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ABSTRACT

Cross-validation is the de facto standard for model validation in the machine learning
community. It reduces the risk of overfitting and provides an unbiased estimate of the
learning algorithm predictive performance. Some people have argued cross-validation,
coupled with sophisticated statistical learning methods, has rendered traditional scientific
practices irrelevant. In this report, we review the foundations of cross-validation and
draw attention to common, but underappreciated, assumptions. We argue that cross-
validation is unsuitable for dealing with realistic complications like missing data, theory-
laden observations, and malicious input. As a solution, we advocate for a holistic approach
to model validation that embraces validation of data quality, acknowledgement of the role
of subjective judgement in model assessment, and the use of extended peer review.
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Cross-validation is insufficient for model

validation

Executive Summary

Cross-validation is the de facto standard for model validation in the statistical learning
and machine learning communities. Data is split into a training set that calibrates the
statistical model, and an independent test set that is used to estimate the model’s pre-
dictive performance. Given the popularity of cross-validation, it is critical to identify any
implicit assumptions or limitations of the method.

We argue that cross-validation is unsuitable as a universal method for model assessment.
Despite high cross-validation accuracy, artificial neural networks that achieve human- level
accuracy in image recognition are vulnerable against adversarial examples, meaning im-
ages become misclassified after miniscule manipulation. Likewise, Google Flu Trends was
able to accurately predict influenza outbreaks for several years before the model sud-
denly mispredicted outbreak timings and intensities. These examples show that strong
cross-validation performance does not guarantee the model has truly learnt about the
phenomena of interest.

Cross-validation assumes that samples are drawn from an independent and identical distri-
bution, an assumption that regularly fails because of hierarchical structure in the model,
spatial or temporal correlations in the data, or non-stationary (time-varying) system dy-
namics. However, cross-validation is unable to detect these violations and may provide an
unrealistic and optimistic assessment of predictive performance.

The limitations of independent and identical samples can be overcome by using modified
cross-validation procedures. For example, hierarchical models can be tested by performing
cross-validation for each level of the hierarchy, and time series can be validated using out-
of-sample forecasting with a rolling time window. However, this still requires the correct
sampling structure to be identified, which may not be known a priori.

Data quality is another fundamental issue. Supervised learning is predicated on having
access to the ground truth (the true value or label of the samples). For complex problems
the ground truth may be uncertain or contentious. For example, the definitions of diseases
in medical science change overtime: Diseases may be split into separate classes, merged
into a spectrum, or redefined as new knowledge is acquired. When the ground truth
is contentious, test set accuracy is not meaningful as an objective indicator of model
correctness, and is better thought of as a check for model consistency.

Data sampling can be misrepresentative of the desired population because of social biases
that affect the experimental design or other systematic patterns of missing data. The
image classifier Google Photo mislabelled African Americans as Gorillas, while COMPAS
software used to determine court sentencings in the United States was allegedly found to
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be harsher on African American defendants than Caucasian defendants. Addressing these
social and data biases is an active area of research and cannot be meaningfully addressed
with cross-validation alone.

An uncritical application of cross-validation leaves the statistical learning and machine
learning communities at risk of “Big Data Hubris”, “the often implicit assumption that
big data are a substitute for, rather than a supplement to, traditional data collection
and analysis.” [Lazer, David, et al. “The parable of Google Flu: traps in big data
analysis.” Science 343.6176 (2014): 1203-1205.]. Cross-validation can be strengthened by
supplementing it with traditional data analysis and sampling techniques.

Statistical learning often treats data collection as a passive process. Greater emphasis
on the design of experiments, randomized controlled experiments, instrumentation would
reduce the incidence of measurement artefacts and unbalanced data sets that oversample
particular sub-groups. These considerations would improve model robustness.

To mitigate against social bias, we advocate for the use of diverse teams and extended peer
review. Inclusive teams are more likely to identify potential sources of bias and provide
stricter validation of the model’s performance than cross-validation alone. For instance,
algorithms used for job hiring could be reviewed by equality groups or legal departments.
Social bias could be identified through subgroup analysis, although we believe causal
models are superior because of their ability to properly identify confounding factors.

Model validation is a difficult issue and further work is required. We advocate for a holistic
approach to model assessment that contextualizes the problem, uses extended peer review,
and remains grounded in deductive reasoning.
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1 Procedures for estimating the learning algorithm and model performance.
a) To estimate the performance of a learning algorithm, both the training
and test sets must be resampled. Each train and test pair provides a point
estimate of the learning algorithm performance, while an ensemble of pairs
allows confidence intervals to be derived. b) To estimate the performance
of a specific model only one training set is used. A point estimate of the
performance can be derived from a single test set or a confidence interval
from multiple test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 A graphical representation of a hierarchical model for variation in student
marks with inter-student and inter-school level variation. (a) A graphical
representation of an example data set with several schools and students. (b)
Several entries of the data set (marked by red crosses) have been removed
to form a test data set for cross-validation. The remaining entries form the
training data set. (c) Leave-one-out cross-validation at the student-level for
a hierarchical model. The cross-validation score will be indicative of the
predictive performance of students for schools already within the training set.
(d) Leave-one-out cross-validation at the school-level for a hierarchical model.
The cross-validation score will be indicative of the predictive performance of
students for schools outside the training set. . . . . . . . . . . . . . . . . . . . 12

3 Cross-validation for time series data. The training set is shown by the blue
dots, the test set is shown by the red dots, and data points excluded from both
sets are shown in grey. The time series proceeds from left-to-right (early-to-
late). (a) A näıve application of cross-validation to time-series data in which
data points are missing at random. (b) A structured approach to cross-
validation that forecasts the data point one time step ahead. Figure adopted
from Rob Hyndman [34]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 The effect of fertilizer on crop yield. Crops in a sunny patch are shown by the
red dots and crops in the dark patch are shown by the blue dots. Because of an
unbalanced design, the data can be well described with a linear relationship
between the fertilizer amount and the crop yield with a constant offset from
the lighting, or by a sigmoidal function of the fertilizer and no term from
being in a sunny/dark patch. Adapted from Gelman, et al. [12]. . . . . . . . 15
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1 Introduction

Model credibility is critical in the areas of science, technology, business, medicine, and
defence. Each field has developed particular methods of verifying and validating models,
depending on their specific domain needs. Defence acquisition relies on identifying capa-
bility requirements, performing cost-benefit analysis, and life-cycle analyses of potential
platforms [1]. In software engineering, credibility is attained and maintained through re-
gression testing, test cases, integration testing, formal methods and user testing [2]. Oper-
ations analysis features assumptions documents or conceptual models, sensitivity analysis,
comparison with previous models, and comparison of model output with empirical data
[3]. When developing training simulators, key metrics are simulation fidelity, resolution
and interoperability. Each field has developed a variety of techniques for attaining credi-
bility and validating their underlying assumptions. This variety of techniques is necessary
because of the messy nature of the problems these fields contend with and the competing
needs of different stakeholders. In contrast, the validation and credibility of statistical
models have largely rested on their predictive performance.

