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ABSTRACT

Calculating magnetic signatures using analytical techniques becomes infeasible for complex
geometries such as submarines, hence numerical techniques, such as finite element analysis,
must be used instead. In this report we compare analytical and finite element solutions util-
ising COMSOL for calculating the magnetic induction of a permeable spherical shell with an
internal current band in uniform magnetic induction. The analytical and finite element ana-
lysis solutions were found to be approximately equal, this verifies that modelling of magnetic
signatures of submarines using COMSOL will generate correct data.
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Magnetic signatures of spherical bodies in Earth’s
magnetic field — a comparison of analytical and finite

element analysis solutions

Executive Summary

In this report we compare analytical and finite element solutions to validate the use of COM-
SOL software for calculating the magnetic signature of permeable materials with current bands
in background magnetic fields.

The analytical techniques used for determining the magnetic signature of a simple shape, such
as a spherical shell, cannot be used to calculate the magnetic signature of a submarine due
to its complex structure. Instead, the magnetic signature of a submarine must be numerically
calculated using finite element analysis. However, finite element analysis introduces both
discretisation and numerical errors. This report quantifies these errors.

The magnetic signature is calculated for the following domains:

• a permeable spherical shell in uniform magnetic induction B0

• a permeable spherical shell with an internal current band

• a permeable spherical shell with an internal current band in uniform magnetic
induction B0.

The finite element solutions were found to closely approximate the analytical solutions. These
solutions may be used to study the induced magnetic signatures of ferromagnetic bodies and
coils found on modern submarines.

COMSOL may be used to calculate the magnetic induction of permeable materials with in-
ternal current bands in background magnetic fields.
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1. Introduction

A comparison between analytical and finite element solutions has been conducted to validate
the use of COMSOL software for calculating the magnetic induction of permeable materials
in background magnetic fields with current bands. Calculating magnetic induction using
analytical techniques becomes infeasible for complex geometries, instead numerical techniques
such as finite element analysis must be used.

The analytical solution of a permeable spherical shell with an internal current band in uniform
magnetic induction B0 is given in [1], [2]. A comparison between the analytical and finite
element solution of a permeable spherical shell with an external current band is given in [3].
This report compares the analytical to finite element analysis solutions of a permeable spherical
shell with an internal current band in background magnetic induction B0.

Calculation of the magnetic induction using the analytical method requires solving Laplace’s,
or Poisson’s, equation with boundary conditions, this is outlined in Section 2. The analytical
solution consists of a series expansion of associated Legendre functions. For simple geometries
solving Laplace’s equation is feasible. However, for complex geometries the number of bound-
ary conditions and the complexity of the solution renders analytical solutions infeasible, and
hence numerical techniques must be used instead. Finite element analysis, which is outlined
in Section 3, is a numerical method which may be used for calculating magnetic potential and
hence magnetic induction. Finite element analysis converts a second order partial differential
equation into a system of linear equations by discretising the spatial domain. However, dis-
cretising the spatial domain may introduce discretisation error, which will result in a numerical
solution unequal to the analytical solution. This paper quantifies the error created when using
finite element analysis for calculating magnetic signatures for three domains:

• a permeable spherical shell in uniform magnetic induction B0

• a permeable spherical shell with an internal current band

• a permeable spherical shell with an internal current band in uniform magnetic induction
B0.

Magnetic induction signatures, their absolute value comparisons, and errors are presented.
These solutions may be used to study the interaction of ferromagnetic bodies and coils found
on modern submarines.
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2. Background of magnetostatics

2.1. Magnetic scalar potential

The basic equations of magnetostatics are [4]:

∇ ·B = 0 (1)
∇×H = J (2)

where B is the magnetic induction, H is the magnetic field, and J is the current. If there are
no free currents, i.e. J = 0, this means ∇ × H = 0 and we can introduce a scalar potential
ΦM :

H = −∇ΦM (3)

Note that H = −∇ΦM is analogous to E = −∇ΦE in electrostatics. If the medium is linear:

B = −µ∇ΦM (4)
∇ ·B = ∇ · (−µ∇ΦM ) = 0 (5)

where µ is the magnetic permeability of the material. If µ is piecewise constant then the
magnetic scalar potential satisfies the Laplace equation:

∇2ΦM = 0 (6)

2.2. Laplace’s equation and associated Legendre functions

Laplace’s equation in spherical coordinates is given by [5]:

∇2ΦM =
1

r2
∂

∂r

(
r2

∂ΦM

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ΦM

∂θ

)
+

1

r2 sin2 θ

∂2ΦM

∂φ2
= 0 (7)

where r is radial distance, θ is the azimuthal angle, φ is the polar angle. Separating variables:

