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EXECUTIVE SUMMARY

Statistics-based machine learning and artificial intelligence can enhance the capabilities of com-

plex and critical systems, but they can also increase new risks; statistical models may fail to gener-

alize to novel data or situations, and cause the overall system to malfunction. A key issue for these

models is the need to generalize to previously unobserved data or situations. Failure to do so can

have severe reputational, financial, or safety implications. Cross-validation is the de facto stand-

ard for assessing a model’s generality and performance. However, as we have argued in an earlier

technical report (DST-Group-TR-3576), the limitations of cross-validation are often underappreci-

ated. It doesn’t guard against the possibility of algorithmic bias, drift in the sampling distribution,

adversarial inputs, or a number of other issues.

A more fundamental understanding of statistical models can promote greater trust from the user

and improve model robustness to novel data and situations. We have developed a power series

formulation of feature importance that explicitly identifies individual and interaction-type con-

tributions. The decomposition quantifies the impact of information and provides insight into

whether features provide complementary, independent, or redundant information. Our method

complements alternative approaches, such as clustering and subset selection, and provides a

unique measure of feature importance.

Measures of feature importance should be able to accommodate different contexts and topics

of interest. Missing features will affect models in a number of ways: It can change the model’s

structure, performance, memory footprint, or computation time. Our framework is able to handle

these attributes by substituting an appropriate scalar metric into its calculation. Likewise, feature

importance can refer to the expected feature importance prior to data collection, or the impact of

observing a particular feature value actually had on the model output. Again, our framework can

naturally handle both situations by changing the sampling distribution it uses to calculate the loss

or fidelity. The flexibility of the framework allows for meaningful comparisons between users who

may have different contexts or aims for the feature importance calculations.

Our final contribution is to show the power series can be mapped to the well-known Shapley val-

ues. These provide a method of fairly distributing output in a coalition game, and are the only for-

mulation that has a number of intuitively desirable properties (for machine learning these proper-

ties are local accuracy, missingness and consistency, described elsewhere). Shapley values are am-

biguous as to how features interact with each other. Equal Shapley values for two features could

indicate that the features are completely dependent upon each other, like in the exclusive-OR

problems, or may indicate the features have the same impact on the model, but are completely

independent. Our method provides a fine-grained view of how features interact and is able to

resolve these kinds of ambiguities, and can be used in situations that may be inappropriate for
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Shapley values. Our approach also motivates efficient calculation schemes that reduce the num-

ber of computations required from exponential to polynomial. This allows feature importance

calculations to be scaled to large numbers of features. Our power series formulation is versatile,

theoretically-grounded, and motivates efficient calculation schemes. The power series formu-

lation extends Defence’s ability to interpret data, and will support the effective generation and

maintenance of sophisticated statistical models.
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1. INTRODUCTION

Critical systems can be enhanced through the integration of complex statistical models, like neural

networks for image recognition. However, these statistical models can also introduce unforeseen

risks. Many statistical models are blackboxes that lack transparency, and it can be hard to pre-

dict what factors they use to generate their outputs. Cross-validation is the standard method for

measuring the performance of a supervised statistical learning model. However, as we have dis-

cussed before [1], cross-validation is inherently limited in its ability to check if a model truly gen-

eralizes. It cannot effectively address potential modelling pitfalls such as algorithmic bias, miss-

ing data, drift in the sampling distribution, extrapolation of models to areas of low or no sample

density, data leakage, adversarial inputs, causal interpretations of the model, or poor quality data.

Clearly additional techniques for model validation are essential for critical systems.

Model validation can be improved through the use of interpretable models and methods [2, 3].

Interpretability is context-specific, dependent upon the user, desired outcomes, and domain of ap-

plication. Roughly speaking, interpretability refers to the ability to understand how and why stat-

istical models produce their observed outputs. Insight into the model behaviour can be achieved

through the use of ‘intrinsically’ interpretable models, exploratory analysis, or numerical metrics.

A persistent difficulty with model interpretation is that there are often multiple coherent, but

inconsistent, explanations for what features are important, sometimes known as the Rashomon

effect [4]. This problem is further compounded by the multitude of methods for creating in-

terpretable models that can be found in the literature. Often they use different principles,

may provide inconsistent information, and there is no guidance for choosing which method is

appropriate.

A related difficultly is that the feature importance will depend on what information is of interest.

For example, feature importance may relate to how valuable it would be to collect information or

it could describe - retrospectively - how a feature’s value impacted on the model’s output. These

decisions are often made implicitly, causing a proliferation of similar, but inconsistent, measures

for feature importance. While they are valid when their (implicit) assumptions are satisfied, they

can provide misleading information when used outside of their appropriate context.

We introduce a power series representation of feature importance that quantifies the impact

of information. It separates out the marginal contribution of features into individual and multi-

feature contributions. Our power series formulation can be mapped to Shapley values while

providing a finer grained view of feature importance. This can uncover subtleties, such as whether

features interact together, like in the exclusive-OR problem, or if they are truly independent. Our

framework is flexible and can address many problem formulations with a single theoretically-
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grounded approach. Additionally, it provides a way for dramatically decreasing the number of

model evaluations required to calculate Shapley values under some circumstances.

We develop the power series formulation, map them to Shapley values, and then contrast it with

other feature importance formulations. In Section 2, we examine the different ways in which fea-

ture importance can be formulated and show how they can be accommodated within our frame-

work. Extensions and applications of this methodology are explored in Section 3. In Section 4,

the formal relationship between our power series formulation and Shapley values is established,

followed by examples in which the power series outperforms conventional Shapley values. A com-

parison of the power series formulation with other approaches is presented in Section 5, including

comparison against other Shapley value-based methods. Finally, concluding remarks are presen-

ted in Section 6.

The primary contributions in this technical report are:

• We lay out explicit criteria for defining feature importance.

• We develop a power series representation of feature importance.

• We identify several useful properties of the power series, such as rules for generating

compound feature importance and the invariance of the feature importance under mono-

tonic transformations.

• We show the power series can be transformed into Shapley values.
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2. DEFINING FEATURE IMPORTANCE

Feature importance will be defined by its context and purpose. A series of subtle decisions must

be made by the end user when deciding what formulation is appropriate. We briefly outline each

of the main considerations (derived heuristically) below, and we show how they can be treated

coherently with a single framework that we develop through later sub-sections. Other approaches

to defining interpretability can be found in the references [2, 5, 6] and in section 5.

• Metric. Defining feature importance requires us to define what aspects of a model are

important. Access to information will affect the structure of a statistical model and its pre-

dictive performance, although potentially to different degrees. For example, when there

are correlated features, it is often possible to find several linear regressions that achieve

similar predictive performance, but with different feature weights. Conversely, it may be

possible to find models with seemingly similar structures that have significantly differ-

ent predictive performance. There may even be other implications of including or remov-

ing key features, like changes in the memory required to store a model or the computa-

tional time required to use it. These implications differ from accuracy and fidelity as they

are implementation-dependent and cannot be discussed purely in terms of the underly-

ing statistical model. In any case, the metric should link changes in feature availability to

changes in the model attributes of interest. In a medical context, we may care about recall

– the proportion of true cases identified – because of the high cost of a false negative.

• Model-dependence. Feature importance can be defined intrinsically as the correlation

between independent and dependent features for a (fixed) sampling distribution, or ex-

trinsically by the impact a feature has on a particular model. These two formulations can

produce diverging conclusions if the model has not learnt the sampling distribution to a

reasonable approximation. In the medical domain, we may have an exact sampling distri-

bution for a numerical model, a good approximation for the sampling distribution when

undertaking a large-scale randomized control study, but we will probably need to rely on

crude approximations when analysing data from early stage trials. Across each of these

transitions, our analysis becomes more sensitive to the details of our modelling.

• Baseline for comparison. Feature importance can measure the impact of missing fea-

tures during training, testing, or both. Many models are unable to handle missing values,

which means an appropriate baseline needs to be determined. Two natural methods for

accommodating missing data are imputation schemes and the construction of alternat-

ive models that use a subset of features. But these methods can be under-defined, so the

apparent feature importance can depend on arbitrary factors decided by the user. If per-

forming a medical diagnosis, we might impute the model with the most common value.
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Again, the baseline needs to be domain-relevant.

• Prospective or retrospective? Feature importance could refer to the expected importance

prior to inspecting the feature’s value, or the conditional importance after the feature was

observed. Both of these might be relevant. For instance, we could consider an x-ray as a

feature for medical diagnosis. There are health and monetary costs for performing an x-

ray, and we may want to compare these costs against the prospect of improved diagnosis.