Cross-validation is arguably the most widely used method for assessing predictive per-
formance in statistical learning and machine learning [4]. Data is split into a training
set that calibrates the statistical model, and an independent test set that is used to as-
sess the model. The training or in-sample performance is usually superior to the test set
or out-of-sample performance because the data is used for both model construction and
assessment. Cross-validation can be used for parameter estimation, model selection, or
to provide an unbiased estimate of general predictive performance. However, these tasks
cannot all be performed simultaneously using a single test set because information will
leak from the test set to the model. When model selection and an estimate of predictive
performance both need to be made more complicated forms of cross-validation, like nested
cross-validation, are sometimes used.

Cross-validation provides estimates for two separate quantities, namely expected learning
algorithm and model performance. These quantities are sometimes known as the expected
and conditional test errors [4], or the prediction error and expected value of prediction
error [5]. The learning algorithm performance averages over the possible training sets,
while the model performance is conditioned on a single test set (see Fig. 1). In both cases
a quantitative score or metric is used to assess the out-of-sample (test set) performance,
whether it be accuracy, mean-square error, or some other kind of quantitative metric.
The standard method of multi-fold cross-validation mixes these two quantities together,
so doesn’t have a clear statistical interpretation.

The elegance and simplicity of cross-validation is sometimes perceived to render tradi-
tional model-theoretic considerations unnecessary. This attitude is exemplified in Chris
Andersens provocative essay The End of Theory: The Data Deluge Makes the Scientific
Method Obsolete [6],

“Petabytes allow us to say: “Correlation is enough.” We can stop looking for
models. We can analyze the data without hypotheses about what it might show.
We can throw the numbers into the biggest computing clusters the world has
ever seen and let statistical algorithms find patterns where science cannot.”
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Figure 1: Procedures for estimating the learning algorithm and model performance. a) To
estimate the performance of a learning algorithm, both the training and test sets
must be resampled. Each train and test pair provides a point estimate of the
learning algorithm performance, while an ensemble of pairs allows confidence
intervals to be derived. b) To estimate the performance of a specific model only
one training set is used. A point estimate of the performance can be derived
from a single test set or a confidence interval from multiple test sets.

2
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The intended purpose of this paper is to clarify the role of cross-validation and to evaluate
its adequacy as a method for model validation. We argue that statistical learning would
be more credible and reliable if it embraced a multi-dimensional approach to validation,
as can be seen in other fields.

It is critical to understand the role that out-of-sample performance should play in model
formulation and assessment given the emerging importance and popularity of cross-validation
as a model assessment method. An unthoughtful movement towards algorithmic analysis
leaves the scientific community at risk of “Big Data Hubris” [7],

“the often implicit assumption that big data are a substitute for, rather than a
supplement to, traditional data collection and analys... quantity of data does
not mean that one can ignore foundational issues of measurement and construct
validity and reliability and dependencies among data.”

We contend that cross-validation works well for problems with unambiguous performance
metrics, notably competitive games like chess, checkers, and go [8], where all stakeholders
in the model’s application agree on the metrics that determine ‘good performance’. How-
ever, recent work indicates that cross-validation is unsuitable as a standalone method for
open world problems with ambiguous or multiple competing objectives, such as designing
an efficient and equitable transport system.

Cross-validation may fail to detect fragility in the underlying models. Neural networks
that achieve human-level accuracy in image recognition are vulnerable against adversar-
ial examples, meaning images become misclassified after miniscule manipulation, despite
high cross-validation accuracy [9]. Another example of cross-validation failing to provide
adequate validation is seen from the failure of Google Flu Trends. Google Flu Trends was
able to accurately predict influenza outbreaks for several years before the model suddenly
mispredicted outbreak timings and intensities [7, 10, 11]. These examples demonstrate
that cross-validation cannot provide model validation in a general sense and that supple-
mentary validation is necessary.

There are additional reasons to be wary of cross-validation. It can be ineffective for
model selection when multiple candidates have similar levels of predictive performance
or when the predictions vary only for small sub-groups [12]. Cross-validation tends to
select models that are too complex [13, 14], and is even ‘asymptotically inconsistent’ for
linear models, meaning it will fail to select the correct model for arbitrarily large data
sets [15]. Rather than selecting a model based purely on its test set performance, it seems
preferable to account uncertainty in the estimated predictive performance and potentially
create ensembles of models, such as through model stacking [16].

This paper reviews the suitability of cross-validation as a sole method of model assessment.
Several issues that can degrade the usefulness of cross-validation are listed in Table 1.
These issues were aggregated from surveying the literature. They are not derived in any
systematic fashion, and are not intended to provide a complete list of all the issues that
need to be considered when using cross-validation.

This paper is organized so that each section addresses a rough grouping of these issues.
The categories are designed to aid the flow of discussion, and the assignment of issues to
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categories is somewhat fluid. The identified categories are not intended to be optimal or
unique, and could potentially be restructured to accentuate different sets of commonalities
or differences for the set of issues.

Section 2 examines data quality, which covers issues that arise from poor quality or
mislabelled data. Section 3 reviews issues associated with data sampling, and covers
violations of the assumption of independent and identical samples. Section 4 reviews
modelling and focuses on the implicit assumptions of supervised learning. Section 5
discusses the impact of analyst degrees of freedom, such as subjective decisions made
by the analyst, data interpretation, and using the model to make decisions. Section 6
discusses model requirements that exist outside predictive accuracy, specifically the role
of causality and adversarial examples. Finally, section 7 summarizes the issues discussed
and suggests future work.

Although this paper focuses on cross-validation, many of the arguments we present can
be applied to other methods of statistical validation, including Bayes factors, p-values,
confidence intervals, and model complexity penalization. These methods fundamentally
guard against overfitting of the data, but do not address systematic errors arising from
data bias, malicious inputs, or non-stationary processes.

