on the chosen set of orthogonal polynomials. That is, we define the discrete inner product and
its associated norm as

(u, v)w ' (u, v)N,w :=
N∑
j=0

u(xj)v(xj)wj , ‖u‖2N,w = (u, u)N,w , (238)

where the N+1 numbers xj are the nodes and the N+1 numbers wj are the weights of Gauss,
Gauss-Radau or Gauss-Lobatto quadrature.

The exact expansion coefficients ûk in Eq. 237 are then approximated using the discrete inner
product as

ûk ' ũk =
1

γ2k

N∑
j=0

u(xj)φk(xj)wj (239)

UNCLASSIFIED
63

DST-Group–TR–3513
UNCLASSIFIED

where

γ2k =

N∑
j=0

φ2k(xj)wj for k = 0, 1, . . . , N . (240)

Note that the norm of the polynomial basis functions φk for k = 0, 1, . . . , N − 1 is exactly
calculated as all three forms of Gaussian quadrature are exact for polynomials up to degree
2N − 1. However, only Gauss-Radau and Gauss quadrature rules are exact for polynomials
of degree 2N and 2N + 1, respectively. Gauss-Lobatto quadrature will only approximate the
norm ‖φN‖2w. That is

γ2N =


‖φN‖2w , G. and G.R. quadrature

(φN , φN)N,w , G.L. quadrature
. (241)

Equation 239 is the counterpart to the discrete Fourier transform and we will refer to it as the
discrete polynomial transform. An inverse discrete transform can then be defined using the
approximate coefficients rather than the exact coefficients as

u(xk) =

N∑
j=0

ũjφj(xk) , k = 0, 1, . . . , N . (242)

This is then the analogue of the inverse discrete Fourier transform which we will refer to as
the inverse discrete polynomial transform.

Equation 239 and Eq. 242 provide us with a discrete transform pair analogous to the DFT and
IDFT used in Section 7 . When working with the set of function evaluations {u(xj)}Nj=0 we
will say we are working in configuration space and when we are working with the coefficients
{ũj}Nj=0 that we are working in coefficient space. Once again we are free to work in either space,
but at times one space may be more convenient than the other. We can always transform back
and forth between these spaces using Eq. 239 and Eq. 242. This can be done using linear
algebra and in the special case of Chebyshev polynomials this can be accomplished efficiently
using the Fourier cosine transform in O(N logN) floating point operations.

We can then use Eq. 242 to define the polynomial interpolant in the spectral basis as

INu(x) =

N∑
j=0

ũjφj(x) (243)

where x ∈ R. In this report we have chosen to work in configuration space, so we would
like the interpolant expressed in terms of function evaluations rather than the coefficients.
Equation 243 is a polynomial and can therefore also be represented in terms of the Lagrange
or Cardinal basis polynomials associated with the nodes {xk}Nk=0 obtained from one of the
variants of Gaussian quadrature. This means the interpolant can be written in the form

INu(x) =

N∑
j=0

u(xj)Cj(x) , (244)

where the Cj(x) are the cardinal basis functions that satisfy Cj(xk) = δjk.

64
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Figure 25: The error in the spectral derivative of four functions with varying levels of
smoothness plotted as a function of N . These plots are produced using the
MATLAB R© script Ex_Script_8_Chebyshev_Diff.m.

From here on we specialise to the basis of Chebyshev polynomials of the first kind, i.e., Tn(x).
As we want to impose Dirichlet boundary conditions when we solve the Schrödinger equation
we will choose to work on the N + 1 point Gauss-Lobatto-Chebyshev grid. This is the grid
consisting of the boundary points ±1 and the extrema of TN (x) as already proved in Proposi-
tion 6.3. The nodes and weights for this form of quadrature are given in Table 4. The cardinal
polynomials with these choices are derived in Theorem 8.1.

Just as we did for the Fourier spectral method we can approximate the derivative of the
function on the grid by differentiating the polynomial interpolant

u′(xi) ' (INu(x))′
∣∣
x=xi

=
N∑
j=0

u(xj)C
′
j(xi) . (245)

Once again, this can be formulated in terms of matrices by defining the first order Chebyshev
differentiation matrix as

(D
(1)
N) = C ′j(xi) , (246)

where the cardinal functions Cj(x) are this time derived in Theorem 8.1. The Chebyshev
differentiation matrices defined by Eq. 246 are derived in Theorem 8.2. It can be shown that
the higher order Chebyshev differentiation matrix can be calculated by matrix multiplica-
tion [12]

(D
(`)
N)ij = (D

(1)
N)` . (247)

As we did for the Fourier method in Section 7, we show in Figs. 25 and 26 examples of the
accuracy possible with the Chebyshev differentiation matrices. The functions in Fig. 25 are

UNCLASSIFIED
65

DST-Group–TR–3513
UNCLASSIFIED

Figure 26: The error in the spectral derivative of several functions with varying levels of
smoothness plotted as a function of N . These plots are produced using the
MATLAB R© script Ex_Script_8_Chebyshev_Diff.m.

the same as the ones in Fig. 16 and on comparison the Chebyshev differentiation matrices do
better than the Fourier ones for the first three functions. In Fig. 26 we show the error in using
the Chebyshev differentiation matrices applied to a selection of non-periodic functions with
varying levels of smoothness.

The derivative of the interpolant is not equal to the interpolant of the derivative. However,
as the number of points in the collocation grid increases, one cannot tell the difference. This
statement was made for the Fourier interpolant but we want to point out that it is still valid
for the Chebyshev interpolant. We illustrate this in Fig. 28 with the non-periodic function
show in Fig. 27. For comparison we also show the interpolation error in Fig. 29.
Theorem 8.1. (Chebyshev Interpolant) The Chebyshev interpolant on the Gauss-Lobatto-
Chebyshev grid, i.e., the extrema plus endpoints grid

INu(x) =
N∑
j=0

Cj(x)u(xj) (248)

where the cardinal functions are given by

Cj(x) =
(−1)j+1(1− x2)T ′N (x)

cjN2(x− xj)
, (249)

where

cj =

{
1 , if j = 1, . . . , N − 1
2 , if j = 0 or N

. (250)

Proof: The cardinal functions for the Chebyshev expansion on the Lobatto grid (extrema
plus boundary points), i.e.,

xj = cos

(
jπ

N

)
, j = 0, 1, . . . , N (251)

66
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

(i) The function f(x) = x2e�xex
2

log(x+2)
(x3+2) . (ii) The derivative of f(x) in Fig. 27i.

Figure 27: An example non-periodic function. These plots are produced using the
MATLAB R© script Ex_Script_9_Chebyshev_Interp.m.

Figure 28: The derivative of the function f(x) shown in Fig. 27, the derivative the in-
terpolant (INf(x))′ and interpolant of the derivative IN (f ′(x)). The circles de-
note the collocation points. These plots are produced using the MATLAB R© script
Ex_Script_9_Chebyshev_Interp.m.

UNCLASSIFIED
67

DST-Group–TR–3513
UNCLASSIFIED

Figure 29: The maximum error of the interpolant of the function f(x) plotted in Fig. 27
shown as a function of N . This figure is produced using the MATLAB R© script
Ex_Script_10_Chebyshev_Interp_Error.mf.

are (see the argument leading to Eq. 89 and Eq. 90 and Proposition 6.3)

Cj(x) =
φN+1(x)

φ′N+1(xj)(x− xj)

=
(1− x2)T ′N (x)[

(1− x2)T ′N (x)
]′
x=xj

(x− xj)
. (252)

Equation 252 can be shown to be equivalent to Eq. 248. The proof relies on the use of the
differential equation that can be used to define the Chebyshev polynomials, Eq. B16.