After the x-ray is performed we may want to use the information retrospectively to justify

the diagnosis of a bone fracture or sprain. It would be natural to treat an x-ray as an im-

portant feature for a suspected broken leg but not for a headache. Ideally our measure

of feature importance should address both prospective and retrospective feature import-

ance, while also accounting for the other information available.

We progressively address these considerations throughout the technical report.

2.1. Instance, Local, and Global Loss

Missing features will affect both the model’s output and its predictive performance but potentially

in different ways. The predictive performance is captured through a performance metric or loss 𝐿,

which is commonly accuracy for classification tasks or root-mean square error for regression tasks.

Alternatively, we can examine how missing data changes the output of a model through a fidelity

function 𝐹. A fidelity function takes the outputs of two models as its inputs and measures their

similarity. Unlike performance metrics, there are few conventions for what fidelity functions are

appropriate. For classification tasks an obvious default would be a 0-1 function that produces 1

if and only if the outputs of two models match. Fidelity functions measure consistency, so there

may be some cases where two models strongly agree with each other, but do not provide useful

predictions.

We will soon define three types of feature importance, which relate the change in loss or fidelity

to the presence or absence of features. We will look at losses for different scenarios (individual

data points, locally, and globally) and then use them to generate feature importance. But to do

this, we need to first define losses for each of these cases (fidelity can be treated by slightly modi-

fying the equations below).

We use 𝑥 to represent a complete set of features. Features within this set can include boolean

values (a cough is present or not), ordinals (a subjective rating of pain), continuous values (a pa-

tient’s temperature), or potentially more exotic features. We will generally treat our features as

continuous values for the examples provided. This is primarily an aesthetic choice, and the integ-

rals can be trivially replaced by summations when discrete features are present. We also use 𝑥𝑠

to represent the subset of features that were observed, and 𝑥𝑐 to represent the complement, the
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unobserved features. 𝑥𝑠 and 𝑥𝑐 do not have to represent data that is missing from the data set or

physically inaccessible; they are computational tools to counter-factually understand how inform-

ation from specific feature values contribute to the model’s output.

The loss for an individual instance depends on the model output, the dependent variable 𝑦, and

the observed data 𝑥𝑠,

𝐿(𝑦, 𝛿(𝑥𝑠)), (1)

where 𝛿 is a statistical model. An example of this loss would be:

• 𝐿 is the error rate in medical diagnosis (for example, does this patient have the flu?)

• 𝑦 represents the true state (the patient is healthy)

• 𝑥𝑠 are the observed features (a cough is present and the patient’s temperature is 37∘C)

• 𝛿 is the doctor’s medical diagnosis (the patient has the flu)

Since the doctor has misdiagnosed the patient, there is a loss of 1 for this case.

While 𝑥𝑠 and 𝑦 will be correlated, there may still be some variation in 𝑦. For example, some pa-

tients with a cough and normal temperature will have the flu, and some won’t. To capture the

average model performance when a particular set of features is observed it is more appropriate to

look at the expected local loss, which is given by

𝐸𝑌|𝑥𝑠[𝐿(𝑦, 𝛿(𝑥𝑠))] = �𝐿(𝑦, 𝛿(𝑥𝑠)) 𝑝(𝑦 = 𝑌|𝑥𝑠)𝑑𝑌. (2)

This provides the average misdiagnosis rate for a patient with cough and normal temperature in

our example.

Similarly, the expected global loss describes the long-run model performance, and is given by

𝐸𝑋𝑆,𝑌[𝐿(𝑦, 𝛿(𝑥))] = �𝐿(𝑦, 𝛿(𝑥𝑠)) 𝑝(𝑥𝑠 = 𝑋𝑆, 𝑦 = 𝑌) 𝑑𝑌𝑑𝑋𝑠

= �𝐿(𝑦, 𝛿(𝑥𝑠)) 𝑝(𝑦 = 𝑌|𝑥𝑠) 𝑝(𝑥𝑠 = 𝑋𝑠) 𝑑𝑌𝑑𝑋𝑠,

(3)
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where the capital 𝑋, 𝑋𝑐, 𝑋𝑠 and 𝑌 are used to represent random variables. In a medical context,

the global expected loss would average over all combinations of patients (cough/no cough and

normal temperature/abnormal temperature) to provide an overall misdiagnosis rate.

Sometimes it is easier to use a vector of indicator variables 𝐼 to identify what features are avail-

able, rather than the values themselves,

𝑥𝑖 ∈ 𝑥𝑠 ⟺ 𝐼𝑖 = 1. (4)

The vector of indicator variables will be used in some later exposition.

2.2. Baseline for Comparison

Equations 1, 2, and 3 express the change in the loss given different feature information. However,

many models cannot natively handle missing values, seemingly leaving the expressions undefined.

This requires the model (𝛿) to be somehow extended to incomplete feature sets.

Partial and complete data are connected by the relationship

𝑝(𝑦|𝑥𝑠) = �𝑝(𝑦|𝑥𝑠, 𝑥𝑐)𝑝(𝑥𝑐 = 𝑋𝑐|𝑥𝑠)𝑑𝑋𝑐, (5)

where the left-hand side represents the conditional probability with fewer features, and the right-

hand side represents the standard conditional probability with imputed values. This suggests fea-

ture importance can be generalized by working with the partial data (the left-hand side) or at-

tempting to impute the missing values (the right-hand side).

Imputation schemes fill in missing values with a ‘best guess’. A probability density could theor-

etically be generated, but is rarely seen in practice [7]. In the simplest case imputation might be

the mean value for a numerical feature or the mode for a categorical feature. The comparison can

then be done between the model with the complete data and the model with imputed values. In

many cases these imputations can be done quickly, which allows scaling to large data sets. How-

ever, the imputation scheme must be chosen by the user and there is no obvious mechanism for

generating or selecting a particular imputation scheme among several possibilities. This means

the comparison model is non-unique, and arbitrary decisions can impact on the (apparent) fea-

ture importance.

Alternatively, it is possible to work with the subset data 𝑥𝑠 directly and generate a new model.
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As with the imputation scheme, there is a degree of arbitrariness in how to select parameters for

the data-restricted models. For example, for neural networks there may be a desire to adjust the

learning rate, strength of the regularization, and so on in response to the number of observed

features. The calculated feature importance (as opposed to the ideal Bayes-optimal feature im-

portance) will be sensitive to these adjustments, even though the parameters are not related to

the underlying sampling distribution. Training a series of new models can also be impractical for

large data sets, requiring an alternative approach.

These two approaches will be identical for the Bayes-optimal model because the conditional prob-

ability 𝑝(𝑥𝑐|𝑥𝑠) is either explicitly (imputation) or implicitly (retraining) summed over. The Bayes-

optimal model provides the best possible predictive performance,

𝛿𝐵𝑎𝑦𝑒𝑠 = argmin
𝛿∈𝜃

𝐸𝑥,𝑦∼𝐷[𝐿(𝑦, 𝛿(𝑥))], (6)

where 𝐷 is the sampling distribution and 𝜃 is the set of possible models and we have assumed 𝐿

is a loss function (so small values are better). This definition can easily accommodate missing data

by changing 𝑥 to encompass a different set of features. Likewise, a Bayes-faithful model can be

defined by

𝛿𝐵𝐹 = argmax
𝛿′∈𝜃

𝐸𝑥,𝑦∼𝐷[𝐹(𝛿(𝑥𝑠, 𝑥𝑐), 𝛿
′(𝑥𝑠))] (7)

= argmax
𝛿′∈𝜃

�𝐹(𝛿(𝑥𝑠, 𝑥𝑐), 𝛿
′(𝑥𝑠))𝑝(𝑥𝑐 = 𝑋𝑐|𝑥𝑠)𝑝(𝑥𝑠 = 𝑋𝑠) 𝑑𝑋𝑐 𝑑𝑋𝑠. (8)

where we assume 𝐹 is maximized when 𝛿 = 𝛿′. The Bayes models have no free parameters and

the feature importance will be non-negative for every feature.