4
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Issue Explanation Example Solution

Data quality

Label contamination Incorrect ground
truth values

Mislabelling in
image data sets

Improve data
quality

Poor data quality Data may have
systematic errors, a
low signal-to-noise
ratio, drift, or omit
important variables

Sensor
miscalibration

Improve data
quality

Missing data Samples are not
representative of
population

Survivorship bias,
truncation,
censoring, patient
dropout in medical
studies

Experimental
design, data
imputation

Publication bias Statistically
significant results
more likely to be
published than
non-significant
results

Publication bias in
medical science and
psychology

Study
preregistration,
publication of
negative results

Data sampling

Interacting
measurements

Measurements affect
the system

Placebo effect Use theory to guide
measurements

Violation of
independent and
identical samples

Samples are
correlated or come
from multiple
populations

Hierarchical models,
systems with spatial
structure

Use modified
cross-validation
procedures

Non-stationarity The system’s
behaviour changes
over time, possibly
through drift or
sudden shocks

Financial markets
change overtime,
particularly in
response to new
information or
regulations

Continuous system
monitoring,
adaptive systems,
use modified
cross-validation
procedures

Modelling
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Model fragility Trained models may
show a significant
drop in performance
when the task is
slightly modified or
the model is highly
sensitive to the
training set

Deep-Q fails when
Atari games are
slightly modified,
model generated by
a small number of
noisy measurement

Limit model
application,
contextualize data,
ensemble method,
regularization,
reduce the model
complexity,
experimental design

Model
non-identifiability

Several models
produce similar
predictions for the
test set, but differ
outside this region

Unbalanced data
sets

Restrict model
domain

Analyst degrees
of freedom

Cognitive and social
biases

Systematic patterns
of irrational
judgement

Confirmation bias,
hindsight bias, halo
effect, anchoring,
overconfidence,
optimism bias

Diverse teams and
extended peer
review, improve
training

Data misuse Data set is misused,
potentially resulting
in an inflated test
set accuracy

Incorrect data
pre-processing,
reusing test sets,
data leakage

Checklists and
disclosure
statements, peer
review, improve
training

Proxy quantities Features and labels
used in supervised
learning are not the
true quantities of
interest

Economic
performance cannot
be measured
directly, so
indicators like
unemployment and
gross domestic
product are used

Consult subject
matter experts

Poor metrics Performance metric
does not properly
capture real-world
value

Using accuracy to
validate a classifier
for credit card fraud

Analyse multiple
metrics, consult
subject matter
experts, improve
training

6
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Spurious inferences Using
cross-validation
(predictive
performance) to
make potentially
spurious inferences
about other model
characteristics

Feature selection in
high-dimensional
problems can be
unstable or vary
sharply with the
data set size, and
not indicative of the
parameters that
actually influence a
situation

Sensitivity analysis,
improve training

Non-predictive
performance

Malicious input Strong
cross-validation
performance does
not ensure learning
algorithms are
robust against
adversarial action

Adversarial
examples like those
seen in the image
recognition domain

Limit model
domain, use models
that are robust
against adversarial
examples or
poisoned data sets

Model
interpretability

Difficult to ascertain
how a statistical
model makes a
prediction or
recommendation

Neural networks Use interpretable
models, develop
surrogate models,
use model-agnostic
measures of feature
importance

Causality Causal behaviour
may be of primary
interest, but
unidentifiable from
observational data

Social policy
intervention

Development of new
causal models,
perform randomized
experiments

Table 1: The table lists issues that can reduce the effectiveness of cross-validation as a
model validation method, along with examples of when the issue may occur, and potential
ways to address the issue.

2 Data quality issues

Cross-validation works well when the data is close to the ground truth and predictive
performance is the primary aim, but is less useful when the data is of poor quality. This
could manifest as a low signal-to-noise ratio, biased data, or unbalanced data sets. In this
section, we review some of the data issues that can occur in statistical learning.
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2.1 Label contamination

Supervised learning is predicated on having access to the ground truth. For some problems
the ground truth is unknown, controversial, or may change overtime. Schizophrenia and
bipolar disorder were originally recognized as separate conditions, but are now considered
to form a spectrum [17]. An algorithm that assigns the labels of ‘schizophrenic’ and
‘bipolar’ could have been considered accurate in a historical context, but would now be
deemed to perform poorly because of the bimodal nature of its output. The perceived
performance can decrease because of changes to the user’s beliefs, rather than any changes
to the underlying model.

In other situations there are conflicting views about what schema is appropriate. A recent
Stanford study that claimed to detect sexuality from dating site photographs was criticized
by the LGBTI and statistics communities for using a binary classification scheme for sexu-
ality (see [18, 19, 20] for several lines of criticism). When the ground truth is contentious,
test set accuracy is not meaningful as an objective indicator of model correctness, and is
better thought of as a check for model consistency.

2.2 Poor quality data

Poor quality data - “dirty data” - leads to models with low credibility. There may be several
causes of poor data quality. For example, sensors may be miscalibrated for mechanical
systems, or there may be missing entries because of poor data collection practices. In
chemometrics, the modelling errors are usually smaller than physical sampling errors that
arise from calibration or instrumentation errors and undetectable environmental variation
that occurs between experiments performed at different times or in different laborato-
ries [21]. These errors are not addressed adequately with cross-validation and produce a
misleading picture of experimental accuracy.

Poor quality data can lead to models with good cross-validation scores that provide poor
real world predictions. Cross-validation ensures consistency between the data and the
model, and is unable to validate the data quality, even though it strongly affects the
predictive performance.

2.3 Missing data

There are several forms of missing data. The simplest case is ‘missing completely at
random’, meaning each feature of a data point has a fixed probability of being excluded,
independent of its value [12]. These missing data points simply degrade the size of the
data set, and no special care needs to be taken. Missing features can be imputated or
‘missing’ can even be treated as a separate feature value. Cross-validation will still function
effectively when data is missing completely at random.

A more difficult case is ‘missing at random’ in which the probability of a data point being
included in the sample depends on the data points features, but not its class or value
[12]. Imagine creating a model to predict a person’s income with only males included
in the data set, though irrespective of their income [12]. This pattern of missing data

8
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will falsely inflate the test set. The supervised learning algorithm will achieve high test
set performance for the male sub-population that forms the test set, while potentially
performing much worse for female data points that occur in deployment, but are not
evaluated during cross-validation. In this situation cross-validation will not provide a
good estimate of predictive performance unless the male and female sub-population are
similar.

The most difficult case is ‘missing not at random’, meaning the probability of data inclu-
sion depends on both the features and class or value. Extending the previous example,
the probability of inclusion could depend on both the persons gender and their income.
Without a guide to the missing data mechanism, the model selection process will be sen-
sitive to a range of untestable assumptions. These kinds of issues are prevalent in medical
studies in which researchers have to deal with non-responders, drop out of participants
and observer bias [22]. Given the potentially large differences between the sampled and
target populations, cross-validation is nearly worthless as a key metric without background
information or careful caveating of the results.