ΦM = U(r)Θ(θ)Ω(φ) (8)

Substituting into equation (7) and multiplying by r2 sin2 θ
UΘΩ :

r2 sin2 θ

(
1

U

d2U

dr2
+

1

Θr2 sin θ

d

dθ

(
sin θ

dΘ

dθ

))
+

1

Ω

d2Ω

dφ2
= 0 (9)

This gives three equations where m and n(n+ 1) are constants:

−m2 =
1

Ω

d2Ω

dφ2
(10a)

0 =
1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+

(
n(n+ 1)− m2

sin2 θ

)
Θ (10b)

0 =
1

r2
d

dr

(
r2

dU

dr

)
− n(n+ 1)

r2
U (10c)
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Figure 1: Associated Legendre functions of the first kind.

The solutions of these equations are [6]:

Ω = Anm cosmφ+Bnm sinmφ (11a)
Θ = CnmPm

n (cos θ) (11b)

U =
Dnm

rn+1
+ Enmrn (11c)

where Anm,Bnm,Cnm,Dnm, and Enm are constants, and Pm
n (x) are associated Legendre func-

tions of the first kind. The magnetic scalar potential is given by [5]:

ΦM (r, θ, φ) =

∞∑
n=0

n∑
m=0

(Anm cosmφ+Bnm sinmφ)CnmPm
n (cos θ)

(
Dnm

rn+1
+ Enmrn

)
(12)

The associated Legendre functions of the first kind for real argument x are given by [7]:

Pm
n (x) = (−1)m(1− x2)m/2 dm

dxm
Pn(x) (13)

where Pn(x) is the Legendre polynomial and may be expressed using Rodrigues’ formula:

Pn(x) =
1

2nn!

dn

dxn
(x2 − 1)n (14)

Pm
n (x) are bounded in the interval −1 ≤ x ≤ 1. A plot of the P 0

n(x) and P 1
n(x) associated

Legendre functions of the first kind are given in Figure 1.
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3. Background of finite element analysis

3.1. Second-order partial differential equation

This section will focus on finite element analysis in two dimensions. Finite element analysis
solves the generic second-order partial differential equation given by [8]:

∂

∂x

(
αx

∂u

∂x

)
+

∂

∂y

(
αy

∂u

∂y

)
+ βu = g (15)

where αx, αy, β, and g are constants and u is the variable for which the equation is solved.
Laplace’s equation is a special case of equation (15) given by:

∂2Φ

∂x2
+

∂2Φ

∂y2
= 0 (16)

where u = Φ, αx = αy = 1, β = 0, and g = 0. Similarly, Poisson’s equation is a special case
of equation (15) given by:

∂

∂x

(
ϵ
∂Φ

∂x

)
+

∂

∂y

(
ϵ
∂Φ

∂y

)
= −ρv (17)

where u = Φ, αx = αy = ϵ, β = 0, and g = −ρv. Hence, finite element analysis may be used
to numerically solve electromagnetics problems, such as a permeable material in a uniform
magnetic field, or the magnetic field of a current band in a permeable spherical shell.

3.2. Discretisation of the domain

Consider the irregular shape given in Figure 2i. To use finite element analysis to determine
electromagnetic properties such as magnetic induction, the domain must be discretised into
finite elements. The most common shapes used are triangles such as those given in 2ii. Large
triangles give a large discretisation error, which may be improved by using small triangles
in areas with large variations. Once the domain has been meshed with finite elements the
interpolation functions must be developed for the triangles.

3.3. Interpolation functions

An interpolation function is used to determine the potential inside the triangular finite elements
given in Figure 2ii. The potential u inside the interior of a triangle finite element, as given in
Figure 3, is calculated as:

u = ue1N1 + ue2N2 + ue3N3 (18)

where ue1, ue2, and ue3 are the potentials at the vertices of the triangle, and N1, N2, and N3 are
the interpolation functions. The interpolation functions must be continuous within the finite
element and at least once differentiable, hence the simplest choice is a polynomial of degree
one.

4
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(i) Irregular 2-D domain

 

Ωe 

(ii) Discretised 2-D domain

Figure 2: Triangular finite elements are used to discretise the irregular 2-D domain. Ωe rep-
resents the area of the triangle finite element.