The Bayes-optimal model provides an objective measure of feature importance. It is derived solely

from the sampling distribution and is therefore independent of any arbitrary user choices. By con-

struction it also provides an upper bound for model performance. However, Bayes-optimal mod-

els are rarely accessible in practice, and their behaviour can diverge from that seen with realistic

models. First, removing a feature from a model can improve performance [8], leading to a nom-

inal negative feature importance for predictive performance. We do not know of any cases in

which replacing real data values with imputed values has improved the model performance, al-

though it could conceivably occur if the model has overfitted to the feature in question. Second,

data imputation and retraining the model will rarely provide the same results. Data imputation

assumes that the missing values were observed for the training data, while retraining a model
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can be performed regardless of whether data is missing during the test or training phases. One

could conceivably think of imputation as measuring the feature importance for a fixed statistical

model and retraining as measuring feature importance for a learning algorithm, although we are

interpretation-agnostic.

2.3. Representing Feature Importance as a Power Series

The expected loss of a model will usually depend non-linearly on the observed features. One way

to explicitly represent this non-linearity is through a series expansion. To accomplish this, we pro-

pose expressing the joint dependence between features by a power series. For this global feature

importance this is

𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥))] = 𝑉∅ +

𝑛−1

�

𝑖=0

𝑉𝑖 ⋅ 𝐼𝑖 +

𝑛−1

�

𝑖=1

𝑖−1

�

𝑗=0

𝑉𝑖𝑗 ⋅ 𝐼𝑖 ⋅ 𝐼𝑗 +

𝑛−1

�

𝑖=2

𝑖−1

�

𝑗=1

𝑗−1

�

𝑘=0

𝑉𝑖𝑗𝑘 ⋅ 𝐼𝑖 ⋅ 𝐼𝑗 ⋅ 𝐼𝑘… (9)

The first term is the expected loss given no features are available, it is the base rate. The other 𝑉

terms represent coefficients in the power series, and 𝐼 (again) acts as an indicator variable. The

higher-order terms account for interactions. We will shortly demonstrate how to calculate these

terms. For example, the second-order term 𝑉𝑖𝑗 is given by

𝑉𝑖𝑗 = 𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥)|𝐼𝑖, 𝐼𝑗 = 1)] − 𝑉𝑖 − 𝑉𝑗 − 𝑉∅, (10)

Other definitions of feature importance also capture the general concept of joint importance [9],

although their precise formulations have some variation. Our decomposition defines the inter-

action terms relative to the baseline of no features, while other popular formulations define the

interaction relative to the possible coalitions that can be formed [10–12]. One benefit of our ap-

proach is that the interaction coefficients are unaffected by the addition or removal of features

that do not directly take part in the interaction.

2.4. Defining Feature Importance

In equation 9, we defined feature importance through a power series. For just two features, we

can define the interaction using equation 10. We can easily generalize this to cover instance (𝜈),

local (𝑣), or global (𝑉) feature importance. We define the terms in the power series using a recurs-
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ive relationship for each case:

𝜈𝑆(𝑦, 𝑥) = 𝐿(𝑦, 𝛿(𝑥𝑆)) −�

𝑠⊊𝑆

𝜈𝑠(𝑦, 𝑥), (11)

𝑣𝑆(𝑥) = 𝐸𝑌|𝑥𝑠[𝐿(𝑦, 𝛿(𝑥𝑠))] −�

𝑠⊊𝑆

𝑣𝑠(𝑥), (12)

and

𝑉𝑆 = 𝐸𝑌|𝐼𝑠∈𝑆[𝐿(𝑦, 𝛿(𝑋𝑠))] −�

𝑠⊊𝑆

𝑉𝑠, (13)

and the empty set terms in each are:

𝜈∅(𝑦, 𝑥) = 𝐿(𝑦, 𝛿(∅)), (14)

𝑣∅(𝑥) = 𝐸𝑌|𝑋[𝐿(𝑦, 𝛿(∅))], (15)

and

𝑉∅ = 𝐸𝑌[𝐿(𝑦, 𝛿(∅))]. (16)

The recursive relationship arises from defining interactions as the marginal contribution after re-

moving all lower-order effects. The power series terms have the same structure as the Harsanyi

dividend in cooperative game theory [13].

For the purposes of computing the feature importance, it can be assumed that 𝐿 and 𝛿 are known,

as well as 𝑥 and 𝑦, if applicable. This allows the terms to be formally calculated, although the pro-

cess of generating 𝛿 and evaluating 𝛿(𝑥) can be quite computationally expensive in practice. The

base case for the induction, for example 𝜈∅(𝑦, 𝑥), can always be immediately computed, providing

the base step for the computation. We can expand out the terms for a model with three features

(𝑥0, 𝑥1, 𝑥2):
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The baseline term is simply

𝜈∅(𝑦, 𝑥) = 𝐿(𝑦, 𝛿(𝑥𝑆 = {∅})). (17)

The first-order terms are

𝜈𝑥0(𝑦, 𝑥) = 𝐿(𝑦, 𝛿(𝑥𝑆 = {𝑥0})) − 𝐿(𝑦, 𝛿(𝑥𝑆 = {∅}))�����������
baseline term

, (18)

𝜈𝑥1(𝑦, 𝑥) = 𝐿(𝑦, 𝛿(𝑥𝑆 = {𝑥1})) − 𝐿(𝑦, 𝛿(𝑥𝑆 = {∅}))�����������
baseline term

, (19)

and

𝜈𝑥2(𝑦, 𝑥) = 𝐿(𝑦, 𝛿(𝑥𝑆 = {𝑥2})) − 𝐿(𝑦, 𝛿(𝑥𝑆 = {∅}))�����������
baseline term

. (20)

The second-order interaction terms are

𝜈𝑥0,𝑥1(𝑦, 𝑥) = 𝐿(𝑦, 𝛿(𝑥𝑆 = {𝑥0, 𝑥1})) − (𝜈𝑥0(𝑦, 𝑥) + 𝜈𝑥1(𝑦, 𝑥) + 𝜈𝑥2(𝑦, 𝑥))�����������������������
first-order terms

− 𝜈∅(𝑦, 𝑥)�����
baseline term

, (21)

𝜈𝑥0,𝑥2(𝑦, 𝑥) = 𝐿(𝑦, 𝛿(𝑥𝑆 = {𝑥0, 𝑥2})) − (𝜈𝑥0(𝑦, 𝑥) + 𝜈𝑥1(𝑦, 𝑥) + 𝜈𝑥2(𝑦, 𝑥))�����������������������
first-order terms

− 𝜈∅(𝑦, 𝑥)�����
baseline term

, (22)

and

𝜈𝑥1,𝑥2(𝑦, 𝑥) = 𝐿(𝑦, 𝛿(𝑥𝑆 = {𝑥1, 𝑥2})) − (𝜈𝑥0(𝑦, 𝑥) + 𝜈𝑥1(𝑦, 𝑥) + 𝜈𝑥2(𝑦, 𝑥))�����������������������
first-order terms

− 𝜈∅(𝑦, 𝑥)�����
baseline term

. (23)
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Finally, the third-order interaction term is

𝜈𝑥0,𝑥1,𝑥2(𝑦, 𝑥) = 𝐿(𝑦, 𝛿(𝑥𝑆 = {𝑥0, 𝑥1, 𝑥2})) − (𝜈𝑥0,𝑥1(𝑦, 𝑥) + 𝜈𝑥0,𝑥2(𝑦, 𝑥) + 𝜈𝑥1,𝑥2(𝑦, 𝑥))���������������������������
second-order terms

−(𝜈𝑥0(𝑦, 𝑥) + 𝜈𝑥1(𝑦, 𝑥) + 𝜈𝑥2(𝑦, 𝑥))�����������������������
first-order terms

− 𝜈∅(𝑦, 𝑥)�����
baseline term

.
(24)

The process can be extended to an arbitrary number of features. There will be a total of 2𝑛 power

series coefficients, where 𝑛 is the number of features.

2.5. Relationship Between Forms of Feature Importance

The three forms of feature importance are related to each other through their expected values,

𝑣𝑆(𝑥) = 𝐸𝑌[𝜈𝑆(𝑦, 𝑥𝑆)] = �𝜈𝑆(𝑦, 𝑥𝑆)𝑝(𝑦 = 𝑌)𝑑𝑌, (25)

and

𝑉𝑆 = 𝐸𝑋[𝑣𝑆(𝑥)] = �𝑣𝑆(𝑥)𝑝(𝑥 = 𝑋)𝑑𝑋. (26)

We can also think of these forms as being temporally coupled: the global feature importance is

how important we expect a feature to be (say, the presence or absence of a cough) before we

know its value; the local feature importance is how important we expect a feature to be after we

know its value (the patient has a cough) but before we know the label/predicted quantity 𝑦 (the

patient is healthy); the instance feature importance is how important we expect a feature to be

after we know its value and the label/predicted quantity 𝑦 (the cough was a red herring in this

case, we incorrectly used it to diagnose flu).