• For j = 1, . . . , N − 1 we have T ′n(xj) = 0. As a consequence of this and using Eq. B16
we obtain

Cj(x) =
(1− x2)T ′N (x)(

−2xjT ′N (xj) + (1− x2j)T ′′N (xj)
)

(x− xj)

=
(1− x2)T ′N (x)

(1− x2j)T ′′N (xj)(x− xj)

=
(1− x2)T ′N (x)[

xjT ′N (xj)−N2TN (xj)
]

(x− xj)

=
(1− x2)T ′N (x)

(−N2)TN (xj)(x− xj)
. (253)

68
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Using the trigonometric form of the Chebyshev polynomial, i.e.,

TN (xj) = cos

(
N arccos

(
cos

(
jπ

N

)))
= cos

(
N
jπ

N

)
= cos(jπ) = (−1)j , (254)

we obtain

Cj(x) =
(−1)j+1(1− x2)T ′N (x)

N2(x− xj)
. (255)

• For i = 0 or N , i.e, xj = ±1, we have

Cj(x) =
(1− x2)T ′N (x)[

−2xjT ′N (xj) + (1− x2j)T ′′N (xj)
]

(x− xj)

=
(1− x2)T ′N (x)

−2xjT ′N (xj)(x− xj)

=
(1− x2)T ′N (x)

2
(
−(1− x2j)T ′′N (xj)−N2TN (xj)

)
(x− xj)

=
(1− x2)T ′N (x)

(−2)N2TN (xj)(x− xj)

=
(−1)j+1(1− x2)T ′N (x)

2N2(x− xj)
. (256)

Thus Eq. 256 and Eq. 255 give the desired result in Eq. 249. �
Theorem 8.2. (Chebyshev Differentiation Matrix) The first order Chebyshev differentiation
matrix on the Gauss-Chebyshev-Lobatto grid, i.e., the extrema and end points grid, is given by

(D
(1)
N)00 =

2N2 + 1

6
(257)

(D
(1)
N)NN = −(D

(1)
N)00 = −2N2 + 1

6
(258)

(D
(1)
N)jj = − xj

2(1− x2j)
, j = 1, . . . , N − 1 (259)

(D
(1)
N)ij =

ci
cj

(−1)i+j

xi − xj
, i 6= j , i, j = 0, . . . , N (260)

with

ci =

{
2 , i = 0 or N
1 , otherwise (261)

Proof: The Chebyshev differentiation matrix is defined as

(D
(1)
N)ij = C ′j(xi) , (262)

where the cardinal function is given by Eq. 249. We begin by calculating the derivative of the
cardinal function,

C ′j(x) =
d

dx

(
(−1)j+1(1− x2)T ′N (x)

cjN2(x− xj)

)
= (−1)j+1 (x− xj)

[
−2xT ′N (x) + (1− x2)T ′′N (x)

]
− (1− x2)T ′N (x)

cjN2(x− xj)2
. (263)

UNCLASSIFIED
69

DST-Group–TR–3513
UNCLASSIFIED

We can simplify this further by using the differential equation (Eq. B16) that defines the
Chebyshev polynomials,

C ′j(x) = (−1)j+1 (x− xj)
[
−xT ′N (x)−N2TN (x)

]
− (1− x2)T ′N (x)

cjN2(x− xj)2
. (264)

Now we handle each case separately.

• For i 6= j, i 6= 0 or N , but j = 0, 1, . . . , N . For i 6= j 6= 0 and i 6= j 6= N we have
T ′N (xi) = 0 by definition of our grid. Thus we can simplify Eq. 264 to

C ′j(xi) = (−1)j+1 (xi − xj)
[
−xiT ′N (xi)−N2TN (xi)

]
− (1− x2i)T ′N (xi)

cjN2(xi − xj)2

=
(−1)jTN (xi)

cj(xi − xj)

=
(−1)j cos

(
N arccos

(
cos
(
iπ
N

)))
cj(xi − xj)

=
(−1)j cos (iπ)

cj(xi − xj)

=
(−1)i+j

cj(xi − xj)
. (265)

• For i 6= j, i = 0 or N we have xi = ±1 which allows us to simplify Eq. 264 as

C ′j(xi) = (−1)j+1 (xi − xj)
[
−xiT ′N (xi)−N2TN (xi)

]
− (1− x2i)T ′N (xi)

cjN2(xi − xj)2

= (−1)j+1

[
−xiT ′N (xi)−N2TN (xi)

]
cjN2(xi − xj)

. (266)

Using the Cheybshev differential equation (Eq. B16) we get

C ′j(xi) = (−1)j+1

[
−(1− x2i)T ′′N (xi)− 2N2TN (xi)

]
cjN2(xi − xj)

= (−1)j
2TN (xi)

cj(xi − xj)

= (−1)j
2 cos

(
N arccos

(
cos
(
iπ
N

)))
cj(xi − xj)

= (−1)j
2 cos (iπ)

cj(xi − xj)

=
2(−1)i+j

cj(xi − xj)
. (267)

Thus Eq. 265 and Eq. 267 together give Eq. 260.

• For i = j but not 0 or N , if we try to evaluate the limit x → xi we will get an
indeterminate expression. We must use l’Hospital’s rule . Thus if we define

C ′j(x) = (−1)j+1 (x− xj)
[
−xT ′N (x)−N2TN (x)

]
− (1− x2)T ′N (x)

cjN2(x− xj)2
=:

A

Ã
,

(268)

70
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

then the quantity of interest is

A′

Ã′
= (−1)j+1

(
xT ′N (x)−N2TN (x) + (x− xj)

[
−T ′N (x)− xT ′′N (x)−N2T ′N (x)

]
− (1− x2)T ′′N (x)

)
/
(
2cjN

2(x− xj)
)
. (269)

Using Chebyshev’s equation (Eq. B16) again we simplify this to

A′

Ã′
= (−1)j+1

[
−(1 +N2)T ′N (x)− xT ′′N (x)

]
2cjN2

. (270)

Now taking the limit

C ′j(xj) = lim
x→xj

A′

Ã′

= lim
x→xj

(−1)j+1

[
−(1 +N2)T ′N (x)− xT ′′N (x)

]
2cjN2

=
(−1)jxjT

′′
N (xj)

2cjN2
. (271)

Using Chebyshev’s equation (Eq. B16) we finally obtain

C ′j(xj) =
(−1)jxj
2cjN2

(
xjT

′
N (xj)−N2TN (xj)

1− x2j

)

= −(−1)jxjTN (xj)

2cj(1− x2j)

= −
(−1)jxj cos

(
N arccos

(
cos
(
jπ
N

)))
2cj(1− x2j)

= −(−1)jxj cos (jπ)

2cj(1− x2j)

= − (−1)2jxj
2cj(1− x2j)

= − xj
2cj(1− x2j)

= − xj
2(1− x2j)

. (272)

• For i = j = 0 and i = j = N , we start from Eq. 270 (note that c0 = cN = 2)

A′

Ã′
= (−1)j+1

[
−(1 +N2)T ′N (x)− xT ′′N (x)

]
4N2

(273)

UNCLASSIFIED
71

DST-Group–TR–3513
UNCLASSIFIED

and use

x = cos θ (274)
TN (x) = cos (N arccos(x)) = cos (Nθ) (275)

T ′N (x) =
N sin(N arccos(x))√

1− x2
=
N sin(Nθ)

sin(θ)
(276)

T ′′N (x) =
N2 cos(N arccos(x))

1− x2
+

(Nx sin(N arccos(x))

(1− x2)3/2
(277)

= −N
2 cos(Nθ)

sin2(θ)
+
N cos(θ) sin(Nθ)

sin3(θ)
(278)

to obtain

A′

Ã′
=

(−1)j+1

4N2

N

4
csc3(θ)

(
(−4− 2N2) sin(Nθ) + (N −N2) sin((2−N)θ)

+ (N +N2) sin((2 +N)θ)
)
. (279)

Taking the limit of x → x0 is equivalent to θ → 0 and x → xN is equivalent to θ → π.
If we naively take these limits we get an indeterminate expression again. To evaluate
them we need to use l’Hospital’s rule three times because of the csc3(θ). Thus, we
are interested the third derivative of numerator divided by the third derivative of the
denominator in Eq. 279, which is

B

B̃
:=

(−1)j+1

16N

(
− (−2 +N)3(−1 +N)N cos((−2 +N)θ) + 2N3(2 +N2) cos(Nθ)

−N(1 +N)(2 +N)3 cos((2 +N)θ)
)

/
(
6 cos3(θ)− 21 cos(θ) sin2(θ)

)
.