2.4 Publication bias

Scientific studies are more likely to be published when they produce a statistically signif-
icant result. Non-significant results receive less attention, and are analogous to missing
data points. This is known as publication bias and has several negative effects. In medical
science, publication leads to unnecessary replication and tends to inflate apparent efficacy
of medical treatments [23]. Ioannidis argues that publication bias is so strong that the
majority of biomedical literature is false [24], while Gelman and Loken report that for low
power studies, true effects can be an order of magnitude less than their reported strength
(on average) and may have a 40 percent chance or higher of reporting the wrong sign for
an effect [25]. We expect publication bias to also affect the statistical learning literature,
although perhaps in different ways.

Researchers routinely use benchmark data sets to assess the performance of new algorithms
against those in the literature, but in many cases the new algorithm will only be reported
if its performance exceeds that of the other algorithms, which is a form of publication
bias. This selection-induced bias misrepresents the true performance of the algorithms.
Additionally, the reuse of the data sets also leads to the test set going ‘stale’ because of
test set information gradually leaking out [26, 27, 28]. Even when individual researchers
correctly employ cross-validation, it is possible for higher level effects, such as the file
drawer problem, to produce significant bias in the estimated predictive performance.

2.5 Addressing data quality issues

Data quality is a perennial issue in statistical learning. While data quality is often thought
of in terms of the signal-to-noise ratio or measurements artefacts, it can also arise through
biased data collection and reporting or because of inappropriate paradigms that reinforce
existing biases.

UNCLASSIFIED
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Improved instrumentation and using theory to guide data collection is necessary because
measurement and observation is a ‘theory-laden’ process that includes subjective choices
and implicit assumptions. Theoretical frameworks encourage particular methodologies for
data collection and questions of interest. A data-driven approach amplifies these biases
and implicit assumptions, since they become hidden from view. Statistical learning should
be integrated into research communities as part of a balanced research portfolio, rather
than trying to serve as an alternative scientific paradigm.

3 Data sampling issues

Standard cross-validation assumes a fixed data sampling mechanism with an indepen-
dent and identical sampling distribution. If the training and test sets are strongly cor-
related, then the cross-validation score may be artificially inflated. This is particularly
common when there is temporal or spatial correlation in the data, although some forms of
cross-validation can accommodate these correlations [29]. Below we examine how cross-
validation can be extended to situations in which the standard sampling assumptions fail.

3.1 Violation of non-interacting measurements

Measurements are usually treated as passive processes that characterize an object’s proper-
ties without affecting them [12]. In some situations, measurements will disturb the system,
causing its state to change. Interactive measurements occur at the quantum mechanical
level through Heisenberg’s uncertainty principle, while at the macroscopic level they can
be found in the medical domain where double blind experiments are needed to suppress
the placebo effect.

Interaction effects are especially important in stock trading, where analysts want to dis-
cover patterns of profitable trading. One can näıvely validate the historical profitably of
trading strategies by performing out-of-sample forecasting. However, the process of buying
or selling shares affects the subsequent stock price, so cross-validation will systematically
misestimate the counterfactual profitability of trading strategies. Cross-validation needs
to be augmented with additional data or modelling to account for the effect of placing
orders. This type of augmentation is necessary whenever interventions or measurements
have secondary effects on the system behaviour.

3.2 Violations of independence in hierarchical models

Hierarchical models are appropriate when the population of interest has multiple levels
of structure. For concreteness, this could consist of variation in student grades caused
by variation in student-level factors (hours of study, each student’s intrinsic ability) and
school-level factors (teacher quality, school funding), which could be hierarchically mod-
elled with each student-level factor nested within a school-level factor (see Fig. 2a) [12].

Figure 2b shows näıve cross-validation for a hierarchical model. The test set is represented
by the dots with red crosses through them and are randomly sampled from the complete
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data set. Some students are drawn from schools within the training set, while others
are drawn from previously unobserved schools. The test set accuracy will average over
these two conceptually distinct populations, which is sensitive to the sampling process and
potentially not the quantity of interest.

Cross-validation can be performed in a more structured fashion, of which two examples are
shown in Fig. 2c and d. These are more robust against changes in the sampling mechanism
and are easier to interpret. Leave-one-student-out cross-validation is shown in Fig. 2c.
Since each school has multiple students, this provides an estimate for our ability to predict
the performance of future students within schools that have already been observed. In
contrast, Fig. 2d performs leave-one-school-out cross-validation, and provides an estimate
of our ability to predict the performance of unobserved schools.

Even with these two alternative procedures, cross-validation of hierarchical models is still
challenging, as summarized by Wang and Gelman[30],

“[the] lack of clear protocol for the cross-validation procedure: to truly test
the model, the holdout set cannot be a simple random sample of the data but
instead needs to have some multilevel structure itself, so that entire groups as
well as individual observations are held out it is not clear how best to subsample
structured data for cross-validation in a general way... Our results illustrates
that under multilevel structure, it could be tricky to use cross validation in
model selection, as the size of the data and how balanced the structure is heavily
affect the relative performance of the models.”

To summarize these issues, cross-validation of hierarchical models is challenging because
the out-of-sample performance is sensitive to the data sampling mechanism, difficult to
interpret, and contains elements of subjectivity in the validation process. This substan-
tially weakens the case for using standard cross-validation as a default model validation
technique without any thought of the underlying structure. It additionally shows that
model validation (in addition to modelling) has elements of subjectivity.

3.3 Violations of independence in time series and structured
data

Cross-validation cannot be näıvely applied to time series or other forms of structured data,
like satellite imagery, that have strong auto-correlation. Conventional cross-validation
randomly assigns points to the test set (Fig. 3a). However, this will provide an optimistic
estimate of the model’s predictive performance because of the strong temporal correlations
between neighbouring points.

The most common alternative is out-of-sample forecasting, which separates the training
and test sets into adjacent blocks, potentially with a gap between the two sets to reduce
the impact of autoregressive behaviour (Fig. 3b) [31]. Nonetheless, both standard cross-
validation and out-of-sample forecasting assume stationarity [32], which is absent from
many real time series [33]. Estimates of predictive performance may latently assume
stable distributions that exaggerate the true predictive capabilities of statistical models.

UNCLASSIFIED
11



DST-Group–TR–3576
UNCLASSIFIED

Figure 2: A graphical representation of a hierarchical model for variation in student marks
with inter-student and inter-school level variation. (a) A graphical representa-
tion of an example data set with several schools and students. (b) Several entries
of the data set (marked by red crosses) have been removed to form a test data
set for cross-validation. The remaining entries form the training data set. (c)
Leave-one-out cross-validation at the student-level for a hierarchical model. The
cross-validation score will be indicative of the predictive performance of students
for schools already within the training set. (d) Leave-one-out cross-validation at
the school-level for a hierarchical model. The cross-validation score will be in-
dicative of the predictive performance of students for schools outside the training
set.