3.4. The method of weighted residual

A weak formulation, where equation (15) is no longer required to be exact, may be obtained
by introducing a weighted residual element given by [8]:

re =
∂

∂x

(
αx

∂u

∂x

)
+

∂

∂y

(
αy

∂u

∂y

)
+ βu− g (19)

where re is the residual element. If the numerical solution is equal to the analytical solution
then the residual element should equal zero. However, as the domain has been discretised
this is not the case. The objective, then, of finite element analysis is to minimise the residual
element by multiplying re with a weight function w, integrating over the area of the element
Ωe and setting the integral to zero:∫ ∫

Ωe

w

[
∂

∂x

(
αx

∂u

∂x

)
+

∂

∂y

(
αy

∂u

∂y

)
+ βu− g

]
dxdy = 0 (20)

Introducing the identity:

w
∂

∂x

(
αx

∂u

∂x

)
=

∂

∂x

(
wαx

∂u

∂x

)
− αx

∂w

∂x

∂u

∂x
(21)

Substituting this identity into equation (20) gives:∫ ∫
Ωe

[
∂

∂x

(
wαx

∂u

∂x

)
+

∂

∂y

(
wαy

∂u

∂y

)]
dxdy

−
∫ ∫

Ωe

[
αx

∂w

∂x

∂u

∂x
+ αy

∂w

∂y

∂u

∂y

]
dxdy +

∫ ∫
Ωe

βωu dxdy =

∫ ∫
Ωe

wg dxdy (22)

UNCLASSIFIED
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u2 u1 

u3 

u 

Figure 3: A triangular finite element with nodes 1, 2, and 3. The potential u is found by
interpolation of u1, u2, and u3.

Green’s theorem states that the area integral of the divergence of a vector equals the total
outward flux through the contour that bounds the area:∫ ∫

Ωe

(∇t ·A)dA =

∮
Γe

A · ândl (23)

where A is the vector quantity of interest, Γe is the boundary of the element, and ân is the
outward unit vector that is normal to the boundary of the element. Applying Green’s theorem
to the first integral of equation (22), and defining the normal unit vector as ân = âxnx+ âyny,
the weak form of the differential equation becomes:

−
∫ ∫

Ωe

[
αx

∂w

∂x

∂u

∂x
+ αy

∂w

∂y

∂u

∂y

]
dxdy +

∫ ∫
Ωe

βwu dxdy

=

∫ ∫
Ωe

wg dxdy −
∮
Γe

w

(
αx

∂u

∂x
nx + αy

∂u

∂y
ny

)
dl (24)

The weight function is w = Ni for i=1,2,...n which means the weak form of the differential is
discretised given by:

−
∫ ∫

Ωe

⎡⎣αx
∂Ni

∂x

n∑
j=1

uej
∂Nj

∂x
+ αy

∂Ni

∂y

n∑
j=1

uej
∂Nj

∂y

⎤⎦ dxdy +

∫ ∫
Ωe

βNi

⎛⎝ n∑
j=1

uejNj

⎞⎠ dxdy

=

∫ ∫
Ωe

Nig dxdy −
∮
Γe

Ni

(
αx

∂u

∂x
nx + αy

∂u

∂y
ny

)
dl for i = 1, 2, ..., n (25)

The second-order partial differential equation has now been converted into a system of linear

6
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equations: ⎡⎢⎢⎢⎣
Ke

11 Ke
12 · · · Ke

1n

Ke
21 Ke

22 · · · Ke
2n

...
...

. . .
...

Ke
n1 Ke

n2 · · · Ke
nn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ue1
ue2
...
uen

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
be1
be2
...
ben

⎤⎥⎥⎥⎦ (26)

where:
Ke

ij = M e
ij + T e

ij (27a)

bei = fe
i + pei (27b)

M e
ij = −

∫ ∫
Ωe

[
αx

∂Ni

∂x

∂Nj

∂x
+ αy

∂Ni

∂y

∂Nj

∂y

]
dxdy (27c)

T e
ij =

∫ ∫
Ωe

βNiNj dxdy (27d)

fe
i =

∫ ∫
Ωe

Nig dxdy (27e)

pei = −
∮
Γe

Ni

(
αx

∂u

∂x
nx + αy

∂u

∂y
ny

)
dl (27f)

3.5. Boundary conditions

Equation (26) is singular, and thus does not have a unique solution. Imposing boundary
conditions allows calculation of a unique solution. A Dirichlet boundary condition, which
specifies the values a numerical solution must adhere to on the boundary of the domain,
reduces the size of the final linear system by the number of finite elements minus the number of
boundary conditions. Consider the boundary condition ue1 = ueb. To implement this boundary
condition the first line associated with the boundary condition is eliminated and ue1 = ueb is
substituted in all the remaining N − 1 equations given by:⎡⎢⎢⎢⎣

Ke
22 Ke

23 · · · Ke
2n

Ke
32 Ke

33 · · · Ke
3n

...
...