While there are three forms of feature importance, we can usually decide which form is relevant

based on the information at hand and the goals we want to accomplish. If we want to justify why

a model made a certain prediction, we would look at local feature importance - “the neural net-

work predicted an elephant because of the trunk”. In contrast, we may want to develop a short

health screening tool. This might consist of a small number of questions: “do you have a fever?

have you recently travelled overseas?” We could justify choosing a subset of possible questions

using the global feature importance.
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Table 1 The probability of observing a data point (𝑥, 𝑦). There is a single feature 𝑥 = 0 or 1 and three

classes (𝑦 = 0, 1, or 2). The marginal probabilities are given along the final row and column.

𝑥=0 𝑥=1 𝑝(𝑦)

𝑦=0 0.30 0.00 0.30

𝑦=1 0.09 0.24 0.33

𝑦=2 0.21 0.16 0.37

𝑝(𝑥) 0.60 0.40

2.6. A Three Class Problem

When some features are missing, it is possible to train a new model that is as faithful as possible

to the original model, or to instead focus on minimizing the loss for the simpler model. Perhaps

surprisingly, these two objectives can be in tension even when the original model is optimal. To

illustrate this tension, we consider a simple classification problem involving one feature (𝑥 = 0 or

1) and three classes (𝑦 = 0, 1 or 2), with the probabilities provided in Table 1. The performance

metric is accuracy.

From the table we see that the Bayes classifier (𝛿𝐵𝑎𝑦𝑒𝑠) will predict classes using the rule

𝛿𝐵𝑎𝑦𝑒𝑠(𝑥) =

⎧
⎪

⎨
⎪
⎩

0 if 𝑥 = 0

1 if 𝑥 = 1

2 if 𝑥 is missing

(27)

The classifier will predict the class ‘0’ 60% of the time and class ‘1’ 40% of the time, with an over-

all accuracy of 54% (𝑝(𝑦 = 0|𝑥 = 0)𝑝(𝑥 = 0)+𝑝(𝑦 = 1|𝑥 = 1)𝑝(𝑥 = 1) = 0.30+0.24 = 0.54).

If we remove information about 𝑥 we can either train a new classifier to be as faithful to the ori-

ginal classifier as possible (𝛿0), or to maximize its accuracy (𝛿1). The most faithful classifier will

always predict ‘0’, which has a fidelity of 0.6 and an accuracy of only 30%. In contrast, the Bayes-

optimal classifier when no feature information is available will always predict the class ‘2’ with a

fidelity of 0 and an accuracy of 37% (𝑝(𝑦 = 2|𝑥 = 0)𝑝(𝑥 = 0) + 𝑝(𝑦 = 2|𝑥 = 1)𝑝(𝑥 = 1) =

0.21 + 0.16 = 0.37). In this situation we find a trade-off between fidelity and accuracy. Which

of these quantities we want to maximize will depend on the question of interest. If we want to un-

derstand how the model makes its decision, the fidelity is probably of interest, while the accuracy

will probably be more useful if we are trying to identify what data we want to collect.

2.7. Example of Linear Regression

We demonstrate the power series decomposition for a simple linear regression with two poten-

tially correlated features (𝑥0, 𝑥1) drawn from a bivariate Gaussian distribution. The true relation-
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ship is

𝑦 = 𝛼𝑥0 + 𝛽𝑥1 + 𝜖, (28)

where 𝜖 is a Gaussian error term with mean zero and a standard deviation of 𝜎, and

𝑝(𝑥0, 𝑥1) =
1

2𝜋𝜎0𝜎1�1 − 𝜌2
exp � −

1

2(1 − 𝜌2)
�
𝑥20

𝜎20
+
𝑥21

𝜎21
−
2𝜌𝑥0𝑥1

𝜎0𝜎1
��, (29)

where the terms have their standard definitions.

When a square-error loss function is used, the optimal prediction is given by

𝛿(𝑥) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

0 if 𝑥𝑠 = ∅,

𝛼𝑥0 + 𝛽𝜌
𝜎1

𝜎0
𝑥0 if 𝑥𝑠 = {𝑥0},

𝛼𝜌
𝜎0

𝜎1
𝑥1 + 𝛽𝑥1 if 𝑥𝑠 = {𝑥1},

𝛼𝑥0 + 𝛽𝑥1 if 𝑥𝑠 = {𝑥0, 𝑥1},

(30)

and can be derived by noting that the conditional expectation of 𝑥0 given 𝑥1 is

𝐸(𝑋0|𝑋1 = 𝑥1) = 𝜌
𝜎0

𝜎1
𝑥1 (31)

and vice versa for 𝑥1 given 𝑥0.

The error for a specific instance is given trivially by

(𝑦 − 𝛿(𝑥))2 (32)
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which can be broken down for each case:

𝐿(𝑦, 𝛿(𝑥)) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

(𝛼𝑥0 + 𝛽𝑥1 + 𝜖)2 if 𝑥𝑠 = ∅,

(𝛽(𝑥1 − 𝜌
𝜎1

𝜎0
𝑥0) + 𝜖)2 if 𝑥𝑠 = {𝑥0},

(𝛼(𝑥0 − 𝜌
𝜎0

𝜎1
𝑥1) + 𝜖)2 if 𝑥𝑠 = {𝑥1},

𝜖2 if 𝑥𝑠 = {𝑥0, 𝑥1},

(33)

where the conditionals on the right-hand side indicate what feature information is available. The

systematic and random error terms can sometimes cancel each other out, which means the model

performs worse for some specific instances when more information is available.

The expected error of a model for a fixed data point 𝑥 = (𝑥0, 𝑥1) can be calculated by taking

the expectation of the terms above. The expected error is given by the sum of a systematic bias-

squared term (the first term in the equation below) and the variance from the random and uncor-

related error (the second term) [8]. While the systematic and random error terms can cancel on

occasions, we see that on average they will add together,

𝐸𝑌[𝐿(𝑦, 𝛿(𝑥𝑠))] =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

(𝛼𝑥0 + 𝛽𝑥1)
2 + 𝜎2 if 𝑥𝑠 = ∅,

𝛽2(𝑥1 − 𝜌
𝜎1

𝜎0
𝑥0)

2 + 𝜎2 if 𝑥𝑠 = {𝑥0},

𝛼2(𝑥0 − 𝜌
𝜎0

𝜎1
𝑥1)

2 + 𝜎2 if 𝑥𝑠 = {𝑥1},

𝜎2 if 𝑥𝑠 = {𝑥0, 𝑥1},

(34)

The local feature importance can be calculated from combinations of the above terms,

𝑣(𝑥0, 𝑥1) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑣∅(𝑥0, 𝑥1) = (𝛼𝑥0 + 𝛽𝑥1)
2 + 𝜎2,

𝑣0(𝑥0, 𝑥1) = 𝛽2(𝑥1 − 𝜌
𝜎1

𝜎0
𝑥0)

2 − (𝛼𝑥0 + 𝛽𝑥1)
2,

𝑣1(𝑥0, 𝑥1) = 𝛼2(𝑥0 − 𝜌
𝜎0

𝜎1
𝑥1)

2 − (𝛼𝑥0 + 𝛽𝑥1)
2,

𝑣01(𝑥0, 𝑥1) = (𝛼𝑥0 + 𝛽𝑥1)
2 − 𝛽2(𝑥1 − 𝜌

𝜎1

𝜎0
𝑥0)

2 − 𝛼2(𝑥0 − 𝜌
𝜎0

𝜎1
𝑥1)

2.

(35)

𝛿(𝑥) tries to use the correlation between 𝑥0 and 𝑥1 to reduce the error, which means there is a

coupling between the two features in the local importance, even when only the first-order terms

are considered.
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It is instructive to calculate the limiting case 𝛼 → 0,

lim
𝛼→0

𝑣(𝑥0, 𝑥1) =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

𝑣∅(𝑥0, 𝑥1) = 𝛽2𝑥21 + 𝜎2,

𝑣0(𝑥0, 𝑥1) = 𝛽2𝜌2
𝜎21

𝜎20
𝑥20 − 2𝜌

𝜎1

𝜎0
𝛽2𝑥0𝑥1,

𝑣1(𝑥0, 𝑥1) = −𝛽2𝑥21 ,

𝑣01(𝑥0, 𝑥1) = −𝛽2𝜌2
𝜎21

𝜎20
𝑥20 + 2𝜌

𝜎1

𝜎0
𝛽2𝑥0𝑥1.