(280)

Therefore, we finally obtain for j = 0

(D
(1)
N)00 = lim

θ→0

B

B̃

=
(−1)0+1

16N

(
− (−2 +N)3(−1 +N)N + 2N3(2 +N2)−N(1 +N)(2 +N)3

)
6

=
2N2 + 1

6
(281)

and for j = N

(D
(1)
N)NN = lim

θ→π

B

B̃

=
(−1)N+1

16N
cosNπ

(
− (−2 +N)3(−1 +N)N + 2N3(2 +N2)−N(1 +N)(2 +N)3

)
−6

=
(−1)2N+1

16N

(
− (−2 +N)3(−1 +N)N + 2N3(2 +N2)−N(1 +N)(2 +N)3

)
−6

= −2N2 + 1

6
. (282)

�

72
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

8.1 Time-independent Schrödinger’s equation examples

Example 8.1. (Harmonic Oscillator)

This is the same example we applied the Fourier pseudo-spectral method to in Section 7.1.
When using the Fourier method we considered periodic boundary conditions. The Fourier basis
is periodic, so no adjustments were necessary to implement the periodic boundary conditions.
However, here we will want to implement the Dirichlet boundary conditions that the wave
functions are zero on the boundary, so we will have to make a slight modification to enforce
them.

The set of nodes we have chosen to work on is the N + 1-point Gauss-Lobatto grid which
includes the boundary points. The inclusion of the boundary points allows us to easily imple-
ment boundary conditions at these points by using the boundary bordering method [10, 12].
The boundary bordering method is very simple, one replaces the collocation condition on the
boundary (i.e., that the residual is zero on the boundary or equivalently that the differential
equation is satisfied) with the enforcement of the boundary conditions. In practice, once the
(N + 1)× (N + 1) Chebyshev differentiation matrix on the Gauss-Lobatto grid is constructed
we strip the first and last row and column and use the (N−1)×(N−1) submatrix to construct
the linear differential operator. Once the eigensystem is found, our boundary condition that
the wave functions be zero on the boundary is enforced by adding zero to the beginning and
end of each eigenvector.

The subsequent calculation follows the same route as for the Fourier method, except with
changes in the choice of numerical quadrature and interpolation method. As we have already
alluded to in earlier sections of this report we use Clenshaw-Curtis quadrature to normalise
the wave functions and barycentric interpolation to interpolate our solutions to a finer grid.
The functions used to do this are chebpts() and bary() which are included in Chebfun [27].

In Figs. 30i and 30ii we show the error in first 6 eigenvalues for L = 8 and L = 16. These are
to be compared to Figs. 19i and 19ii, we see immediately that there is about a factor of two
efficiency obtained by using the Fourier method, although, the eigenvalues still become more
accurately reproduced as N increases just as in the Fourier case. The corresponding figures
showing all the eigenvalues obtained using L = 8, N = 72 and L = 16, N = 400 are Figs. 31i
and 31ii . Just as in the Fourier case the eigenvalues corresponding to more highly excited
states are less accurately calculated than the lower lying states. We also witness the same
effect when we increase the box size, L, i.e., that N must also be increased to achieve the same
accuracy for a given eigenfunction.

We calculate the maximum error on the grid for the eigenfunctions. The results of which are
shown in Figs. 32i and 32ii. The error increases very sharply as the eigenfunction number is
increased for L = 8, N = 72 with only the first few eigenfunctions being accurately calculated.
However, in Fig. 32ii we see the increase in L and N again pays off with the first ∼ 70
eigenfunctions being calculated to around ∼ 10−10 accuracy.

In the absence of an exact solution one would generally increase the number of points in
the grid comparing two successive solutions to determine whether or not some predetermined
accuracy had been met or not. As we have previously stated, one can choose to work in either
configuration or coefficient space and if desired transition between them. The eigenfunction
values on the grid are in one-to-one correspondence with the Chebyshev coefficients. We will

UNCLASSIFIED
73

DST-Group–TR–3513
UNCLASSIFIED

now look at the behaviour of the Chebyshev coefficients for a selection of wave functions to
try and get another handle on which eigenfunctions are accurately calculated by this method,
because it is quite clear not all them are.

In Figs. 33 and 34 we show the wave function coefficients where L = 8, N = 72 and L = 16,
N = 400 , respectively. To obtain these coefficients we have made use of the Chebfun function
chebcoeffs(). In regards to these figures we would like to make clear the following. Because
the harmonic potential is symmetric, the wave functions are either even or odd functions. The
Chebyshev polynomials also have this property, i.e.,

Tn(x) = (−1)nTn(−x) . (283)

Therefore the even eigenfunctions will only have even coefficients and correspondingly the odd
eigenfunctions will only have odd coefficients. In these figures we have separated odd (red)
and even (blue) coefficients and the implication from the symmetry of the potential is seen in
these figures.

In Fig. 33 we see that only the coefficients of ψ0 and ψ4, from the selected wave functions,
shows an appreciable decrease. The coefficients of the other wave functions decrease little
if any. However, in Fig. 34 which corresponds to L = 16, N = 400 all the wave functions
shown from ψ0 to ψ180 show significant decrease. Overall the coefficients tend to decrease
quite quickly beyond a certain point, but this threshold is pushed higher and higher for more
excited states. Also, placing the problem in a larger box can be seen to exacerbate the effect.
If we compare the plot of ψ0 coefficients for the two different boxes, i.e., L = 8 and L = 16,
one does not see a significant drop in the values of the coefficients in the larger box till much
later, i.e., that is beyond the 100th coefficient as compared to the 60th in the smaller box.

These observations are to be anticipated since higher energy states can naturally have more
nodes and be more oscillatory, hence more Chebyshev polynomials will be needed to represent
a given wave function. Moreover, as the Chebyshev polynomials tend to oscillate more near
the boundaries rather than in the interior of the domain, one would expect more Chebyshev
polynomials to be needed to represent a particular wave function. Equivalently in configuration
space, more collocation points per wavelength are needed to resolve more oscillatory wave
functions. However, Chebyshev points tend to be more clustered towards the boundaries
where the wave functions are expected to be small and approaching zero with fewer nodes in
the interior were they are needed. This effect is likely to be exacerbated by increasing the box
size that we put the problem in, which is why when we compare the plot of ψ0 coefficients
for the two different boxes, one does not see a significant drop in the values of the coefficients
till much later in the larger box. This is also an explanation for the similar behaviour of the
eigenvalues.

In Figs. 35 and 36 we show the coefficients of the square of a selection of wave functions
(ρi = ψ∗i ψi) for both L = 8, N = 72 and L = 16, N = 400, respectively. These functions
are even so they only have even coefficients. We see the same behaviour of the appreciable
drop in the absolute value of the coefficients beyond a certain point, but it occurs for fewer
eigenfunctions.

In the absence of an exact solution, if we use the size of the Chebyshev coefficients of these
expansions as a measure of the accuracy of our calculation, it would provide us with a way
of thinning the herd of wild eigenfunctions. Simply requiring the absolute value of the wave
function coefficients to be smaller than some tolerance would appear to be too lenient on

74
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

(i) Error in the first 6 eigenvalues for L = 8 and
N = 72.

(ii) Error in the first 6 eigenvalues for L = 16
and N = 400.

Figure 30: Error in harmonic oscillator eigenvalues found using the Chebyshev pseudo-
spectral method. These plots are produced by modifying the MATLAB R© script
Ex_Script_13_Cheby_HO.m.

inspection of Figs. 32i and 32ii. In contrast, requiring the coefficients of the square of the
wave functions to be smaller than some tolerance is a much stricter constraint, and possibly
too severe. A compromise would be to truncate the set of wave functions somewhere between
these two extremes. Obviously, a more in depth analysis is needed to determine an optimal
way of truncating the set of wave functions. We defer said analysis to future work.
Example 8.2. (Quartic Potential)

This is essentially the same example that we applied the Fourier method too in Section 7.1,
except here we will take ε = 0.001, 0.01 and 0.5. When ε is small the problem is approximately
the harmonic oscillator problem. We do not show the eigenfunctions in this case as they are
indistinguishable from the figures shown earlier, see Fig. 24. Instead, we show in Figs. 37, 39
and 41 the coefficients of the Chebyshev series for the wave functions for the larger box with
L = 16 and N = 400, respectively for ε = 0.001, 0.01 and 0.5. Similarly, in Figs. 38, 40 and 42
we show the corresponding coefficients of the square of the wave functions. As the potential
is again symmetric the wave functions are either even or odd functions and therefore their
Chebyshev expansions have only even or odd coefficients.