. . .
...

Ke
n2 Ke

n3 · · · Ke
nn

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ue2
ue3
...
uen

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
be2 −K21ub
be3 −K31ub

...
ben −Kn1ub

⎤⎥⎥⎥⎦ (28)

Solving equation (28) for u gives the potential, such as scalar magnetic potential, for all finite
elements.

To summarise, we started with a domain in which we wanted to calculate the magnetic field
or magnetic induction described by Laplace’s or Poisson’s equation. These may be solved
numerically by using the finite element analysis method. First the domain was discretised into
triangle elements, then the second order partial differential equations were converted into a
system of linear equations with boundary conditions. These linear equations are solved for u,
the magnetic potential.
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4. Magnetic induction of a permeable spherical shell
in uniform magnetic induction B0

Consider the spherical shell of permeable material in uniform magnetic induction B = B0ẑ
given in Figure 4.

 

 

B0 

y 

z 

R2 

R1 

µ1 

µ1 

µ2 1 

2 

3 

Figure 4: Spherical shell in uniform magnetic induction B0 where R1 is the inner radius, R2

is the outer radius, µ1 and µ2 are permeabilities, and 1, 2, 3 refers to the regions
considered.

4.1. Analytical solution

The potential due to the external field is ΦM=−H0r cos θ where H0 is the background magnetic
field. The potential in the three regions is given by [5]:

Φ1 =
∞∑
n=0

Anr
nPn(cos θ) region 1 (29a)

Φ2 =

∞∑
n=0

(
Bnr

n +
Cn

rn+1

)
Pn(cos θ) region 2 (29b)

Φ3 = −H0r cos θ +
∞∑
n=0

Dn

rn+1
Pn(cos θ) region 3 (29c)

where An, Bn, Cn, and Dn are constants. The solutions in different regions are connected by

8
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the boundary conditions [9]:

Hj · n =
µi

µj
Hi · n (30a)

Hj × n = Hi × n (30b)

where Hi is the magnetic field in region i, Hj is the magnetic field in region j, µi is the magnetic
permeability in region i, µj is the magnetic permeability in region j, and n is a vector normal
to the boundary. Boundary conditions, Hθ and Br, must be continuous at r = R1 and r = R2.

∂Φ1

∂θ
=

∂Φ2

∂θ
(31a)

µ1
∂Φ1

∂r
= µ2

∂Φ2

∂r
(31b)

∂Φ2

∂θ
=

∂Φ3

∂θ
(31c)

µ1
∂Φ2

∂r
= µ2

∂Φ3

∂r
(31d)

For Φ3 we have Earth’s constant field term −H0r cos θ. As this is equated to Pn(cos θ), only
n = 1 is allowed (i.e. P1(cos θ) = cos θ), and all other n terms are equal to zero, giving:

Φ1 = Ar cos θ (32a)

Φ2 =

[
Br +

C

r2

]
cos θ (32b)

Φ3 = −H0r cos θ +
D

r2
cos θ (32c)

Solving by applying the boundary conditions gives the D coefficient:

D =

⎡⎣ (2µ′ + 1)(µ′ − 1)

(2µ′ + 1)(µ′ + 2)− 2
R3

1

R3
2
(µ′ − 1)2

⎤⎦ (R3
2 −R3

1)H0 (33)

where µ′ = µ2/µ1. The magnetic field vector is given by:

H = −∇ΦM = −
[
∂ΦM

∂r
r̂+

1

r

∂ΦM

∂θ
θ̂ +

1

r sin θ

∂ΦM

∂φ
φ̂

]
(34)

In region 3 the magnetic field is given by:

H3 =

[
H0 cos θ +

2D

r3
cos θ

]
r̂+

[
−H0 sin θ +

D

r3
sin θ

]
θ̂ (35)

with spherical vector components:

Hr = H0 cos θ +
2D

r3
cos θ (36a)

Hθ = −H0 sin θ +
D

r3
sin θ (36b)

Hφ = 0 (36c)
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(i) Mesh of spherical shell and plane. (ii) 3D mesh construction.

Figure 5: Finite element analysis model created in COMSOL of a permeable spherical shell in
uniform magnetic induction B0.