(36)

Even though the value of 𝑥0 does not impact the loss function directly (because 𝛼 = 0), it still

provides some value through its correlation with 𝑥1. This is seen by the non-zero expressions for

𝑣0 and 𝑣01.

Finally, the expected global error is calculated by integrating over the distribution of possible val-

ues and weighting them by an appropriate probability density. It is given by

𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥))] =

⎧
⎪

⎨
⎪
⎩

𝛼2𝜎20 + 2𝛼𝛽𝜌𝜎0𝜎1 + 𝛽2𝜎21 + 𝜎2 if 𝑋𝑠 = {∅},

(1 − 𝜌2)𝛽2𝜎21 + 𝜎2 if 𝑋𝑠 = {𝑋0},

(1 − 𝜌2)𝛼2𝜎20 + 𝜎2 if 𝑋𝑠 = {𝑋1},

𝜎2 if 𝑋𝑠 = {𝑋0, 𝑋1},

(37)

where 𝑋𝑠 on the right-hand side again indicates which features are available.

As we are using a loss function, a negative feature importance indicates a reduction in the global

expected loss, the convention would be the opposite for an objective function that we are trying

to maximize,

𝑉 =

⎧
⎪

⎨
⎪
⎩

𝑉∅ = 𝛼2𝜎20 + 2𝛼𝛽𝜌𝜎0𝜎1 + 𝛽2𝜎21 + 𝜎2,

𝑉0 = −(𝛼2𝜎20 + 2𝛼𝛽𝜌𝜎0𝜎1 + 𝜌2𝛽2𝜎21 ),

𝑉1 = −(𝜌2𝛼2𝜎20 + 2𝛼𝛽𝜌𝜎0𝜎1 + 𝛽2𝜎21 ),

𝑉01 = 2𝛼𝛽𝜌𝜎0𝜎1 + 𝜌2(𝛼2𝜎20 + 𝛽2𝜎21 ).

(38)

The redundant information is related to the variation (𝜎0, 𝜎1) directly explained by each feature

and the correlation (𝜌) between them.
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2.8. When is Feature Importance not Defined?

Our framework provides a broadly applicable method for determining how features contribute to

a model’s output. We briefly look at some situations in which our framework may breakdown or is

not applicable.

Diverging loss. Our approach assumes the expected loss is bounded. This assumption can patho-

logically fail for heavy-tailed distributions. A classical example where the loss diverges is the

mean-square error for a Cauchy distribution, which doesn’t even have a properly defined mean.

Interventions. Sometimes we may want to calculate the value of an intervention, such as the

change in patient life expectancy given treatment for a disease. We could then consider factors

like age or gender to identify interaction terms. The treatment feature is externally controlled

and is not well-described by our statistical approach, so cannot be immediately addressed in our

framework.

Continuous feature inclusion. We treated features as strictly included or excluded in our frame-

work. In some situations, it might be more natural to consider partial inclusion. Consider the situ-

ation in which we are trying to estimate 𝑦 ∼ 𝑁(0, 𝑧−1) under a mean-square error and we have

a single feature 𝑥 ∼ 𝑁(𝑦, 𝜏−1), where 𝜏 is a measurement precision we can control. Then after

sampling 𝑥, the probability distribution for 𝑦 is

𝑝(𝑦|𝑥) = 𝑁�
𝜏

𝑧 + 𝜏
𝑥,

1

𝑧 + 𝜏
�, (39)

and the mean-square error drops from

𝑧−2 (40)

to

(𝑧 + 𝜏)−2. (41)

We could treat the feature importance by using the two equations above, but this ignores our

ability to choose 𝜏. Unlike the interventions above, where we are directly changing the properties

of the system, we are now only considering the value of a non-interactive, passive measurement.
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Unlimited features. Some kinds of non-parametric models can possess arbitrarily large numbers

of features. A basic example is a nearest-neighbour model. While we can always calculate the fea-

ture importance for a finite data set, this may not be defined in the asymptotic limit.

Undefined feature censoring. We have treated features as either present or absent. It is not clear

that this distinction is useful for all types of data sets. For example, if we have a sample of text -

“the car is red” - we may identify the colour of an object from the word ‘red’. Should the absent

case be represented by replacing red with a star ‘*’, by its removal from the sentence, or by some

other kind of censoring?
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3. EXTENSIONS AND APPLICATIONS

The power series framework can be applied to a variety of problems. In this section, we develop

a deeper understanding of the power series. We first look at how feature transformations affect

the power series (subsections 3.1, 3.2, 3.3), then we examine the potential for visualization (sub-

section 3.4), some summary statistics for feature importance are given (subsection 3.5), provide

some details for how we may want to calcualte the feature importance in practice for Gaussian

mixture models (subsection 3.6), and then we conclude by looking at how the power series can

be related to influential data points (subsection 3.7) and identifying what features are sensitive to

censoring in the context of adversarial attacks (subsection 3.8).

3.1. Monotonic Transformations

The local and global feature importance is unaffected by any monotonic transform that operates

on a single feature. To show this we apply an arbitrary monotonic transform and show that the

expressions for the loss for a single data point, the local expected loss, and the global expected

loss (equations 1, 2, and 3) are invariant. Since the feature importance is derived from these equa-

tions, it follows that the feature importance is also invariant.

To begin, we select an arbitrary feature 𝑥𝑖 and transform it using a monotonic transform 𝑡,

𝑤𝑖 = 𝑡(𝑥𝑖). (42)

We assume the probability density function and transforms are smooth and ‘well-behaved’ so

they can be integrated and differentiated. The loss for a single data point 𝑥 is

𝐿(𝑦, 𝛿(𝑥)). (43)

The loss can be re-expressed as

𝐿(𝑦, 𝛿(𝑥−𝑖, 𝑥𝑖)) = 𝐿(𝑦, 𝛿(𝑥−𝑖, 𝑡
−1(𝑤𝑖)), (44)

where we have split 𝑥 into the single feature 𝑥𝑖 and the remaining features 𝑥−𝑖. The original

UNCLASSIFIED

18



UNCLASSIFIED

DST-Group-TR-3743

model cannot operate on 𝑤𝑖 so we define a new model 𝛿′ that satisfies

𝐿(𝑦, 𝛿(𝑥−𝑖, 𝑡
−1(𝑤𝑖)) = 𝐿(𝑦, 𝛿′(𝑥−𝑖, 𝑤𝑖)). (45)

We can always find such a 𝛿′; one way would be to first apply the transform 𝑡 to 𝑤𝑖 to recover 𝑥𝑖

and then use the original model 𝛿. This equality means the loss for any data point (equation 1) is

unaffected by a monotonic transformation of one feature, and is true by definition for the Bayes-

optimal model or by construction in general.

The expected local loss (equation 2) is calculated by integrating over the conditional probability,

�𝐿(𝑦, 𝛿(𝑥𝑠)) 𝑝(𝑦 = 𝑌|𝑥𝑠)𝑑𝑌 = �𝐿(𝑦, 𝛿(𝑥−𝑖, 𝑡
−1(𝑤𝑖))) 𝑝𝑌|𝑋−𝑖,𝑋𝑖(𝑦 = 𝑌|𝑥−𝑖, 𝑡

−1(𝑤𝑖))𝑑𝑌 (46)

= �𝐿(𝑦, 𝛿′(𝑥−𝑖, 𝑤𝑖)) 𝑝𝑌|𝑋−𝑖,𝑊𝑖
(𝑦 = 𝑌|𝑥−𝑖, 𝑤𝑖)𝑑𝑌. (47)

The conditional probabilities implicitly account for which feature (𝑥𝑖 or 𝑤𝑖) is used. Information is

preserved because we apply a monotonic transformation,

𝑝(𝑦|𝑤𝑖) = �𝑝𝑌|𝑋𝑖(𝑦|𝑥𝑖)𝑝𝑋𝑖|𝑊𝑖
(𝑥𝑖 = 𝑋𝑖|𝑤𝑖) 𝑑𝑋𝑖 (48)

= �𝑝𝑌|𝑋𝑖(𝑦|𝑥𝑖) 𝛿𝑓(𝑡
−1(𝑤𝑖 = 𝑊𝑖)) 𝑑𝑊𝑖 = 𝑝𝑦|𝑥𝑖(𝑦|𝑥𝑖), (49)

where 𝛿𝑓 is the Dirac delta function (not the statistical model). This demonstrates that the local

feature importance is invariant.