12

UNCLASSIFIED



UNCLASSIFIED
DST-Group–TR–3576

Figure 3: Cross-validation for time series data. The training set is shown by the blue dots,
the test set is shown by the red dots, and data points excluded from both sets are
shown in grey. The time series proceeds from left-to-right (early-to-late). (a) A
näıve application of cross-validation to time-series data in which data points are
missing at random. (b) A structured approach to cross-validation that forecasts
the data point one time step ahead. Figure adopted from Rob Hyndman [34].

The difficulties of estimating predictive time series performance are exemplified by Google
Flu Trends. Google Flu Trends was developed to predict influenza activity from the
relative frequencies of Google searches. It initially seemed that the model could predict
disease outbreak with performance similar to that of the Centre for Disease Control (CDC)
in the United States, but with greater responsiveness. The model accurately reproduced
CDC figures in 2007. However, between 2009 and 2012 Google Flu Trends mispredicted
the timing and intensity of influenza activity [7, 10, 11].

The exact point of failure is unclear, although the effects of a non-stationary (changing)
environment are suspected. The search engine itself is continually updated and social
dynamics naturally evolve over time. It is therefore not so surprising that a model that in
earlier years seemed so effective became miscalibrated when the system changed, but this
was something that cross-validation failed to detect.

3.4 Addressing data sampling issues

Data quality and quantity are inevitably issues because of the high-dimensionality of
contemporary statistical models, while violations of identical and independent sampling
are difficult to identify without some preconceptions about the structure of the violations.
We suggest addressing these issues by trying to improve the data, while also using more
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general validation techniques to reduce the blindspots of cross-validation:

Experimental design can be used to ensure that the data will be representative of the
desired population and that a balanced data set will be collected that will assist in model
identifiability (discussed in Section 4.2). Stratified sampling and latin hypercube designs
can improve the precision of parameter estimation and are especially valuable when sub-
groups have significantly different sampling frequencies.

Standard cross-validation assumes random variables are independent and identically dis-
tributed. Developing variants of cross-validation to accommodate more complicated data
collection schemes would allow cross-validation for a greater class of problems; examples
of modified cross-validation schemes were discussed for hierarchical models and time-series
data. New variants could encompass an even greater variety of systems.

To accommodate non-stationary environments, we recommend using adaptive systems that
are able to modify their behaviour in response to gradual or sudden changes in the envi-
ronment. Simple examples include sensors periodically recalibrating themselves or state
space models that allow their internal parameters to change overtime as data is collected
[33].

Continuous monitoring can also be used to check for sudden degradation in system perfor-
mance. In the context of non-stationary environments, cross-validation should be thought
of as an initial, not a final, model assessment. True validation comes from monitoring
the system after it has been deployed. Anomaly detectors or step-change detectors can
serve to bolster human supervision, and detect when the system behaviour is likely to have
changed [35, 36].

Finally, subject matter experts can provide the boundary conditions around a statistical
model’s development and deployment. They are able to improve the model’s performance
through feature selection, adding prior knowledge into the model, or validating the data
quality.

4 Modelling issues

Learning algorithms are an integral part of statistical learning. They can improve model
accuracy by imposing realistic constraints on the model structure or degrade model per-
formance by making spurious assumptions. Differentiating between errors arising from the
data and from the learning algorithm is not always a clear cut issue. For example, noisy
data could be blamed for inaccurate predictions, but in theory this could be rectified with
more regularization. In this section, we look at the difficulties of developing robust and
unique models.

4.1 Model fragility

Statistical models can be fragile against small perturbations in the task or the environment.
Reinforcement learning systems like Deep-Q can outperform human experts in a wide range
of tasks [37]. Surprisingly, many of the trained models will catastrophically fail when
transferred to similar tasks. For example, Deep-Q’s ability to play the game ‘breakout’ is
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Figure 4: The effect of fertilizer on crop yield. Crops in a sunny patch are shown by the
red dots and crops in the dark patch are shown by the blue dots. Because of
an unbalanced design, the data can be well described with a linear relationship
between the fertilizer amount and the crop yield with a constant offset from the
lighting, or by a sigmoidal function of the fertilizer and no term from being in
a sunny/dark patch. Adapted from Gelman, et al. [12].

disrupted when the paddle is moved by only a small amount, demonstrating the system
is unable to generalize outside the narrow training set [38]. This highlights the need for
the out-of-sample test set to closely match any intended applications, something that is
difficult to guarantee for many realistic applications.

4.2 Non-identifiability

The inability to differentiate between incompatible statistical models from data is called
“model non-identifiability”. Multiple models can have high out-of-sample performance
while having significantly different structures. This can be driven, for instance, by unbal-
anced data sets.

Consider an experiment to determine the effect of fertilizer on crop yield when the fertilized
crops are in sunny plots and all the unfertilized crops are in the dark plots. Plants in the
sunny and fertilized plots produce consistently higher yields than the dark and unfertilized
plots. Since the level of sunlight and fertilizer are confounded, it is impossible to deduce
whether sunlight, fertilizer, or an interaction effect is at work [12].

High predictive accuracy can be obtained by modelling the data by two offset linear rela-
tionships that indicates that sunlight produces a fixed effect (Fig. 4a) or a single sigmoidal
relationship that indicates sunlight has no effect (Fig. 4b) even though they reach op-
posite conclusions about the importance of fertilizer. Although the example is somewhat
contrived, it clearly identifies a potential hazard when extrapolating from out-of-sample
accuracy to inferences regarding feature selection or the adequacy of alternative models.
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4.3 Addressing modelling issues

As general advice for improving model quality, we believe there is scope to contextualize
data. It is natural to abstract data into a purely mathematical form when performing
statistical modelling. While this is appropriate for the manipulation of data, it is hazardous
to the model’s interpretation and application. As was demonstrated by the effects of
publication bias, data needs to be understood with respect to the population that is being
sampled and also with respect to previous data collection or analysis.

Statistical models will perform at a higher level and in a more consistent fashion when
we limit the domain of application. Statistical models can even forget previous knowledge
when trained on novel situations [39]. Rather than invest substantial effort in trying to
develop more robust and general statistical models, it is possible to improve the perfor-
mance of statistical models by limiting the environmental variation they encounter. This
is a common approach seen in factories, where automated systems perform repetitive tasks
with virtually no autonomy or awareness.

5 Analyst degrees of freedom issues

Statistical models usually incorporate a mixture of subjective and objective elements. The
objective elements include the data, while the subjective elements include the choice of
performance metric or the choice of learning algorithm. In this section, we examine the
impact of subjective choices made by the analyst, which we call the analyst degrees of
freedom, on the model performance.