The spherical to rectangular vector transformations are given by:

Hx = Hr sin θ cosφ+Hθ cos θ cosφ−Hφ sinφ (37a)
Hy = Hr sin θ sinφ+Hθ cos θ sinφ+Hφ cosφ (37b)
Hz = Hr cos θ −Hθ sin θ (37c)

The magnetic induction in region 3 is (using B = µH):

Bx =
3Dxz

µ1(x2 + y2 + z2)5/2
(38a)

By =
3Dyz

µ1(x2 + y2 + z2)5/2
(38b)

Bz = B0 +
D(2z2 − x2 − y2)

µ1(x2 + y2 + z2)5/2
(38c)

4.2. Finite element analysis solution

The finite element analysis model was created using COMSOL version 5.3 [10] and the AC/DC
Module [11]. The model contains a spherical shell of permeable material at its centre. The
inner surface of the spherical shell was meshed and the interior of the shell was swept with
a mesh of three layers. A plane at x = 20m, which is the plane used throughout this paper,
was finely meshed to ensure accurate results during post processing. The mesh of these two
domains is given in Figure 5i. Three concentric shells were created to slowly expand from a
very fine mesh near the permeable shell to a coarse mesh at the boundary. As COMSOL uses
a finite volume, and in reality magnetic fields extend to infinity, the infinite elements option
in COMSOL was applied to the outer concentric shell. The mesh of concentric shells are given
in Figure 5ii and encompasses the plane and spherical shell. Finally, a uniform magnetic field
was applied outside of the permeable spherical shell.

10
UNCLASSIFIED



UNCLASSIFIED
DST-Group–TR–3530

4.3. Comparison between analytical and finite element analysis
solutions

A plot of the magnetic induction Bx, By, Bz, and Btotal in region 3 for a spherical shell in
uniform magnetic induction B0 is given in Figures 6, 7, 8, and 9 respectively. The analytical
and finite element analysis solutions are approximately equal. By was calculated at y = 10m
due to the magnetic signature being zero at y = 0m. The root-mean-squared errors are
Bx = 0.17nT, By = 0.07nT, Bz = 0.21nT, and Btotal = 0.23nT.
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(iii) Comparison between analytical and finite element analysis solutions where y = 0m.
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(iv) Error between analytical and finite element analysis solutions where y = 0m.

Figure 6: Magnetic induction Bx (nT) of a spherical shell in uniform magnetic induction
B0 in the y-z plane where x = 20m, R1 = 9.98m, R2 = 10m, B0 = 55 000nT,
µ1 = 4π×10−7Hm−1, and µ2/µ1 = 80.
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(iii) Comparison between analytical and finite element analysis solutions where y = 10m.
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(iv) Error between analytical and finite element analysis solutions where y = 10m.

Figure 7: Magnetic induction By (nT) of a spherical shell in uniform magnetic induction B0

in the y-z plane where x = 20m, R1 = 9.98m, R2 = 10m, B0 = 55 000nT, µ1 =
4π×10−7Hm−1, and µ2/µ1 = 80.
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(iii) Comparison between analytical and finite element analysis solutions where y = 0m.
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(iv) Error between analytical and finite element analysis solutions where y = 0m.

Figure 8: Magnetic induction Bz (nT) of a spherical shell in uniform magnetic induction B0

in the y-z plane where x = 20m, R1 = 9.98m, R2 = 10m, B0 = 55 000nT, µ1 =
4π×10−7Hm−1, and µ2/µ1 = 80.
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(iii) Comparison between analytical and finite element analysis solutions where y = 0m.
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(iv) Error between analytical and finite element analysis solutions where y = 0m.

Figure 9: Magnetic induction Btotal (nT) of a spherical shell in uniform magnetic induction
B0 in the y-z plane where x = 20m, R1 = 9.98m, R2 = 10m, B0 = 55 000nT,
µ1 = 4π×10−7Hm−1, and µ2/µ1 = 80.
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5. Magnetic induction of a permeable spherical shell
with an internal current band

Consider the spherical shell with an internal current band in Figure 10.

 

(i) Schematic diagram.
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z 

µ1 

R3 

R2 

R1 

µ1 

µ1 

µ2 
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α 

4 

(ii) Cross section of the schematic.

Figure 10: Spherical shell with an internal current band where R1 is the current band radius, R2

is the inner shell radius, R3 is the outer shell radius, µ1 and µ2 are permeabilities,
α is the angle of the current band considered from the centre of the spherical shell,
and 1, 2, 3, and 4 are the regions considered.