Finally, the global expected loss (equation 3) is

𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥))] = �𝐿(𝑦, 𝛿(𝑥)) 𝑝𝑌|𝑋(𝑦 = 𝑌|𝑥) 𝑝𝑥(𝑥 = 𝑋) 𝑑𝑋𝑑𝑌 (50)

UNCLASSIFIED

19



UNCLASSIFIED

DST-Group-TR-3743

= �𝐿(𝑦, 𝛿(𝑥−𝑖, 𝑥𝑖)) 𝑝𝑌|𝑋−𝑖,𝑋𝑖(𝑦 = 𝑌|𝑥−𝑖, 𝑥𝑖) 𝑝𝑋−𝑖|𝑋𝑖(𝑥−𝑖 = 𝑋−𝑖|𝑥𝑖) 𝑝(𝑥𝑖 = 𝑋𝑖) 𝑑𝑋−𝑖 𝑑𝑋𝑖 𝑑𝑌 (51)

= �𝐿(𝑦, 𝛿(𝑥−𝑖, 𝑡
−1(𝑤𝑖))) 𝑝𝑌|𝑋−𝑖,𝑋𝑖(𝑦 = 𝑌|𝑥−𝑖, 𝑡

−1(𝑤𝑖))

𝑝𝑋−𝑖|𝑋𝑖(𝑥−𝑖 = 𝑋𝑖|𝑡
−1(𝑤𝑖)) 𝑝(𝑡

−1(𝑤𝑖) = 𝑡−1(𝑊𝑖))
𝑑𝑥𝑖

𝑑𝑤𝑖
𝑑𝑋−𝑖 𝑑𝑊𝑖 𝑑𝑌.

(52)

= �𝐿(𝑦, 𝛿′(𝑥−𝑖, 𝑤𝑖)) 𝑝𝑌|𝑋−𝑖,𝑊𝑖
(𝑦 = 𝑌|𝑥−𝑖, 𝑤𝑖) 𝑝𝑋𝑖|𝑊𝑖

(𝑥−𝑖 = 𝑋−𝑖|𝑤𝑖) 𝑝(𝑤𝑖 = 𝑊𝑖) 𝑑𝑋−𝑖 𝑑𝑊𝑖 𝑑𝑌,

(53)

= 𝐸𝛿′|𝐼′[𝐿], (54)

where 𝐼′ is the inclusion of modified features, and we used the
𝑑𝑥𝑖

𝑑𝑤𝑖
term to transform the probab-

ility term of the lone feature from 𝑝(𝑥𝑖) to 𝑝(𝑤𝑖). The global expected loss is the same, whether it

is defined in terms of 𝑥𝑖 or 𝑤𝑖, so it is also invariant.

This demonstrates that the feature importance is invariant under monotonic transformations. A

similar proof applies to the discrete case for bijective mappings for a single feature. The invariance

property, while not immediately obvious, informally means that the feature importance is inde-

pendent of the units used for expressing a feature. There are other formulations of feature im-

portance for which invariance does not apply. Virtually any method that uses gradients to determ-

ine local feature importance (for example [14]) is not invariant, even when a monotonic transform

is used.

3.2. Feature Transformation

The feature importance can change dramatically after applying a multi-feature transformation. To

demonstrate this, we examine the change in feature importance when the two correlated com-

ponents of a bi-normal distribution are replaced with two uncorrelated components. This can be

achieved by applying an appropriate rotation with angle 𝜙 to the features from equation 29. The
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two new features 𝑢0 and 𝑢1 are related to the original features by

𝑢0 = 𝑥0 cos𝜙 + 𝑥1 sin𝜙, (55)

and

𝑢1 = −𝑥0 sin𝜙 + 𝑥1 cos𝜙. (56)

The standard deviations of these features are

𝜎𝑢0 =
1

2
[𝜎0 + 𝜎1 +�(𝜎0 + 𝜎1)

2 − 4𝜎0𝜎1(1 − 𝜌2)] (57)

and

𝜎𝑢1 =
1

2
[𝜎0 + 𝜎1 −�(𝜎0 + 𝜎1)

2 − 4𝜎0𝜎1(1 − 𝜌2)], (58)

and now the two features are statistically independent. The feature importance can be calculated

as before. For brevity, we only provide the global feature importance,

𝑉 =

⎧
⎪

⎨
⎪
⎩

𝑉∅ = (𝛼 cos𝜙 + 𝛽 sin 𝜃)2𝜎2𝑢0 + (−𝛼 sin𝜙 + 𝛽 cos 𝜃)2𝜎2𝑢1,

𝑉0 = −(𝛼 cos𝜙 + 𝛽 sin𝜙)2𝜎2𝑢0,

𝑉1 = −(−𝛼 sin𝜙 + 𝛽 cos𝜙)2𝜎2𝑢1,

𝑉01 = 0.

(59)

It can be seen that the interaction term 𝑉01 is now completely suppressed, as expected, and this

makes the interpretation of the features much simpler. The local feature importance in the trans-

formed case bears little resemblance to the values in the untransformed case. Feature importance

is related to the effect of removing a feature. Removing 𝑢0 or 𝑢1 reports partial information about

both 𝑥0 and 𝑥1 because of the interaction between the features, and this means the effect on the

expected loss is non-linear.
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3.3. Combined Features

The power series decomposition can be applied to data with modified features, and thereby in-

crease the types of problems that can be addressed. For example, humans wouldn’t explain im-

ages in terms of individual pixels; they would identify a face from the presence of abstract ob-

jects like an eye or a nose. It is possible to represent more abstract or complex entities within our

framework. For example, replacing a single pixel as a feature by a cluster of features.

There is a simple relationship between the feature importance for ‘compound’ features and those

of their constituent features from which they’re constructed. Consider two features, 𝑖 and 𝑗, that

have been grouped into a compound feature, {𝑖, 𝑗}, then we can immediately deduce that the

first-order feature importance of the compound feature is given by the first-order contributions

of features 𝑖 and 𝑗, as well as their interaction term. Mathematically this can be expressed by

𝑉{𝑖,𝑗} = 𝑉𝑖 + 𝑉𝑗 + 𝑉𝑖𝑗. (60)

Similarly, elementary reasoning shows that the second-order interaction with a feature 𝑘 is given

by

𝑉{𝑖,𝑗}𝑘 = 𝑉𝑖𝑘 + 𝑉𝑗𝑘 + 𝑉𝑖𝑗𝑘. (61)

The higher-order terms and interactions between compound features follow a similar pattern. If

the set of features 𝛺 forms a compound feature, then the importance of this compound feature

is related to the importance of constituent features by expanding out the interactions with each

possible subset 𝜔,

𝑉{𝛺}𝑗 = �

𝜔⊊𝛺,𝜔≠∅

𝑉𝜔𝑗. (62)

Equation 62 provides an elegant method for aggregating features together and avoids elaborate

recomputation that is required with some other methods, notably Shapley values that we de-

scribe shortly.

3.4. Visualizing Feature Importance

Feature importance can be made more insightful and interpretable through visualization. There

are a number of avenues for visualizing numerical quantities, like those given in equation 35 that
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Figure 1 The local feature importance for 𝑣∅, 𝑣0, 𝑣1, and 𝑣01 for a linear model with points sampled

from a bi-normal distribution and a mean-square error function. Positive (negative) indicates

the feature increases (decreases) the model error. See text for more details.

describe the local feature importance for a two-dimensional Gaussian distribution. The local fea-

ture importance can be plotted as a marginal or conditional distribution by fixing the unknown

features at specific values or averaging over the latent distribution. As a proof-of-concept we plot

a histogram of local feature importance values in Figure 1. Recall, the general form of feature im-

portance is given by equation 12, with a closed-form solution for the bi-Gaussian case in equation

35, and equation 29 provides the probability distribution for the features. Values for 𝑣∅, 𝑣0, 𝑣1,

and 𝑣01 are plotted in 1 a-d, respectively.

To generate the histogram we assumed there was no random noise (𝜎 = 0), that the components

had equal variance (𝜎0 = 𝜎1 = 1) and modest correlation (𝜌 = 0.3). The first feature had a

stronger impact on the output than the second (𝛼 = 0.9, 𝛽 = 0.44). These properties are reflec-

ted in Figure 1. 𝑣∅ is always positive which is indicative of the baseline error, and has significant

skew because Gaussian distributions have light tails. 𝑣0 and 𝑣1 are, on average, slightly negative,

although there is significant spread. 𝑣0 has a more negative value on average because 𝛼 > 𝛽.