5.1 Cognitive and social biases

A pervasive myth is that statistical learning is inherently unbiased because it is an (ob-
jective) mathematical process. The essential flaw in this argument is that while statistical
concepts are mathematical, the inferences are derived from biased data sets and models.
This form of bias is grounded in social attribution and judgement, and is distinct from
bias in the mathematical sense of the bias-variance trade-off [4].

The ability for statistical models to learn, or even accentuate, social biases has been
highlighted by a number of recent news stories. African Americans were mislabelled as
Gorillas by image classifier Google Photo [40], while Correctional Offender Management
Profiling for Alternative Sanction (COMPAS) software used to determine court sentencings
in the United States were allegedly found to be harsher on African American defendants
than Caucasian defendants [41, 42] (although see Kusner, et al. [43] for discussion about
the difficulties of defining algorithmic fairness).

Statistical models can acquire biases in a number of ways. Learning is primarily an induc-
tive activity in which samples or training data are generalized from samples to populations.
If the samples are biased or non-representative, the algorithm will learn to faithfully re-
produce these biases. This can occur even when the data is correctly labelled, albeit
with an incorrect base rate. The misclassification by Google Photo may have occurred
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because there were more ‘Gorilla’ than ‘African American’ photographs in the training
set, so the overall cross-validation accuracy for all the photographs was high, even though
it consistently mislabelled the small African American subset.

In other cases, the data set may become distorted due to social influences. New experi-
mental drug treatments are predominantly tested against young males [44]. Meanwhile,
older patients are often excluded because of pre-existing medical conditions [45], while
females can be excluded because of issues related to pregnancy and menopause [46]. Con-
sequently, clinical research may fail to detect important gender-dependent treatment ef-
fects. Although the data collection processes might be rational at the individual level,
they systematically distort the funding and assessment of medical science. These kinds of
biases are readily learnt by statistical models without any self-correction mechanisms.

5.2 Data misuse

Data is an essential element of statistical learning. However, poor quality data can be
worse than none at all. Spurious models can be constructed because of poor quality or
contaminated data, or because of misuse by the analyst, commonly referred to as ‘p-
hacking’ in the statistics literature [47, 48].

It is well-known that statistical significance in frequentist statistics can become inflated
when multiple comparisons are performed. What is less recognized is that the same effect
can occur when only a single comparison is performed, but the particular comparison is
conditional on the data set. This effect was investigated by Gelman and Loken and termed
the “garden of forking paths” [25]:

“researchers can perform a reasonable analysis given their assumptions and
their data, but had the data turned out differently, they could have done other
analyses that were just as reasonable in those circumstances... Our key point
here is that it is possible to have multiple potential comparisons, in the sense
of a data analysis whose details are highly contingent on data, without the
researcher performing any conscious procedure of fishing or examining multiple
p-values.”

The garden of forking paths has a counterpart in statistical learning, where p-values are
replaced by out-of-sample performance. Data usually needs to be wrangled, cleaned, or
preprocessed in some form before it can be modelled. There may also be conditional
postprocessing to remove samples dependent on a model’s ability to discriminate them.
For an image recognition task we could imagine removing difficult-to-classify samples with
atypical image filters applied to the image or a poorly focused photograph. Even though
removing these types of samples may be reasonable, it provides opportunity for the test
set accuracy to become inflated.

The garden of forking paths can also occur when the type of model (for example a neural
network or random forest) or the hyperparameters are chosen after looking at the data
set. These practices, while necessary to formulate usable data sets, can provide hidden
opportunities to perform conditional operations or analysis on the data set, and inflate
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the test set accuracy. The garden of forking paths can be addressed by pre-registering
the study [49] or by performing a ‘multi-verse’ analysis of potential analysis pipelines [50],
although both require additional work and can be infeasible for exploratory analysis.

Improper data preparation may also lead to ‘data leakage’ in which a model is trained on
information it would or should not be able to access when deployed. This could include
unintentional inclusion of the class as a feature [51], normalization of the data prior to
splitting it into train and test sets [4], or inclusion of inappropriate data points [51].
There may also be anomalous features in the data set that can unrealistically bolster the
accuracy. Ribeiro, et al. [51] report that the Random Forest learning algorithm is able to
unrealistically differentiate between articles about “atheism” and “Christianity” in the “20
newsgroups” data set because the word “Posting” occurs frequently in the header of the
“Christianity” articles, a quirk that is unlikely to be replicated in later data sets. In these
circumstances, high test set accuracy can be achieved, but is not indicative of generalized
performance.

5.3 Proxy quantities

Sometimes it is impossible to directly measure the quantity of interest, so proxy quantities
(indicators or related quantities) are measured instead. This occurs even in simple cases,
like measuring current and voltage to determine a device’s electrical resistance. A more
complicated case is trying to infer the overall state of a country’s economy from related
values like the gross domestic product (GDP) or the unemployment rate. A high cross-
validation score indicates the model is able to accurately reproduce the proxy quantities.
This will be useful only if the proxy quantities are actually indicative of the true quantities
of interest, which cannot be determined through cross-validation.

5.4 Poor metrics

Predictive performance must be characterized with some form of metric - a measure of
the difference between the observed and desired output. For example, an image classifier
may be assessed by its accuracy. This can create problems when the chosen metric is
not aligned with the intended application. A classic example is a fraud detection system
that attains high accuracy by always classifying a transaction as legitimate [52]. Because
of the asymmetric rate of non-fraudulent activity, the model is accurate but functionally
useless. A better performance metric for this scenario would be recall. Cross-validation
will provide a misleading measure of performance when the performance metric is poorly
chosen.

When the performance metric is contentious, it is possible to perform multi-objective
optimization, rather than choose a single objective function. For example, when choosing
a car there may be a trade-off between cost, fuel efficiency and size. However, there is
no general method for optimizing every performance metric simultaneously. This can
be partially addressed by choosing a ‘most important’ metric to optimise [53], creating a
‘supermetric’ that weights each metric [53], or finding the Pareto optimal solutions in which
no metric can be improved without degrading another [54]. But none of these methods
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completely eliminate or solve the subjectivity of choosing an appropriate performance
metric.

5.5 Addressing analyst degrees of freedom issues

Our recommended strategy for addressing the analyst degrees of freedom primarily involves
improving the analysis, identifying potential issues before the data is collected or analyzed,
and making the underlying assumptions more transparent after the analysis so the work
can be embedded in the proper context.

To address social and cognitive biases we recommend using diverse teams and extended
peer review [55]. Inclusive teams are more likely to identify potential sources of bias and
provide stricter validation of the model’s performance than cross-validation alone. For
instance, algorithms used for job hiring could be reviewed by equality groups or legal
departments.