5.1. Analytical solution

The magnetic induction may be expressed as [1], [5]:

B = ∇×A (39)

where A is the magnetostatic vector potential. Using the constitutive relationship B = µH
and equation (2) then:

1

µ
∇× (∇×A) = J (40)

where J is the current vector. Using the identity ∇× (∇× F) = ∇(∇ · F)−∇2F:
1

µ
(∇(∇ ·A)−∇2A) = J (41)

Using the Coulomb gauge ∇ ·A = 0 we get Poisson’s equation:

∇2A = −µJ (42)
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If J = 0, Poisson’s equation reduces to Laplace’s equation. The boundary conditions which
must be satisfied are:

nij · (µjHj − µiHi) = 0 (43a)

nij ×
(
Bj

µj
− Bi

µi

)
= JS (43b)

where JS is the surface current density. The spherical symmetry of the surface current density
implies that the vector potential has only an azimuthal component and is given by Poisson’s
equation [1], [4]:

∂2Aφ

∂r2
+

2

r

∂Aφ

∂r
+

1

r2
∂2Aφ

∂θ2
+

cot θ

r2
∂Aφ

∂θ
+

1

r2 sin2 θ

∂2Aφ

∂φ2
= −µJφ(r, θ) (44)

Using separation of variables the general solution of the vector potential can be expressed as:

Aφ =

∞∑
n=1

(
Anr

n +
Bn

rn+1

)
P 1
n(cos θ) (45)

The magnetic induction is given by:

B = ∇×A =
r̂

r sin θ

(
∂

∂θ
(Aφ sin θ)−

∂Aθ

∂φ

)
+

θ̂

r

(
1

sin θ

∂Ar

∂φ
− ∂

∂r
(rAφ)

)
+

φ̂

r

(
∂

∂r
(rAθ)−

∂Ar

∂θ

)
(46)

Only the Aφ component is relevant in this example and therefore the magnetic induction is
given by:

Br =
1

r sin θ

∂

∂θ
(sin θAφ) (47a)

Bθ = −1

r

∂

∂r
(rAφ) (47b)

Bφ = 0 (47c)

The current may be expanded in associated Legendre functions:

Jφ(r, θ) = J
∞∑
n=1

KnP
1
n(cos θ) (48)

where the constant Kn is given by using the orthogonality relation:

Kn =
2n+ 1

2n(n+ 1)

∫ π

0
P 1
n(cos θ) sin θdθ (49)
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If the current is symmetrical around the x-y plane then Kn may be expressed as:

Kn =
2n+ 1

2n(n+ 1)

[∫ π/2

π/2−α
P 1
n(cos θ) sin θdθ +

∫ π/2+α

π/2
P 1
n(cos θ) sin θdθ

]
(50)

The magnetic potential in the four regions are given by:

Aφ1 =

∞∑
n=1

(Anr
n)P 1

n(cos θ) (51a)

Aφ2 =
∞∑
n=1

(
Bnr

n +
Cn

rn+1

)
P 1
n(cos θ) (51b)

Aφ3 =

∞∑
n=1

(
Dnr

n +
En

rn+1

)
P 1
n(cos θ) (51c)

Aφ4 =
∞∑
n=1

(
Fn

rn+1

)
P 1
n(cos θ) (51d)

where An, Bn, Cn, Dn, En, and Fn are constants. Applying boundary conditions and solving
the simultaneous equations gives:

Jn(θ) = Jn (52a)

J ′
n =

µ1JKnR
n+2
1

2n+ 1
(52b)

X =
−R2n+1

3

[
1 +

(
n+1
n

µ1

µ2

)]
1− µ1

µ2

(52c)

Dn =

1
µ1
J ′
n(2n+ 1)R

−(n+2)
2

1
µ1
(n+ 1)Rn−1

2 + 1
µ1
X(n+ 1)R

−(n+2)
2 − 1

µ2
(n+ 1)Rn−1

2 + 1
µ2
nXR

−(n+2)
2

(52d)

Cn = J ′
n (52e)

En = DnX (52f)

Bn = −J ′
nR

−(2n+1)
2 +Dn + EnR

−(2n+1)
2 (52g)

An = Bn + CnR
−(2n+1)
1 (52h)

Fn = DnR
2n+1
3 + En (52i)

The magnetic induction in region 4 is given by:

Br =
1

r sin θ

∞∑
n=1

Fn

rn+1

∂

∂θ
(sin θP 1

n(cos θ)) (53a)

Bθ =
1

r

∞∑
n=1

FnP
1
n(cos θ)

n

rn+1
(53b)

Bφ = 0 (53c)
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The spherical to rectangular vector transformations are given by:

Bx = Br sin θ cosφ+Bθ cos θ cosφ−Bφ sinφ (54a)
By = Br sin θ sinφ+Bθ cos θ sinφ+Bφ cosφ (54b)
Bz = Br cos θ −Bθ sin θ (54c)

5.2. Finite element analysis solution

The finite element analysis model was created using COMSOL version 5.3 [10] using the
AC/DC Module [11]. The current band was created by removing lower and upper portions
of an infinitesimally thin spherical sheet as given in Figure 11i. The current band was then
meshed as given in Figure 11ii. The model has a spherical shell of permeable material at its
centre. The inner surface of the spherical shell was meshed and the interior of the shell was
swept with a mesh of three layers as given in Figures 11iii and 11iv. A plane at x = 20m was
finely meshed to ensure accurate results during post processing. Then three concentric shells
were created to slowly converge from a very fine mesh near the permeable shell to a coarse
mesh at the boundary. As COMSOL uses a finite volume, and in reality magnetic fields extend
to infinity, the infinite elements option in COMSOL was applied to the outer concentric shell.