The model tries to use the correlation between 𝑥0 and 𝑥1 to reduce the average error. However,
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in some cases the unknown feature has the opposite of the expected sign (the positive feature

values), causing the performance to degrade. When this occurs, the interaction term (𝑣01) will be

negative, indicating a synergistic effect. The positive feature values in this case are generated by

the inherent stochasticity of the system, and are not the result of overfitting. Even for this simple

example, basic visualization techniques like histograms can be used to insight into the interactions

between features. In more complex cases, visualization may potentially assist in making blackbox

models more interpretable.

3.5. Summary Statistics

In some situations we may want to provide some insight into the feature importance terms

without resorting to a table of values. Visualization is one alternative method we have explored.

Another avenue is summary statistics. In standard statistics, we are familiar with quantities like

the mean, mode, and standard deviation that summarize the general attributes of statistical

samples or distributions. These do not exist for interpretable machine learning, since the field

is still emerging. We propose four summary statistics to fill this gap: the sufficient contribution,

the necessary contribution, the minimum marginal contribution, and the maximum marginal

contribution. These are defined in relation to the change in the expected global loss.

Sufficient. The sufficient contribution of feature 𝑋𝑖 is 𝜆 if

𝐸[𝐿(𝑦, 𝛿(∅))] − 𝐸[𝐿(𝑦, 𝛿(𝑋𝑠 ∪ 𝑋𝑖))] ≥ 𝜆 ∀ 𝑋𝑠 ∈ 𝑋 ⧵ 𝑋𝑖. (63)

This means that including feature 𝑋𝑖 is our model is sufficient to decrease the expected loss by at

least 𝜆 over the base rate.

Necessary. The necessary contribution of feature 𝑋𝑖 is 𝜆 if

𝐸[𝐿(𝑦, 𝛿(𝑋 ⧵ 𝑋𝑖))] − 𝐸[𝐿(𝑦, 𝛿(𝑋))] = 𝜆. (64)

This means that it is necessary to include feature 𝑋𝑖 in our model, or the loss will be at least 𝜆

greater than for the Bayes-optimal model.

Minimum. The minimum marginal contribution of feature 𝑋𝑖 is 𝜆 if adding 𝑋𝑖 always decreases the
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expected loss by at least 𝜆,

𝐸[𝐿(𝑦, 𝛿(𝑋𝑠))] − 𝐸[𝐿(𝑦, 𝛿(𝑋𝑠 ∪ 𝑋𝑖))] ≥ 𝜆 ∀ 𝑋𝑠 ⊂ 𝑋 ⧵ 𝑋𝑖. (65)

Maximum. The maximum marginal contribution of feature 𝑋𝑖 is 𝜆 if adding 𝑋𝑖 can decrease the

expected loss by at most 𝜆,

sup
𝑋𝑠∈𝑋⧵𝑋𝑖

�𝐸[𝐿(𝑦, 𝛿(𝑋𝑠))] − 𝐸[𝐿(𝑦, 𝛿(𝑋𝑠 ∪ 𝑋𝑖))]� = 𝜆. (66)

These summary statistics can be adapted for local feature importance in a number of ways: we

could apply the above definitions for a specific value of 𝑥; we could require the definitions to hold

for all 𝑥 in the sample space of 𝑋; or we might require a probabilistic guarantee. For example, that

the reduction in loss is 𝜆 at least 95% of the time.

3.6. Calculating Feature Importance for a Gaussian Mixture

To calculate the local and global feature importance, we need to access the expected values. We

may not be able to calculate these when we only have a finite number of samples, so some ad-

justments in our approach are required. The adjustments will depend on the type of model we

are using. In this section, we briefly describe how the feature importance can be estimated for a

Gaussian mixture model, although the principles we use are widely applicable to generative mod-

els.

We will assume we are using a cross-entropy loss function, and through some fitting procedure

(maybe maximum likelihood), we have determined the vector of means for each class is a known

�̂�𝑖 and the covariance matrix is a �̂�𝑖, where 𝑖 ∈ 0,… , 𝑛 − 1, and that the proportion of each class is

�̂�𝑖.

We can calculate the conditional probability of 𝑦 given 𝑥, 𝑝�̂�𝑖,�̂�𝑖(𝑦𝑖|𝑥), using readily available stat-

istical packages.

The local expected loss for point 𝑥 is

𝐸𝑌|𝑋=𝑥[𝐿(𝑦, 𝛿(𝑥))] =

𝑛−1

�

𝑖=0

𝑝�̂�𝑖,�̂�𝑖(𝑦𝑖|𝑥) log(𝑝�̂�𝑖,�̂�𝑖(𝑦𝑖|𝑥)). (67)
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The expected class for subsets of features can be calculated using the marginal distributions of the

Gaussian components.

The expected loss using our generative model can then be fed into equation 12 to calculate the

local feature importance. Likewise, we can calculate the instance and global feature importance.

Since we are using the sampling distribution from our model, the values will differ from their true

values. The deviation will depend on how well the data can be described by a mixture of Gaus-

sians, and the deviations could potentially be used to guide construction of a better statistical

model.

3.7. Data Importance

Rather than being interested in what features contribute to a model, we may be interested in

what data contributes to a model. For linear models, we may talk about points with high ‘lever-

age’, for example. The series expansion method can be adapted for calculating the influence of

individual or sets of data points. The idea is broadly the same: we can retrain the model by re-

moving a subset of data points and comparing it against the original model. The models can be

compared locally or globally in analogous fashion to equations 1, 2 and 3. It may also be of in-

terest to replace the data point with a resampled point to investigate the model stability across

multiple experiments.

3.8. Relationship to Adversarial Perturbations

There has recently been interest in identifying, suppressing, and understanding adversarial ex-

amples. Adversarial examples ‘look like’ normal data points, but cause statistical models to pro-

duce spurious predictions. The process of creating adversarial examples tends to focus on chan-

ging the value of one or more features. Another kind of adversarial transformation, that to the

best of our knowledge has not been described in the literature, could be to adversarially censor

the value of one or more features. As when identifying feature importance, the adversarial ex-

amples will be sensitive to the loss function, which in turn is determined by the context.

For example, the optimal censoring attack involves removing the feature that has the greatest

effect on the local loss,

𝛥𝐿 = 𝐿(𝑦, 𝛿(𝑥)) − 𝐿(𝑦, 𝛿(𝑥\𝑥𝑖)), (68)

where the backslash indicates the omission of a feature value.
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Likewise, an attacker may want to ‘poison’ the training data set, which would correspond to re-

moving the most important data points, as described above. These points can be identified using

the terms in our power series.

3.9. Utility of the Power Series Formulation

In this section, we have analysed the properties of the power series formulation in greater detail.

We have shown the power series formulation has a number of pleasing properties. It is invariant

under monotonic transformations. Informally, this says that the power series is insensitive to the

units used for representing a feature. If we were to represent a length using centimetres, inches,

or on a logarithmic scale, the power series would still give the same answer. There is also a simple

formula for relating the feature importance of compound features to the feature importance of its

constituents, which may be of interest when trying to cluster features together.

Feature importance was visualized for a simple example. The distribution of feature importance

values helped to elucidate that even for the optimal model, additional information could harm the

model performance for a subset of data points, and we were able to relate these instances to the

underlying distribution. This demonstrates potential for understanding more complex data sets.

While we mainly applied the power series formulation to features, it has wider applicability, such

as understanding how data points contribute to the training of a model.
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4. CONNECTION TO SHAPLEY VALUES

The power series formulation has a parallel in game theory called Shapley values [15]. Shapley

values were conceived as a way of fairly distributing output among a group of players. Moreover,

they are the only way of distributing an output that satisfies symmetry, consistency, efficiency, and

linearity [16]. These are considered intuitively reasonable properties and can be translated into

equivalent statements for feature importance [17]. Establishing the formal relationship between

our power series formulation and Shapley values improves our method’s credibility and reinforces

its theoretical foundations.

4.1. Defining Shapley Values

In Shapley’s game, each player has the option of joining a coalition to produce a scalar output.

The output will depend on the coalition’s composition. Combinations of players may act syner-

gistically to create a total output that is larger than the sum of the individual contributions, or

conversely their contributions may be subadditive. A fair distribution will separate the output in

proportion to each player’s marginal contribution. However, owing to the non-linearity, this will

be affected by the order in which players join the coalition.