For ε = 0.001, the behaviour of the coefficients in both expansions appears to be relatively
unchanged by inclusion of the perturbation. As ε is increased it is obvious that the coefficients
become significantly affected. The drop in the absolute value of the coefficients tends to not
occur till later in expansions or even not at all for some of the wave functions. This leads one
to conclude that as ε increases fewer eigenfunctions are accurately calculated and more must
be discarded.
Example 8.3. (Linear Potential)

We now consider the Schrödiger equation with the linear potential

V (x) =

{
∞ , x < 0
mgx , x > 0

. (284)

The exact solution to this problem is known and is given in App. A.2. Its solution is in terms

UNCLASSIFIED
75

DST-Group–TR–3513
UNCLASSIFIED

(i) Error in all eigenvalues for L = 8, N = 72. (ii) Error in all eigenvalues for L = 16, N = 400.

Figure 31: The error in the harmonic oscillator eigenvalues using the Chebyshev pseudo-
spectral method. These plots are produced by modifying the MATLAB R© script
Ex_Script_13_Cheby_HO.m.

(i) Error in the harmonic oscillator wave
functions for L = 8 and N = 72.

(ii) Error in the harmonic oscillator wave
functions for L = 16 and N = 400.

Figure 32: Error in harmonic oscillator wave functions using the Chebyshev pseudo-
spectral method. These plots are produced by modifying the MATLAB R© script
Ex_Script_13_Cheby_HO.m.

76
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Figure 33: Chebyshev coefficients for a few of the harmonic oscillator wave functions for L = 8
and N = 72. The odd coefficients are in red and the even ones are in blue. These
plots are produced by modifying the MATLAB R© script Ex_Script_13_Cheby_HO.m.

Figure 34: Chebyshev coefficients for a few of the harmonic oscillator wave functions
for L = 16 and N = 400. The odd coefficients are in red and the even
ones are in blue. These plots are produced by modifying the MATLAB R© script
Ex_Script_13_Cheby_HO.m.

UNCLASSIFIED
77

DST-Group–TR–3513
UNCLASSIFIED

Figure 35: Chebyshev coefficients for the square of a few of the harmonic oscillator wave
functions for L = 8 and N = 72. The odd coefficients are in red and the even
ones are in blue. These plots are produced by modifying the MATLAB R© script
Ex_Script_13_Cheby_HO.m.

Figure 36: Chebyshev coefficients for the square of a few of the harmonic oscillator wave
functions for L = 16 and N = 400. The odd coefficients are in red and the even
ones are in blue. These plots are produced by modifying the MATLAB R© script
Ex_Script_13_Cheby_HO.m.

78
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Figure 37: Chebyshev coefficients for a few of the quartic potential wave functions for
ε = 0.001, L = 16 and N = 400. The odd coefficients are in red and the even
ones are in blue. These plots are produced by modifying the MATLAB R© script
Ex_Script_14_Cheby_Quartic.m.

Figure 38: Chebyshev coefficients for the square of a few of the quartic potential wave functions
for ε = 0.001, L = 16 and N = 400. The odd coefficients are in red and the even
ones are in blue. These plots are produced by modifying the MATLAB R© script
Ex_Script_14_Cheby_Quartic.m.

UNCLASSIFIED
79

DST-Group–TR–3513
UNCLASSIFIED

Figure 39: Chebyshev coefficients for a few of the quartic potential wave functions for
ε = 0.01, L = 16 and N = 400. The odd coefficients are in red and the even
ones are in blue. These plots are produced by modifying the MATLAB R© script
Ex_Script_14_Cheby_Quartic.m.

Figure 40: Chebyshev coefficients for the square of a few of the quartic potential wave functions
for ε = 0.01, L = 16 and N = 400. The odd coefficients are in red and the even
ones are in blue. These plots are produced by modifying the MATLAB R© script
Ex_Script_14_Cheby_Quartic.m.

80
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Figure 41: Chebyshev coefficients for a few of the quartic potential wave functions for
ε = 0.5, L = 16 and N = 400. The odd coefficients are in red and the even
ones are in blue. These plots are produced by modifying the MATLAB R© script
Ex_Script_14_Cheby_Quartic.m.

Figure 42: Chebyshev coefficients for the square of a few of the quartic potential wave functions
for ε = 0.5, L = 16 and N = 400. The odd coefficients are in red and the even
ones are in blue. These plots are produced by modifying the MATLAB R© script
Ex_Script_14_Cheby_Quartic.m.

UNCLASSIFIED
81

DST-Group–TR–3513
UNCLASSIFIED

of Airy’s function Ai(x). To be specific, the numerical problem we will solve is(
− d2

dx2
+ x

)
ψn(x) = λ̃nψn(x) , (285)

where have taken the constants in the problem to be

m = g =
~2

2m
= 1 . (286)

Unlike the previous problems we will now be working on the domain [0, L] which can be done
by use of a simple domain map. We impose the Dirichlet boundary conditions

ψn(0) = ψn(L) = 0 . (287)

The exact eigenvalues are
λ̃n = −zn , (288)

where zn are the zeros of Airy’s function . The corresponding wave functions are

ψn(x) = NnAi(x− zn) , (289)

where Nn are normalisation constants. The zeros of Airy’s function are not exactly known.
The zeros of Airy’s function are tabulated in Ref. [18], although, in making a comparison
to our numerical solution to Eq. A9 we require more accurate values. We use the results
obtained from [41] for the first six eigenvalues quoted to be accurate to 22 digits. Moreover, to
make a comparison the normalisation constants have been calculated using Clenshaw-Curtis
quadrature. We use this as our “exact” solution with which we compare our Chebyshev pseudo-
spectral solution to.

In Figs. 44i and 44ii we show the difference between the first six eigenvalues obtained by
the Chebyshev pseudo-spectral method and the “exact” solution. Clearly, the error decreases
quickly with N , however, increasing the box size L one again observes that N needs to be
larger to achieve the same accuracy for a given eigenfunction. However, this appears to be
less severe for this potential. The maximum error of the first six wave functions are shown in
Figs. 45i and 45ii. The error increases quickly with the eigenmode number for the small box,
but all six wave functions are accurately calculated in the larger box.

The first four wave functions are shown in Fig. 43 for the case L = 16, N = 72 they are
indistinguishable from the exact solutions. This figure illustrates why the Fourier pseudo-
spectral is not the ideal method to solve Eq. A9. It is clearly not a periodic function as the
wave functions oscillate in one direction and are exponentially decaying in the other. Artificial
periodisation of this function would naturally lead to a discontinuity and as a consequence
Gibbs phenomenon will occur. In these plots, we also see why the increase in the box size L
didn’t require an as large increase in N , as compared with the other potentials, to maintain the
same level of accuracy. That is, the error for the first eigenvalue reaches the round-off plateau
with N ∼ 40 for L = 16 and when the box is doubled in size, N must only be increased to
N ∼ 50. This is related to the fact that these wave functions are not as localised about the
origin.

As the linear potential is not symmetric, the Chebyshev series for the wave functions will
have both odd and even coefficients. Furthermore, the coefficients of the square of the wave
functions will also have both odd and even coefficients. The coefficients of these expansions
are shown in Figs. 46, 47, 48 and 49 for the two boxes. The behaviour of these coefficients is
very similar to the corresponding ones of the other potentials.

82
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Figure 43: The first four wave functions of the linear potential with L = 16, N = 72. The
circles mark the values at the collocation points, the blue curves are the interpolants
calculated using Chebfun’s bary() function and the green curves are the corres-
ponding “exact” wave functons. The corresponding plots for L = 32, N = 400 are
essentially indistinguishable from these. These plots are produced by modifying the
MATLAB R© script Ex_Script_15 _Cheby_Linear.m.

(i) Error in the first 6 eigenvalues for L = 16 and
N = 72.

(ii) Error in the first 6 eigenvalues for L = 32
and N = 400.

Figure 44: Error in the linear potential eigenvalues found using the Chebyshev pseudo-
spectral method. These plots are produced by modifying the MATLAB R© script
Ex_Script_15 _Cheby_Linear.m.

UNCLASSIFIED
83

DST-Group–TR–3513
UNCLASSIFIED

(i) Error in the wave functions for L = 16 and
N = 72.

(ii) Error in the wave functions for L = 32 and
N = 400.

Figure 45: The error in the linear potential wave functions using the Chebyshev pseudo-
spectral method. These plots are produced by modifying the MATLAB R© script
Ex_Script_15 _Cheby_Linear.m.

Figure 46: Chebyshev coefficients for a few of the linear potential wave functions coefficients
for L = 16 and N = 72. The odd coefficients are in red and the even ones are in
blue. These plots are produced by modifying the MATLAB R© script Ex_Script_15
_Cheby_Linear.m.