The use of checklists and disclosure statements can guard against the garden of forking
paths and other forms of p-hacking [56]. The significance of out-of-sample performance is
quickly diluted when data is conditionally pre-processed or cross-validation is performed
multiple times on a single data set. Researchers should include checklists or disclosure
statements to ensure the numerical figures of merit provide an accurate picture of predictive
performance. Similar practices occur in medicine with study preregistration ensuring
details about data collection and analysis are collected prior to the study [56] and in solar
cell research where guidelines were developed to ensure meaningful comparisons could be
made across multiple types of solar cells [57]. For statistical learning this would include,
among other things, all analyses performed to avoid reporting biases and the reasoning
behind choosing particular metrics to reduce the likelihood of ‘cherry picking’ the best
performing metric.

There is also scope to improve the education and training of analysts. P-values are one
of the first concepts encountered in statistics education, but it is commonly misunder-
stood and misused [58]. Some commentators have even recommended abolishing p-values
[59, 60, 61, 62]. To the best of our knowledge similar research hasn’t been done to test
understanding of cross-validation in the statistical learning community. However, we sus-
pect many of the same types of issues occur in statistical learning and could be addressed
with better training.

6 Non-predictive performance

Cross-validation assesses the predictive performance of a model. However, this can be
insufficient when forming counterfactual inferences for which no data exists or when the
method of prediction is important,

“there are situations where a directly empirical approach is better. Short term
economic forecasting and real-time flood forecasting... However, much predic-
tion is not like this. Often the prediction is under quite different conditions
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from the data; what is the likely progress of incidence of the epidemic of v-CJD
in the United Kingdom, what would be the effect on annual incidence of cancer
in the United States of reducing by 10% the medical use of X-rays, etc.?”[63]

Cross-validation also assesses a model’s resistance to malicious inputs, nor the validity
of the decision making process, and whether it is ‘fair’ or logical. These concerns are
particularly acute when statistical models are integrated in critical systems or in the
social domain where concerns of equality and fairness are prevalent.

6.1 Malicious input

Statistical models are susceptible to malicious inputs. For example, modern image recog-
nition systems can identify images with human-level performance. But, despite their high
accuracy, these systems can be fooled into misclassifying otherwise easy examples through
miniscule, but well-crafted, image manipulations [9]. Changes in pixel brightness below
human perception can cause, for example, a bus to become misclassified as a stop sign.
Similarly, images that appear as random noise to humans can be classified with high con-
fidence as meaningful objects. These manipulations have been demonstrated for physical
systems: Placement of white tape on a stop sign caused it to become misclassified as a
speed limit sign by some image recognition software [64].

It is difficult to comment on the long-term implications of adversarial manipulations.
A variety of countermeasures are actively being developed [65]. Regardless of whether
these methods are ultimately fruitful, this shows that malicious input cannot always be
addressed through conventional cross-validation and more general methods of validation
are required.

6.2 Model interpretability

The need for model interpretability can be driven by legal or ethical requirements. For
instance, there are strong restrictions around what information people can use for investing
or hiring. These same restrictions apply to statistical models too, at least in principle.
However, it is impractical to check compliance without any insight into the underlying
principles of operation.

Model interpretability can also be driven by pragmatic considerations, namely assessing
the veracity and robustness of the statistical model. Statistical folklore has it that an early
neural network attained high accuracy in differentiating photographs of United States and
German tanks [66]. Later it was discovered that the network had no concept of tanks -
all the United States tanks were photographed in daylight, while all the German tanks
were photographed at night. The algorithm was merely detecting the time of day. Despite
high test set accuracy, the model had little predictive power. Model interpretability would
show that the neural network was trained on the wrong features, allowing the analyst to
avoid an embarrassing mistake.

Similar stories of confounded prediction abound in the statistical literature. For example,
there have been recent claims of neural networks accurately determining people’s sexuality
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Treatment A Treatment B

Males 4/32 (13%) 11/68 (16%)

Females 61/68 (90%) 31/32 (97%)

65/100 (65%) 42/100 (42%)

Table 2: Two potential medical treatments are tested on male and female patients. Treat-
ment B outperforms Treatment A for both the male and female subgroups. How-
ever, when male and female patients are pooled together, Treatment A outperforms
Treatment B. This is an example of Simpson’s paradox.

and criminality from facial photographs [18, 67]. Critics claim the strong cross-validation
performance is driven by confounding features within the data sets, and that the models
provide little real predictive power [19, 20, 68]. Greater model interpretability would assist
in evaluating these claims by allowing different explanation to be properly tested.

6.3 Causality

In the subsequent sections, we review three statistical paradoxes that show using correla-
tion to make decisions or interferences about causal relationships can be misleading. These
examples show that treating statistical learning methods as blackboxes can potentially lead
analysts astray and support poor decision making.

6.3.1 Simpson’s paradox and causality

Statistical methods generalize behaviour from observational data and are severely limited
in their ability to detect causal mechanisms. As the adage goes ‘correlation does not
equal causation’, and causation can even occur independently of or even in opposition to
correlation. A famous example that demonstrates the critical distinction is the Berkeley
admission controversy [69]. Data showed that males were admitted at consistently higher
rates than females, implying discrimination against females. However, when the data
set was stratified into individual subjects the trend reversed, with females consistently
admitted at a greater rate than males, suggesting discrimination in favour of females.
The reversal of conditional probability when subgroups are amalgamated is known as
Simpson’s paradox. Hypothetical data that demonstrates Simpson’s paradox is given in
Table 2. Treatment A outperforms Treatment B when the male and female subgroups are
combined, while Treatment B outperforms Treatment A for the male and female subgroups
when treated separately.

Unfortunately, whether one should use the overall or stratified averages depends on causal
relationships that are impossible to determine from observational data alone and there-
fore outside the abilities of most statistical learning methods [70]. Given the large data
sets and the complex models involved in contemporary statistical learning, decision mak-
ers are unlikely to recognize Simpson’s paradox in deployed systems, and therefore may
inadvertently make decisions that conflict with their intentions.

UNCLASSIFIED
21



DST-Group–TR–3576
UNCLASSIFIED

6.3.2 Reverse regression

The correlation between two variables can change sign or magnitude when the dependent
and independent variables are swapped, the so-called reverse regression paradox [71]. A
famous example is the gender wage gap in labour markets. Women are found to earn
lower wages than men when gender is treated as a dependent variable and education
level is held constant. Curiously, the apparent correlation is flipped when wages are held
constant and qualification levels are the dependent variables: Women seem to require lower
qualifications to earn the same wages as men. The reverse regression paradox is troubling
because a single data set can apparently lead to two incompatible inferences.