5.3. Comparison between analytical and finite element analysis
solutions

A plot of the lower order terms of Bx are given in Figure 12. Higher order terms become small
as n increases due to scaling by r−(n+1). In equation (50) Kn is equal to zero when n is even.
Hence Bx values for even terms are also zero.

A plot of the Bx, By, Bz, and total B are given in Figures 13, 14, 15, and 16 respectively.
The analytical and finite element analysis solutions are approximately equal. The root-mean-
squared errors are Bx = 3.59 × 10−4nT, By = 2.03 × 10−4nT, Bz = 8.89 × 10−4nT, and
Btotal = 6.14× 10−4nT.
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(i) Current band mesh (ii) Close-up of current band mesh

(iii) Meshed current band within a meshed
spherical shell.

(iv) Fine mesh on shell surface

Figure 11: Finite element analysis model created in COMSOL of a permeable spherical shell
with an internal current band.
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(vi) Sum of n = 1, 3, 5, 7, 9

Figure 12: Lower order solutions of the magnetic induction Bx (nT) of a spherical shell with
an internal current band where n denotes the order, x = 20m, y = 0m, R1 = 9.68m,
R2 = 9.98m, R3 = 10m, J = 1Am−1, α = 1◦, µ1 = 4π×10−7Hm−1, and µ2/µ1 =
80.
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(iii) Comparison between analytical and finite element analysis solutions where y = 0m.
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(iv) Error between analytical and finite element analysis solutions where y = 0m.

Figure 13: Magnetic induction Bx (nT) of a spherical shell with an internal current band in
the y-z plane where x = 20m, R1 = 9.68m, R2 = 9.98m, R3 = 10m, J = 1Am−1,
α = 1◦, µ1 = 4π×10−7Hm−1, and µ2/µ1 = 80.
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(iii) Comparison between analytical and finite element analysis solutions where y = 10m.
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(iv) Error between analytical and finite element analysis solutions where y = 10m.

Figure 14: Magnetic induction By (nT) of a spherical shell with an internal current band in
the y-z plane where x = 20m, R1 = 9.68m, R2 = 9.98m, R3 = 10m, J = 1Am−1,
α = 1◦, µ1 = 4π×10−7Hm−1, and µ2/µ1 = 80.
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(iii) Comparison between analytical and finite element analysis solutions where y = 0m.
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(iv) Error between analytical and finite element analysis solutions where y = 0m.

Figure 15: Magnetic induction Bz (nT) of a spherical shell with an internal current band in
the y-z plane where x = 20m, R1 = 9.68m, R2 = 9.98m, R3 = 10m, J = 1Am−1,
α = 1◦, µ1 = 4π×10−7Hm−1, and µ2/µ1 = 80.
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(i) Analytical solution.
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(ii) FEA solution.
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(iii) Comparison between analytical and finite element analysis solutions where y = 0m.
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(iv) Error between analytical and finite element analysis solutions where y = 0m.

Figure 16: Magnetic induction Btotal (nT) of a spherical shell with an internal current band in
the y-z plane where x = 20m, R1 = 9.68m, R2 = 9.98m, R3 = 10m, J = 1Am−1,
α = 1◦, µ1 = 4π×10−7Hm−1, and µ2/µ1 = 80.
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6. Magnetic induction of a permeable spherical shell
with an internal current band in uniform

magnetic induction B0

Consider the spherical shell with an internal current band in a background magnetic induction
B0 given in Figure 17.

 B0 

y 

z 

µ1 

R3 

R2 

R1 

µ1 

µ1 

µ2 

1 

2 

3 

α 

4 

Figure 17: Spherical shell with an internal current band in uniform magnetic induction B0

where R1 is the current band radius, R2 is the inner shell radius, R3 is the outer
shell radius, µ1 and µ2 are permeabilities, α is the angle of the current band con-
sidered from the centre of the spherical shell, and 1, 2, 3, and 4 are the regions
considered.