84
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Figure 47: Chebyshev coefficients for a few of the linear potential wave functions coefficients
for L = 32 and N = 400. The odd coefficients are in red and the even ones are in
blue. These plots are produced by modifying the MATLAB R© script Ex_Script_15
_Cheby_Linear.m.

Figure 48: Chebyshev coefficients of the square of a few of the wave functions for L = 16 and
N = 72. The odd coefficients are in red and the even ones are in blue. These plots
are produced by modifying the MATLAB R© script Ex_Script_15 _Cheby_Linear.m.

UNCLASSIFIED
85

DST-Group–TR–3513
UNCLASSIFIED

Figure 49: Chebyshev coefficients of the square of a few of the wave functions for L = 32 and
N = 400. The odd coefficients are in red and the even ones are in blue. These plots
are produced by modifying the MATLAB R© script Ex_Script_15 _Cheby_Linear.m.

8.2 Time-dependent Schrödinger equation examples.

In Section 2 we introduced the time-dependent Schrödinger equation. We discussed that when
the potential in the Hamiltonian is independent of time, the problem of solving this equation
can be reduced to solving the time-independent Schrödinger equation. A general solution
to the equation is just a linear superposition of the wave functions of the time-independent
equation and their evolution in the potential is controlled by complex exponentials.

We have solved the time-dependent equation as described above for two potentials using the
Chebyshev pseudo-spectral method with L = 16 and N = 400. The potentials we have chosen
are the harmonic oscillator and the quartic potential with small coupling constant, ε = 0.001.
For both, we project the initial Gaussian state onto a truncated set of eigenfunctions. Our
set of eigenfunctions is truncated by only accepting the eigenfunctions with mode numbers
j = 0, 1, . . . ,M/2, where M is the eigenmode number of the last wave function whose last 10
Chebyshev coefficients have an absolute value less than 10−10.

The initial state is taken to be

f(x) =
1

(πσ2)1/4
e−

(x−µ)2

2σ2 (290)

with σ = 0.5 and µ = −5 or µ = 0. The projection of this state onto our subset of eigenfunc-
tions {ψj}M/2

j=0 is then obtained. The expansion coefficients from this projection are calculated
as

An '

L∫
−L

f(x)ψn(x)dx

L∫
−L
|ψn(x)|2dx

'

N∑
j=0

f(xj)ψn(xj)wj

N∑
j=0
|ψn(xj)|2wj

=
N∑
j=0

f(xj)ψn(xj)wj , (291)

86
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

where the the N + 1 numbers xj are the nodes and the N + 1 numbers wj are the weights
of Clenshaw-Curtis quadrature scaled for use on the interval [−L,L]. The behaviour of these
coefficients is shown in Figs. 51 and 52. They appear to exhibit a geometric rate of convergence.
However, for the initial state with µ = −5, the coefficients tend to increase first before they
start to decrease. Moreover, we see that because the initial state is not located at the origin,
both the odd and even coefficients are non-zero as one would expect.

The initial state can be reconstructed using these coefficients by

Ψ(x, 0) =

M/2∑
j=0

Ajψj(x) (292)

where ψj(x) is the barycentric interpolant of the calculated jth wave function.

In Figs. 50i and 50ii we show the initial Gaussian state with µ = −5 (green) which is obscured
from view by the reconstructed initial state (blue). The circles indicate the values of the
reconstructed wave function at the collocation points. Visually, the initial state appears to be
well reconstructed for both potentials.

In the MATLAB R© scripts Ex_Script_13_Cheby_HO.m and Ex_Script_14_Cheby_AHO.m we
create short movies of the time evolution of the probability density

ρ(x, t) = Ψ∗(x, t)Ψ(x, t) (293)

where

Ψ(x, t) =

M/2∑
j=0

Ajψj(x)e−iλ̃jt . (294)

In Fig. 53 and 54 we show the time evolution of the probability densities corresponding to the
initial state with µ = −5. The different coloured curves correspond to different instances in
time. For the harmonic potential, the probability density remains Gaussian and the centre
oscillates back and forth between x = −5 and x = 5 with its width also varying in time. This
behaviour of the probability density can be derived analytically for the harmonic oscillator
potential. In contrast, in the quartic potential the probability density starts out as Gaussian,
then becomes non-Gaussian, eventually having multiple peaks. We have found that this occurs
faster as ε is increased.

9 Discussion, conclusions and future work

In this report we focussed on solving the Schrödinger equation for several simple potentials us-
ing pseudo-spectral methods. The motivation for being that the ability to solve the Schrödinger
equation efficiently and accurately will be an important part of constructing a Bohm fil-
ter [1].

As we have tried to emphasise, collocation interpolation is the bedrock of the approach we have
taken. By this we mean it underlies the representation of functions, their numerical integration
and differentiation and hence also the way in which we solve the eigenvalue problem that is

UNCLASSIFIED
87

DST-Group–TR–3513
UNCLASSIFIED

(i) Harmonic oscillator potential. (ii) Quartic potential with ε = 0.001.

Figure 50: The circles mark the values at the collocation points, the obscured green curve is
the initial Gaussian state wave function and the blue curve is the reconstructed
initial state after being projected onto the truncated set of wave functions. These
plots are produced by modifying the MATLAB R© scripts Ex_Script_13_Cheby_HO.m
and Ex_Script_14_Cheby_Quartic.m.

(i) µ = −5 (ii) µ = 0.

Figure 51: Coefficients An for the truncated harmonic oscillator wave function expansion.
The odd coefficients are in red and the even ones are in blue. These plots are
produced by modifying the MATLAB R© script Ex_Script_13_Cheby_HO.m.

88
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

(i) µ = −5 (ii) µ = 0

Figure 52: Coefficients An for the truncated anharmonic oscillator wave function expansion.
The odd coefficients are in red and the even ones are in blue. These plots are
produced by modifying the MATLAB R© script Ex_Script_14_Cheby_Quartic.m.

the time-independent Schödinger equation. This approach has been chosen because of the
convergence properties of pseudo-spectral methods for smooth functions [10–16].

We have taken a long path to illustrate one way of solving the time-dependent Schrödinger
equation. At several points we could have made different decisions, leading to different but
related approaches. We wish to highlight two of the crossroads where our path could have
diverged.

• The reduction to the time-independent Schrödinger equation.
The eventual application of the Bohm filter to a realistic tracking problem will require
one to solve the time-dependent Schrödinger equation for a potential which may or may
not be time dependent. In the special case that potential is independent of time, one
can reduce the problem to the time independent equation and the time evolution can be
done exactly. Upon this reduction one must then solve an eigenvalue problem. As we
have seen obtaining many eigenvalues and eigenfunctions can be done using the methods
discussed. However, to get many accurate eigenfunctions one must increase the number
of collocation points and hence the size of the matrix eigenvalue problem that must be
solved. Extending to two or three dimensions will require the solution of even larger
matrix eigenvalue problems.

For time-dependent potentials we cannot make such a reduction. To solve time-dependent
partial differential equations a typical approach to take is to treat the spatial part of the
equation spectrally and the temporal part using finite differences. The reason for the dif-
ferent treatment for time derivatives is that there appears not to be an efficient spectral
decomposition in time. The use of finite differencing schemes would naturally reduce
the exponential rate of convergence achievable with spectral methods. However, it is
cheaper to make the time step smaller than the spatial step, particularly when working
with multiple spatial dimensions [10]. This approach can of course be applied to the spe-
cial case of time independent potentials, removing the need to find many eigenfunctions.
However, the time evolution will no longer be exact.

UNCLASSIFIED
89

DST-Group–TR–3513
UNCLASSIFIED

Figure 53: The curves represent the evolution of the probability density in the harmonic os-
cillator potential obtained by evolving the projected initial Gaussian state. The
different colours correspond to different instances of time and the time step is
the same as in Fig. 54. This plot is produced by modifying the MATLAB R© script
Ex_Script_13_Cheby_HO.m.

90
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Figure 54: The curves represent the evolution of the probability density in the quartic po-
tential with ε = 0.001 obtained by evolving the projected initial Gaussian state.
The different colours correspond to different instances of time and the time step is
the same as in Fig. 53. This plot is produced by modifying the MATLAB R© script
Ex_Script_14_Cheby_Quartic.m.