6.3.3 Berkson’s paradox

Berkson’s paradox occurs when a correlation between two variables is generated by a joint
selection effect [70]. For instance, consider a university that accepts only students with
high undergraduate marks or musical talent. Even if undergraduate marks and musical
talent are initially uncorrelated, the joint selection effect will remove any students with low
marks and no musical talent, leaving a negative correlation between undergraduate marks
and musical talent in the university student population. Berkson’s paradox demonstrates
the difficultly of performing robust and objective inference with blackbox machine learning
methods.

6.4 Addressing non-predictive performance

Defences against adversarial examples are actively being developed. While several defen-
sive measures have been proposed such as distillation [72], obfuscated gradients [73] and
model ensembles [74], a complete solution remains elusive and a risk-based approach to
using statistical models in adversarial environments is recommended.

Improving model interpretability could help differentiate between brittle and robust mod-
els, and assist in identifying model biases. Perfect interpretability is impractical for com-
plex statistical algorithms. A spectrum of methods exist for improving model interpretabil-
ity, such as choosing an interpretable model for the supervised learning problem [4], build-
ing a surrogate model, measuring feature importance through model-agnostic diagnostics
(for example, partial dependence plots [4]), or generating prototypes and counterfactuals
for a subset of data points [75, 76]. The best approach will depend on the end users trade-
off between model accuracy, the kinds of information they want, and the effort involved
in interpreting the model.

The role of causality can be addressed by adopting greater use of randomized experiments
that allows causal and confounding factors to be differentiated. There is also scope to
develop and adopt causal models. Causal calculus extends Bayesian networks by allowing
them to be used for counterfactual predictions [70]. It can even be used in the absence
of randomized experiments if background knowledge is able to constrain the structure of
the Bayesian model. Causal calculus is useful because it allows counterfactual predictions
to be made and may improve the capacity for statistical models to generalize to new
situations [70].
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7 Where is cross-validation appropriate?

Cross-validation is a powerful tool for performing data-driven analysis. It is widely used
because it makes relatively few assumptions, provides a clear measure of model perfor-
mance, and is simple to implement. However, we argue that cross-validation is insufficient
as a universal method for model validation, and we believe that traditional modelling
practices are still relevant.

Cross-validation works well for structured problems with objective performance metrics,
like chess or go. For open-ended problems without an agreed ground truth or a non-
stationary environment an empirical approach is less useful. For example, missing data
and subjective performance metrics cannot be addressed with cross-validation, since they
are external to the observed data. In these situations, cross-validation often needs to be
coupled with careful sensitivity analysis or caveating.

We believe the following practices would improve the robustness and credibility of deployed
statistical models:

• Validate the data source and be aware of the context for data collection and model
deployment.

• Use experimental design to improve the data quality and completeness.

• Restrict application of the model to well-understood domains or situations for which it
has been validated.

• Monitor model performance after deployment.

• Use extended peer review to challenge implicit assumptions and validate measures of
performance.

• Develop checklists and pre-plan the analysis to mitigate the impact of cognitive or social
biases.
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38. Ken Kansky, Tom Silver, David A Mély, Mohamed Eldawy, Miguel Lázaro-Gredilla,
Xinghua Lou, Nimrod Dorfman, Szymon Sidor, Scott Phoenix, and Dileep George.
Schema networks: Zero-shot transfer with a generative causal model of intuitive
physics. Proceedings of the 34th International Conference on Machine Learning, pages
70:1809–1818.

39. Robert M. French. Catastrophic forgetting in connectionist networks. Trends in
cognitive sciences, 3(4):128–135, 1999.

40. Conor Dougherty. Google photos mistakenly labels black peo-
ple gorillas, 2015. https://bits.blogs.nytimes.com/2015/07/01/

google-photos-mistakenly-labels-black-people-gorillas, accessed 2018-
06-18.

41. Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias: Theres
software used across the country to predict future criminals. and its biased against
blacks. ProPublica, May, 23, 2016.

42. Julia Dressel and Hany Farid. The accuracy, fairness, and limits of predicting recidi-
vism. Science Advances, 4(1):eaao5580, 2018.

43. Matt J. Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual
fairness. In Advances in Neural Information Processing Systems, pages 4069–4079,
2017.

44. Katherine A. Liu and Natalie A. Dipietro Mager. Womens involvement in clinical
trials: historical perspective and future implications. Pharmacy Practice (Granada),
14(1):0–0, 2016.

45. Premnath Shenoy and Anand Harugeri. Elderly patients participation in clinical trials.
Perspectives in clinical research, 6(4):184, 2015.

26

UNCLASSIFIED

https://robjhyndman.com/hyndsight/tscv/
https://robjhyndman.com/hyndsight/tscv/
https://bits.blogs.nytimes.com/2015/07/01/google-photos-mistakenly-labels-black-people-gorillas
https://bits.blogs.nytimes.com/2015/07/01/google-photos-mistakenly-labels-black-people-gorillas


UNCLASSIFIED
DST-Group–TR–3576

46. Kristine E. Shields and Anne Drapkin Lyerly. Exclusion of pregnant women from
industry-sponsored clinical trials. Obstetrics & Gynecology, 122(5):1077–1081, 2013.

47. Megan L. Head, Luke Holman, Rob Lanfear, Andrew T. Kahn, and Michael D.
Jennions. The extent and consequences of p-hacking in science. PLoS biology,
13(3):e1002106, 2015.

48. Joseph P. Simmons, Leif D. Nelson, and Uri Simonsohn. False-positive psychology:
Undisclosed flexibility in data collection and analysis allows presenting anything as
significant. Psychological science, 22(11):1359–1366, 2011.

49. Daniel S. Quintana. From pre-registration to publication: a non-technical primer for
conducting a meta-analysis to synthesize correlational data. Frontiers in psychology,
6:1549, 2015.

50. Sara Steegen, Francis Tuerlinckx, Andrew Gelman, and Wolf Vanpaemel. Increasing
transparency through a multiverse analysis. Perspectives on Psychological Science,
11(5):702–712, 2016.

51. Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i trust you?:
Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1135–1144.
ACM, 2016.

52. Stuart J. Russell and Peter Norvig. Artificial intelligence: a modern approach (inter-
national edition). 2002.

53. James O. Berger. Statistical decision theory and Bayesian analysis. Springer Science
& Business Media, 2013.

54. Tushar Goel, Rajkumar Vaidyanathan, Raphael T. Haftka, Wei Shyy, Nestor V.
Queipo, and Kevin Tucker. Response surface approximation of pareto optimal front
in multi-objective optimization. Computer methods in applied mechanics and engi-
neering, 196(4-6):879–893, 2007.

55. Silvio Funtowicz and Jerome Ravetz. Post-normal science. International Soci-
ety for Ecological Economics (ed.), Online Encyclopedia of Ecological Economics at
http://www. ecoeco. org/publica/encyc. htm, 2003.
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