6.1. Analytical solution

The analytical solution is found, thanks to the superposition principle, by adding the magnetic
induction of the spherical shell in uniform magnetic induction B0 to the magnetic induction
of the current band in a spherical shell [2]. The final equations are given by:

Br =
H0 cos θ

µ1
+

2D

µ1r3
cos θ +

1

r sin θ

∞∑
p=1

Fp

rp+1

∂

∂θ
(sin θP 1

p (cos θ)) (55)

Bθ = −H0 sin θ

µ1
+

D

µ1r3
cos θ +

1

r

∞∑
p=1

FpP
1
p (cos θ)

p

rp+1
(56)

Bφ = 0 (57)

The spherical to rectangular vector transformations are given by equations (54a) - (54c).
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6.2. Finite element analysis solution

The finite element analysis model was created using COMSOL version 5.3 [10] and the AC/DC
Module [11]. The model uses the same model given in Figure 11 with the addition of a uniform
magnetic field applied outside the spherical shell.

6.3. Comparison between analytical and finite element analysis
solutions

A plot of the Bx, By, Bz, and Btotal are given in Figures 18, 19, 20, 21 respectively. The
analytical and finite element analysis solutions are approximately equal. The root-mean-
squared errors are Bx = 0.20nT, By = 0.04nT, Bz = 0.08nT, and Btotal = 0.18nT.
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(iii) Comparison between analytical and finite element analysis solutions where y = 0m.
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(iv) Error between analytical and finite element analysis solutions where y = 0m.

Figure 18: Magnetic induction Bx (nT) of a spherical shell with an internal current band
in uniform magnetic induction in the y-z plane where x = 20m, R1 = 9.68m,
R2 = 9.98m, R3 = 10m, J = −520Am−1, B0 = 55, 000nT, α = 1◦, µ1 =
4π×10−7Hm−1, and µ2/µ1 = 80.
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(iii) Comparison between analytical and finite element analysis solutions where y = 10m.
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(iv) Error between analytical and finite element analysis solutions where y = 10m.

Figure 19: Magnetic induction By (nT) of a spherical shell with an internal current band
in uniform magnetic induction in the y-z plane where x = 20m, R1 = 9.68m,
R2 = 9.98m, R3 = 10m, J = −520Am−1, B0 = 55, 000nT, α = 1◦, µ1 =
4π×10−7Hm−1, and µ2/µ1 = 80.
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(iii) Comparison between analytical and finite element analysis solutions where y = 0m.
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(iv) Error between analytical and finite element analysis solutions where y = 0m.

Figure 20: Magnetic induction Bz (nT) of a spherical shell with an internal current band
in uniform magnetic induction in the y-z plane where x = 20m, R1 = 9.68m,
R2 = 9.98m, R3 = 10m, J = −520Am−1, B0 = 55, 000nT, α = 1◦, µ1 =
4π×10−7Hm−1, and µ2/µ1 = 80.

30
UNCLASSIFIED



UNCLASSIFIED
DST-Group–TR–3530

-50

0

50

Y
 (

m
)

-50 0 50

Z (m)

20

40

60

80

100
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(iii) Comparison between analytical and finite element analysis solutions where y = 0m.
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(iv) Error between analytical and finite element analysis solutions where y = 0m.

Figure 21: Magnetic induction Btotal (nT) of a spherical shell with an internal current band
in uniform magnetic induction in the y-z plane where x = 20m, R1 = 9.68m,
R2 = 9.98m, R3 = 10m, J = −520Am−1, B0 = 55, 000nT, α = 1◦, µ1 =
4π×10−7Hm−1, and µ2/µ1 = 80.

UNCLASSIFIED
31



DST-Group–TR–3530

UNCLASSIFIED

7. Conclusions

In this report we compared analytical and finite element solutions to validate the use of
COMSOL software for calculating the magnetic signature of permeable materials with internal
current bands in background magnetic fields.

Importantly, the analytical solutions were in close agreement with the finite element analysis
solutions for the magnetic induction of a permeable spherical shell with an internal current
band in uniform magnetic induction B0 for x, y, z axes, and the total field.

Based on the results presented in this report, COMSOL may be used to calculate the magnetic
induction of permeable materials with internal current bands in background magnetic fields.

8. Further work

This work considered magnetic induction of a permeable spherical shell with an internal current
band in a uniform magnetic induction. Further work should consider the magnetic induction
of a permeable prolate spheroidal shell with an internal current band in a uniform magnetic
induction to better model a submarine.

This work may be used to study the induced magnetic signature of a submarine in a background
magnetic field. Future work should focus on accurately modelling the permanent magnetic
signature, and stress magnetisation, of a submarine using COMSOL.
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