UNCLASSIFIED
91

DST-Group–TR–3513
UNCLASSIFIED

• The choice to work in configuration space rather than coefficient space.
As we have stated in this report, it is possible to work in either space. In different
situations one may be more preferable than the other. We have chosen to work mostly
in configuration space for simplicity rather than efficiency since this is an initial invest-
igation. Also, in applying the Bohm filter to realistic tracking problems we do not know
ahead of time which set of trial functions will be best. This would generally be de-
termined by the geometry of the tracking problem and the nature of the potential. We
have mentioned five bases, the Fourier, Chebyshev, Legendre, Laguerre and Hermite.
The first two of which we have used in this report. These two are known to have fast
transforms which allow for efficient methods to solve partial differential equations in
coefficient space, i.e., the fast Fourier and cosine transforms. Efficient implementations
with the other bases in coefficient space will naturally be more difficult and specialised.

There are many possibilities for future work. The most pressing things to consider would
be:

• An application of the Bohm filter to toy tracking problems based on the potentials in-
vestigated in this report. For example, a Bohm filter based on the harmonic oscillator
potential could be used to track a pendulum whose measurements are polluted with vari-
ous forms of noise, e.g., Von Mises and other non-Gaussian forms of noise. Comparisons
with conventional filters such as the Kalman and extended Kalman filters should also be
carried out.

• Investigate the application of pseudo-spectral methods using other bases, e.g., Legendre,
Laguerre and Hermite polynomials, to the Schrödinger equation.

• Extension to non-polynomial potentials.

• Extension to two and three dimensions.

• Extension to time dependent potentials by the method discussed above.

• Derivation of potentials for real world tracking problems and investigate their numerical
solution.

• Determine whether there is a theoretical connection between the Bohm filter and the
stochastic variational method [2–8].

• Consider evolution equations other than the Schrödinger equation.

10 References

1. Drake, S. P. The Bohm Filter and its Application to Bearings Only Tracking. Private notes.

2. Yasue, K. ‘Stochastic calculus of variations’. In: Journal of Functional Analysis 41 (3),
327 –340. issn: 0022-1236. doi: http://dx.doi.org/10.1016/0022-1236(81)90079-3.
url: http://www.sciencedirect.com/science/article/pii/0022123681900793.

3. Koide, T., Kodama, T. and Tsushima, K. ‘Unified Description of Classical and Quantum
Behaviours in a Variational Principle’. In: J. Phys. Conf. Ser. 626 (1), 012055. doi:
10.1088/1742-6596/626/1/012055. arXiv: 1412.5865 [quant-ph].

92
UNCLASSIFIED

https://doi.org/http://dx.doi.org/10.1016/0022-1236(81)90079-3
http://www.sciencedirect.com/science/article/pii/0022123681900793
https://doi.org/10.1088/1742-6596/626/1/012055
http://arxiv.org/abs/1412.5865

UNCLASSIFIED
DST-Group–TR–3513

4. Koide, T., Kodama, T. and Tsushima, K. ‘Stochastic Variational Method as a Quantization
Scheme II: Quantization of Electromagnetic Fields’. In: ArXiv:hep-th/1406.6295. arXiv:
1406.6295 [hep-th].

5. Kodama, T. and Koide, T. ‘Stochastic variational quantization and maximum entropy
principle’. In: Phys. Part. Nucl. 46 (5), 768–771. doi: 10.1134/S1063779615050135.

6. Koide, T., Tsushima, K. and Kodama, T. ‘Schroedinger Equation in Rotating Frame by
using Stochastic Variational Method’. In: 31st International Colloquium on Group Theoret-
ical Methods in Physics (GROUP 31) Rio de Janeiro, RJ, Brazil, June 20-24, 2016. arXiv:
1611.07570 [math-ph]. url: https://inspirehep.net/record/1592485/files/arxiv:
1611.07570.pdf.

7. Koide, T. and Kodama, T. ‘Navier-Stokes, Gross-Pitaevskii and Generalized Diffusion
Equations using Stochastic Variational Method’. In: J. Phys. A45, 255204. doi: 10 .
1088/1751-8113/45/25/255204. arXiv: 1108.0124 [cond-mat.stat-mech].

8. Koide, T. and Kodama, T. ‘Stochastic variational method as quantization scheme: Field
quantization of the complex Klein Gordon equation’. In: PTEP 2015 (9), 093A03. doi:
10.1093/ptep/ptv127. arXiv: 1306.6922 [hep-th].

9. MATLAB. Version 9.0.0 (R2016a). The MathWorks Inc. Natick, Massachusetts.

10. Trefethen, L. N. Spectral methods in MATLAB. SIAM.

11. Trefethen, L. N. Approximation Theory and Approximation Practice. Society for Industrial
and Applied Mathematics.

12. Boyd, J. P. Chebyshev and Fourier Spectral Methods: Second Revised Edition (Dover Books
on Mathematics). Dover Publications.

13. Funaro, D. Polynomial approximation of differential equations. Springer-Verlag.

14. Canuto, C. et al. Spectral Methods: Evolution to complex geometries and applications to
fluid dynamics. Springer-Verlag Berlin Heidelberg.

15. Canuto, C. et al. Spectral Metods in Fluid Dynamics. Springer-Verlag Berlin Heidelberg.

16. Fornberg, B. A practical guide to pseudospectral methods. Cambridge University Press.

17. Shen, J., Tang, T. and Wang, L.-L. Spectral Methods: Algorithms, Analysis and Applic-
ations. Springer Berlin Heidelberg. Berlin, Heidelberg, 47–140. isbn: 978-3-540-71041-7.
doi: 10.1007/978-3-540-71041-7_3. url: http://dx.doi.org/10.1007/978-3-540-
71041-7_3.

18. Abramowitz, M. and Stegun, I. A. Handbook of mathematical functions with formulas,
graphs and mathematical tables. Dover Publications.

19. Powell, J. L. and Crasemann, B. Quantum Mechanics. Dover Publications.

20. Bohm, D. Quantum Theory. Dover Publications.

21. Bender, C. M. and Wu, T. T. ‘Anharmonic oscillator’. In: Phys. Rev. 184, 1231–1260.
doi: 10.1103/PhysRev.184.1231.

22. Bender, C. M. and Wu, T. T. ‘Anharmonic oscillator. 2: A Study of perturbation theory
in large order’. In: Phys. Rev. D7, 1620–1636. doi: 10.1103/PhysRevD.7.1620.

UNCLASSIFIED
93

http://arxiv.org/abs/1406.6295
https://doi.org/10.1134/S1063779615050135
http://arxiv.org/abs/1611.07570
https://inspirehep.net/record/1592485/files/arxiv:1611.07570.pdf
https://inspirehep.net/record/1592485/files/arxiv:1611.07570.pdf
https://doi.org/10.1088/1751-8113/45/25/255204
https://doi.org/10.1088/1751-8113/45/25/255204
http://arxiv.org/abs/1108.0124
https://doi.org/10.1093/ptep/ptv127
http://arxiv.org/abs/1306.6922
https://doi.org/10.1007/978-3-540-71041-7_3
http://dx.doi.org/10.1007/978-3-540-71041-7_3
http://dx.doi.org/10.1007/978-3-540-71041-7_3
https://doi.org/10.1103/PhysRev.184.1231
https://doi.org/10.1103/PhysRevD.7.1620

DST-Group–TR–3513
UNCLASSIFIED

23. Loeffel, J. J. et al. ‘Pade approximants and the anharmonic oscillator’. In: Phys. Lett. B
30 (9), 656.

24. Stoer, J. and Bulirsch, R. Introduction to numerical analysis. Springer-Verlag.

25. Berrut, J. P. and Trefethen, L. N. ‘Barycentric Lagrange interpolation’. In: SIAM Review
46 (3), 501–517.

26. Weideman, J. A. C. and Reddy, S. C. ‘A MATLAB differentiation matrix suite’. In: ACM
Transactions on mathematical software 26 (4), 465–519.

27. Driscoll, T. A., Hale, N. and Trefethen, L. N., eds. Chebfun Guide. Pafnuty Publications,
Oxford.

28. Runge, C. ‘Uber empirische Funktionen und die Interpolation zwischen aquidistanten Or-
dinaten’. In: Zeitschrift fur Mathematik und Physik 46, 224–243.

29. Rudin, W. Principles of mathematical analysis. Third. McGraw-Hill Education.

30. Rao, S. S. Applied numerical methods for engineers and scientists. Prentice Hall.

31. Glaser, A., Liu, X. and Rokhlin, V. ‘A fast algorithm for the calculation of the roots of
special functions’. In: SIAM J. Sci. Comput. 29 (4), 1420–1438.

32. Hale, N. and Townsend, A. ‘Fast and accurate computation of Gauss-Legendre and Gauss-
Jacobi quadrature nodes and weights’. In: SIAM J. Sci. Comput. 35 (2), A652–A674.

33. Bogaert, I. ‘Iteration-free computation of Gauss-Legendre quadrature nodes and weights’.
In: SIAM J. Sci. Comput. 36 (3), A1008–A1026.

34. Clenshaw, C. W. and Curtis, A. R. ‘A method for numerical integration on an automatic
computer’. In: Numerische Mathematik 2, 197–205.

35. Trefethen, L. N. ‘Is Gauss quadrature better than Clenshaw-Curtis?’ In: SIAM Review 50
(1), 67–87.

36. Vanlessen, M. ‘Strong asymptotics of Laguerre-Type orthogonal polynomials and applic-
ations in Random Matrix Theory’. In: Constr. Approx., 25: 125–175.

37. Townsend, A., Trogdon, T. and Olver, S. ‘Fast computation of Gauss quadrature nodes
and weights on the whole real line’. In: IMA Journal of Numerical Analysis 36, 337–358.

38. Golub, G. H. ‘Some modified matrix eigenvalue problems’. In: SIAM Rev. 15 (2), 318–334.

39. Trefethen, L. N. and Weideman, J. A. C. ‘The Exponentially Convergent Trapezoidal
Rule’. In: SIAM Review 56 (3), 385 –458.

40. Golub, G. G. and Welsch, J. H. ‘Calculation of Gauss quadrature rules’. In: Mathematics
of computation 23 (106), 221–230.

41. Casio.Keisan online calculator, Airy function zeros, http://keisan.casio.com/exec/system/1180573400.
url: http://keisan.casio.com/exec/system/1180573400.

94
UNCLASSIFIED

http://keisan.casio.com/exec/system/1180573400

UNCLASSIFIED
DST-Group–TR–3513

Appendix A: Analytical solutions for toy potentials

A.1 Harmonic oscillator potential

The time-independent Schrödinger equation with harmonic oscillator potential in one dimen-
sion has the form (

− ~2

2m

d2

dx2
+

1

2
mω2x2

)
ψ(x) = Eψ(x) (A1)

In the problem definition there are three parameters, m, ω and ~. These can be used to
construct a length scale to make the TISE dimensionless. Using these parameters we perform
the following change of variables

x =

√
~
mω

ξ , dx =

√
~
mω

dξ (A2)

Using this change of variables the Schrödinger equation

d2

dx2
ψ(x)−

(
m2ω2x2

~2
− 2mE

~2

)
ψ(x) = 0 , (A3)

therefore becomes

d2ψ(ξ)

dξ2
.
mω

~
−

m2ω2

~2

(√
~
mω

)2

ξ2 − 2mE

~2

ψ(ξ) = 0 . (A4)

After simplifying one obtains

d2ψ(ξ)

dξ2
−
(
ξ2 − 2E

~ω

)
ψ(ξ) = 0 . (A5)

This is one form of Hermite’s equation. It can be solved exactly, the solution being the
following set of eigenvalues

E = En = ~ω(n+
1

2
) , n = 0, 1, 2, . . . (A6)

and to each of these eigenvalues there is an associated eigenfunction, they are

ψ(x) = ψn(x) =
4
√
mω/~√

2nn!
√
π
e−

mωx2

2~ Hn

(√
mω

~
x

)
(A7)

or in terms of the dimensionless variable ξ we have

ψn(ξ) =
1√

2nn!
√
π
e−ξ

2/2Hn(ξ) . (A8)

To derive this solution begin by looking at the asymptotic behaviour as ξ → ±∞ and use the
power series (Frobenius) method. This is derived in any good quantum mechanics text, see
for example Ref. [19].

UNCLASSIFIED
95

DST-Group–TR–3513
UNCLASSIFIED

A.2 Linear potential

The time-independent Schrödinger equation with a linear potential in one dimension has the
form (

− ~2

2m

d2

dx2
+ V (x)

)
ψ(x) = Eψ(x) , (A9)

where the potential is

V (x) =

{
∞ , x < 0
mgx , x > 0

. (A10)

Obviously, the probability to find a particle in this potential at x < 0 is 0, therefore we have
the boundary condition ψ(0) = 0. In the problem definition there are three parameters, m, g
and ~. These can be used to construct a natural length and energy scale to make the TISE
dimensionless. These are

` ≡
(

~2

2m2g

)1/3

≡ k−1 (A11)

and

E ≡ mg` =

(
mg2~2

2

)1/3

, (A12)

respectively.

Using the natural length scale of the problem we can write Eq. A9 as

d2ψ(x)

dx2
=

(
2m2gx

~2
− 2mE

~2

)
ψ(x)

= k3
(
x− E

mg

)
ψ(x) . (A13)

We now perform the following change of variables

y = k

(
x− E

mg

)
(A14)

and note that upon this change the normalisation condition tells us∫ ∞
0
|ψ(x)|2dx =

∫ ∞
0
|ψ(x(y))|2

∣∣∣∣dxdy
∣∣∣∣ dy (A15)

=

∫ ∞
0
|ψ(x(y))|2` dy (A16)

=:

∫ ∞
0
|ψ̃(y)|2 dy , (A17)

(A18)

where we have defined

ψ̃(y) =
√
`ψ

(
`(y +

E

E
)

)
(A19)

or equivalently
ψ(x) =

√
kψ̃(y) . (A20)

96
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Now the LHS of Schrödinger equation can be rewritten as

d2ψ(x)

dx2
= k2

√
k
d2

dy2
ψ̃(y) (A21)

and the RHS as
k3
(
x− E

mg

)
ψ(x) = k2

√
kyψ̃(y) (A22)

allowing one to write the Schrödinger equation as

d2

dy2
ψ̃(y) = yψ̃(y) . (A23)

This is nothing other than Airy’s equation which has the known solutions Ai(y) and Bi(y),
the latter blows up as y →∞. It is important to note that we have absorbed the eigenvalues
En into the definition of y

ψ̃n(y) = NnAi(y) = NnAi

(
k(x− En

mg
)

)
, (A24)

where Nn is a normalisation constant. To enforce the boundary condition at the origin (x = 0)
we must have

NnAi

(
−kEn
mg

)
= 0 , (A25)

which tells us the eigenvalues are simply

En = −mgzn` , (A26)

where zn denotes the zeros of Airy’s function. There are approximate analytical solutions
for these zeros, but as we are trying to make an accurate comparison with our numerical
calculation we use known numerical solutions to Eq. A25 for the first six eigenvalues obtained
from [41] quoted to be accurate to 22 digits. In Section 8 we also evaluate the normalisation
constant numerically using Clenshaw-Curtis quadrature.

Appendix B: Classical orthogonal polynomials

The properties of a few classical orthogonal polynomials are summarised. For further inform-
ation consult the standard reference [18].

B.1 Chebyshev polynomials

Domain:
[−1, 1] (B1)

Weight:
w(x) = (1− x2)−1/2 (B2)

UNCLASSIFIED
97

DST-Group–TR–3513
UNCLASSIFIED

Normalisation:

hn =

{
π/2 n 6= 0
π n = 0

(B3)

Standardisation:
T (1) = 1 (B4)

Leading term:
kn = 2n−1 (B5)

Explicit expressions:

Tn(x) =
n

2

[n2]∑
m=0

(−1)m(n−m− 1)!

m!(n− 2m)!
.(2x)n−2m (B6)

and the simpler
Tn(x) = cos(n arccos(x)) . (B7)

Special values:

Tn(x) = (−1)nTn(−x) (B8)
Tn(1) = 1 (B9)

Tn(0) =

{
(−1)m , n = 2m

0 , n = 2m+ 1
(B10)

Three-term recurrence relation:

T0(x) = 1 (B11)
T1(x) = x (B12)

Tn+1(x) = 2xTn(x)− Tn−1(x) (B13)

Derivative:
(1− x2)T ′n(x) = −nxTn(x) + nTn−1(x) (B14)

and using the three-term recurrence relation one obtains

(1− x2)T ′n(x) =
n

2
(Tn−1(x)− Tn+1(x)) (B15)

Differential equation:
(1− x2)y′′ − xy′ + n2y = 0 (B16)

Product formula:

2Tn(x)Tm(x) = Tn+m(x) + Tn−m(x) , n ≥ m (B17)

Inequalities:

|Tn(x)| ≤ 1 (B18)∣∣∣∣dTn(x)

dx

∣∣∣∣ ≤ n2 (B19)

98
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Rodrigues formula:

Tn(x) =

√
π

(−1)n2nΓ(n+ 1
2)(1− x2)−1/2

dn

dxn

[
(1− x2)−1/2(1− x2)n

]
(B20)

B.2 Legendre polynomials

Domain:
[−1, 1] (B21)

Weight:
w(x) = 1 (B22)

Normalisation:
hn =

2

2n+ 1
(B23)

Standardisation:
Pn(1) = 1 (B24)

Leading term:

kn =
(2n)!

2n(n!)2
(B25)

Explicit expression:

Pn(x) =
1

2n

[n2]∑
m=0

(−1)m
(

n
m

)(
2n− 2m

n

)
xn−2m (B26)

where (
n
k

)
=

n!

r!(n− r)!
(B27)

is the binomial coefficient.

Special values:

Pn(x) = (−1)nPn(−x) (B28)
Pn(1) = 1 (B29)

Pn(0) =

 (−1)m
4m

(
2m
m

)
, n = 2m

0 , n = 2m+ 1
(B30)

Three-term recurrence relation:

P0(x) = 1 (B31)
P1(x) = x (B32)

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (B33)

UNCLASSIFIED
99

DST-Group–TR–3513
UNCLASSIFIED

Derivative:
(1− x2)P ′n(x) = −nxPn(x) + nPn−1(x) (B34)

Differential Equation:
(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0 (B35)

Inequalities:

|Pn(x)| ≤ 1 (B36)∣∣∣∣dPndx
∣∣∣∣ ≤ 1

2
n(n+ 1) (B37)

|Pn(x)| ≤
√

2

πn

1

4
√

1− x2
(B38)

Rodrigues formula:

Pn(x) =
1

(−1)n2nn!

dn

dxn
[
(1− x2)n

]
(B39)

B.3 Laguerre polynomials

Domain:
[0,∞) (B40)

Weight:
w(x) = e−x (B41)

Normalisation:
hn = 1 (B42)

Standardisation and leading term:

kn =
(−1)n

n!
(B43)

Explicit expression:

Ln(x) =

n∑
m=0

(−1)m
(

n
n−m

)
xm

m!
(B44)

Special values:

Ln(0) =

(
n
m

)
(B45)

Three-term recurrence relation:

L0(x) = 1 (B46)
L1(x) = −x+ 1 (B47)

(n+ 1)Ln(x) = (2n+ 1− x)Ln(x)− nLn−1(x) (B48)

100
UNCLASSIFIED

UNCLASSIFIED
DST-Group–TR–3513

Derivative:
xL′n(x) = nLn(x)− nLn−1(x) (B49)

Differential Equation:
xy′′ + (1− x)y′ + ny = 0 (B50)

Inequalities:
|Ln(x)| ≤ ex/2 (B51)

Rodrigues formula:

Ln(x) =
1

n!e−x
dn

dxn
[
xne−x

]
(B52)

B.4 Hermite polynomials

Domain:
(−∞,∞) (B53)

Weight:
w(x) = e−x

2
(B54)

Normalisation:
hn =

√
π2nn! (B55)

Leading term:
kn = 2n (B56)

Explicit expression:

Hn(x) = n!

[n2]∑
m=0

(−1)m

m!(n− 2m)!
(2x)n−2m (B57)

Special values:

Hn(x) = (−1)nHn(−x) (B58)

Hn(0) =

{
(−1)m (2m)!

m! , n = 2m
0 , 2m+ 1

(B59)

Three-term recurrence relation:

H0(x) = 1 (B60)
H1(x) = 2x (B61)

Hn+1(x) = 2xHn(x)− 2nHn−1(x) (B62)

Derivative:
dHn(x)

dx
= 2nHn−1(x) (B63)

UNCLASSIFIED
101

DST-Group–TR–3513
UNCLASSIFIED

Differential Equation:
y′′ − 2xy′ + 2ny = 0 (B64)

Inequalities:

|Hn(x)| < ex
2/2.k.2n/2

√
n! , k ' 1.086435 (B65)

|H2m(x)| ≤ ex
2/222mm!

[
2− 1

22m

(
2m
m

)]
(B66)

|H2m+1(x) ≤ xex
2/2 (2m+ 1)!

(m+ 1)!
, (x ≥ 0) (B67)

Rodrigues formula:

Hn(x) =
1

(−1)ne−x2
dn

dxn

[
e−x

2
]

(B68)

102
UNCLASSIFIED

UNCLASSIFIED

DISTRIBUTION LIST

Rapid solution of the Schrödinger equation: Towards a study of the utility of the Bohm filter

Daniel L. Whittenbury, Ayse Kizilersu, Anthony W. Thomas and Samuel P. Drake

Task Sponsor

Sponsor Name/ Position 1

S&T Program

Chief of Cyber and Electronic Warfare Division 1
Research Leader 1
Task Leader 1
Head 1
Science Team Leader 1
Author(s): Daniel L. Whittenbury, Ayse Kizilersu, Anthony W. Thomas and Samuel P. Drake1

UNCLASSIFIED

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY GROUP
DOCUMENT CONTROL DATA

1. DLM/CAVEAT (OF DOCUMENT)

2. TITLE

Rapid solution of the Schrödinger equation: Towards a
study of the utility of the Bohm filter

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED RE-

PORTS THAT ARE LIMITED RELEASE USE (L) NEXT TO

DOCUMENT CLASSIFICATION)

Document (U)
Title (U)
Abstract (U)

4. AUTHORS

Daniel L. Whittenbury, Ayse Kizilersu, An-
thony W. Thomas and Samuel P. Drake

5. CORPORATE AUTHOR

Defence Science and Technology Group
PO Box 1500
Edinburgh, South Australia 5111, Australia

6a. DST Group NUMBER

DST-Group–TR–3513
6b. AR NUMBER

017-243
6c. TYPE OF REPORT

Technical Report
7. DOCUMENT DATE

July, 2018
8. Objective ID

N/A
9. TASK NUMBER

N/A
10. TASK SPONSOR

13. DST Group Publications Repository

http://dspace.dsto.defence.gov.au/dspace/

14. RELEASE AUTHORITY

Chief, Cyber and Electronic Warfare Division
15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release.

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX
1500, EDINBURGH, SOUTH AUSTRALIA 5111

16. DELIBERATE ANNOUNCEMENT

17. CITATION IN OTHER DOCUMENTS

No Limitations
18. RESEARCH LIBRARY THESAURUS

19. ABSTRACT

The second project report for the Efficient Generation and Evolution of Probability Density Maps project is reproduced as
a Defence Science and Technology Group technical report. Here we focus on solving the Schrödinger equation numerically
for several simple potentials using Fourier and Chebyshev pseudo-spectral methods. The report has been written in such
way to be more pedagogical rather than complete.

Page classification: UNCLASSIFIED

	Title
	Imprint
	Executive Summary
	Authors
	Contents
	Figure
	Table
	Glossary
	Notation
	1 Introduction
	2 Solution of the TDSE
	3 The numerical problem at hand
	4 A few properties of orthogonal polynomials
	5 Interpolation
	5.1 The simplest approach
	5.2 Lagrange interpolation
	5.3 Barycentric Lagrange interpolation
	5.4 Runge phenomenon

	6 Numerical quadrature
	6.1 Gaussian quadrature
	6.1.1 Golub-Welsch algorithm
	6.1.2 A few simple examples
	6.1.3 Gauss-Radau and Gauss-Lobatto quadrature

	6.2 Composite trapezoidal rule and periodic functions
	6.3 Clenshaw-Curtis quadrature

	7 Fourier pseudo-spectral method
	7.1 Time-independent Schrödinger's equation examples

	8 Chebyshev pseudo-spectral method
	8.1 Time-independent Schrödinger's equation examples
	8.2 Time-dependent Schrödinger equation examples.

	9 Discussion, conclusions and future work
	10 References
	Appendix A: Analytical solutions for toy potentials
	A.1 Harmonic oscillator potential
	A.2 Linear potential

	Appendix B: Classical orthogonal polynomials
	B.1 Chebyshev polynomials
	B.2 Legendre polynomials
	B.3 Laguerre polynomials
	B.4 Hermite polynomials

	Document Control Data