Shapley overcame this problem by calculating the marginal contribution averaged over every pos-

sible ordering. It can be calculated using the formula

𝑆𝑖 = �

𝑟⊆𝑞⧵{𝑖}

|𝑟|!(|𝑞| − |𝑟| − 1)!

|𝑞|!
[ℎ𝑟∪{𝑖}(𝑥𝑟∪{𝑖}) − ℎ𝑟(𝑥𝑟)], (69)

where 𝑆𝑖 is the Shapley value of player 𝑖, 𝑞 is the set of all players, 𝑟 is a subset of players not in-

cluding player 𝑖, ℎ is the function that calculates the coalition’s output, 𝑥 indicates a set of fea-

tures, and the sub-scripts of ℎ indicate which players are involved in calculating the coalition’s

output.

4.2. The Relationship Between Shapley Values and Feature Importance

Shapley values can be adapted for calculating feature importance [17, 18]. The set of players is re-

placed by a set of possible feature values, and the function ℎ is replaced by a measure of model

performance, typically accuracy. When calculating standard Shapley values, the features are fixed,

but can be present or absent. The Shapley value for each feature is therefore a scalar value, 𝑆𝑖.

When treating feature importance for statistical models, the features can typically take multiple

values, so the Shapley values need to be replaced with a function, 𝑆𝑖(𝑥). The local nature of the

UNCLASSIFIED

28



UNCLASSIFIED

DST-Group-TR-3743

Shapley feature importance is often treated implicitly in the literature, which may lead to con-

fusion. A global measure of feature importance (𝑆𝑖(𝑋)) can be derived by integrating over the

feature distribution [19, 20], but is rarely used. Likewise, we could derive an instance feature im-

portance (𝑆𝑖(𝑥, 𝑦)) by using the loss function.

Shapley feature importance has a peculiar interpretation: 𝑆𝑖(𝑥)measures how a particular fea-

ture, 𝑥𝑖, contributes to a model’s accuracy against a naïve baseline [21]. It does not measure the

change in accuracy when a feature is removed, nor does it provide a measure of model sensitivity

to changes in that feature. These relationships can be captured through other measures that we

describe in Section 5.

4.3. Equivalence of Shapley Values and the Power Series Formulation

Our power series representation relates feature importance to how the model’s loss changes in

response to the inclusion of one or more features (equation 9), while Shapley values are derived

from the average marginal contribution across all possible permutations of features (equation

69). Despite their ostensibly different structures, a correspondence can be formally established

between them using combinatorics.

We can use symmetry arguments to motivate the correspondence: if there is an interaction

between feature 𝑖 and 𝑗, then 𝑖 will occur later than 𝑗 in half of all the permutations and it will

receive half of the interaction term 𝑉𝑖𝑗. Similarly, 𝑖 will receive a third of any cubic interaction

and so forth. The Shapley values receive an equal share of each interaction term, so they can be

related to the power series by

𝑆𝑖 = 𝑉𝑖 +�

𝑖,𝑗

1

2
𝑉𝑖𝑗 +

1

3
�

𝑖,𝑗,𝑘

𝑉𝑖𝑗𝑘 +… (70)

where we define terms with repeat indices as zero.

We sketch the formal combinatorics to prove equation 70. We do this by showing each interaction

term contributions proportionality to each Shapley value. Without loss of generality, consider the

interaction between feature 0 and the next 𝑝 − 1 features,

𝑉0…𝑝, (71)

and its contribution to the Shapley value of feature 0, 𝑆0.
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We break the calculation into two stages: first, we consider all permutations of features that have

feature 0 in the𝑚-th position (using 0 indexing) and the group of 𝑝 − 1 features that interact with

feature 0 preceding it - this provides an interaction term between feature 0 and the 𝑝 − 1 other

features. Second, we sum over all possible positions of feature 𝑖 to calculate the total contribu-

tion. 𝑚 cannot occur before the 𝑝 − 1-th position, because otherwise it wouldn’t be possible to

have all of the other 𝑝−1 terms interacting with it, so we only use values of𝑚 between 𝑝−1 and

𝑛−1, inclusive. Following these steps, we show the Shapley value is equivalent to a weighted sum

of our power series terms.

If feature 0 is in position𝑚, then there are 𝑛 − 𝑝 remaining features that can be arranged in𝑚 −

𝑝 + 1 places. Accounting for the possible orderings means the total number of permutations is

�
𝑛 − 𝑝

𝑚 − 𝑝 + 1
�𝑚!(𝑛 − 𝑚 − 1)! (72)

Next, we need to sum over all possible positions𝑚. Again, the possible values of𝑚 are restricted,

so the total number of permutations is

𝑛−1

�

𝑚=𝑝−1

�
𝑛 − 𝑝

𝑚 − 𝑝 + 1
�𝑚!(𝑛 − 𝑚 − 1)! (73)

We need to divide by 𝑛! to account for the number of possible permutations, so the contribution

of 𝑉0…𝑝 to 𝑆0 is

1

𝑛!

𝑛−1

�

𝑚=𝑝−1

�
𝑛 − 𝑝

𝑚 − 𝑝 + 1
�𝑚!(𝑛 − 𝑚 − 1)!𝑉0…𝑝 (74)

After a straight-forward but tedious calculation this reduces to

1

𝑝
𝑉0…𝑝. (75)

Summing over every interaction term involving feature 0 we get

𝑆0 = 𝑉0 +�

0,𝑗

1

2
𝑉0𝑗 +

1

3
�

0,𝑗,𝑘

𝑉0𝑗𝑘 +… (76)
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We have recovered the Shapley value for 𝑆0, demonstrating the equivalence in equation 70.

The base rate is not incorporated into any of the Shapley values, although it will affect the model

performance, and may be relevant to their interpretation in terms of what information is avail-

able.

4.4. Calculating Shapley Values

In section 2.7, we examined a linear model with features drawn from a correlated, bi-Gaussian

distribution. This serves as a useful example for calculating Shapley values since there is a nice,

closed-form solution. We will only calculate the importance of 𝑥0 for brevity, but 𝑥1 follows an

almost identical procedure. First, we generate the possible permutations of features. These are

simply

[𝑥0, 𝑥1] (77)

and

[𝑥1, 𝑥0]. (78)

The terms for ℎ𝑟∪{𝑖}(𝑥𝑟∪{𝑖}) − ℎ𝑟(𝑥𝑟) in the Shapley calculation are

𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥0))] − 𝐸𝛿|∅[𝐿] (79)

and

𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥0, 𝑥1))] − 𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥1))]. (80)

Using the values we calculated before (and setting 𝜎 = 0 to reduce clutter),

𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥0))] − 𝐸𝛿|∅[𝐿] = 𝛽2(𝑥1 − 𝜌
𝜎1

𝜎0
𝑥0)

2 − (𝛼𝑥0 + 𝛽𝑥1)
2, (81)
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and

𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥0, 𝑥1))] − 𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥1))] = 0 − 𝛼2(𝑥0 − 𝜌
𝜎0

𝜎1
𝑥1)

2. (82)

The Shapley value for 𝑥0 is

𝑆𝑥0 =
1

2
𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥0))] − 𝐸𝛿|∅[𝐿]] +

1

2
𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥0, 𝑥1))] − 𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥1))] (83)

=
1

2
(𝛽2(𝑥1 − 𝜌

𝜎1

𝜎0
𝑥0)

2 − 𝛼2(𝑥0 − 𝜌
𝜎0

𝜎1
𝑥1)

2 − (𝛼𝑥0 + 𝛽𝑥1)
2). (84)

Alternatively, we note that equations 79 and 80 are equivalent to the first-order and second-order

interactions from section 2.7, so the Shapley value can be written as

𝑆𝑥0 = 𝑣0(𝑥0, 𝑥1) +
1

2
𝑣01(𝑥0, 𝑥1) (85)

= 𝛽2(𝑥1−𝜌
𝜎1

𝜎0
𝑥0)

2−(𝛼𝑥0+𝛽𝑥1)
2+

1

2
((𝛼𝑥0+𝛽𝑥1)

2−𝛽2(𝑥1−𝜌
𝜎1

𝜎0
𝑥0)

2−𝛼2(𝑥0−𝜌
𝜎0

𝜎1
𝑥1)

2) (86)

=
1

2
(𝛽2(𝑥1 − 𝜌

𝜎1

𝜎0
𝑥0)

2 − 𝛼2(𝑥0 − 𝜌
𝜎0

𝜎1
𝑥1)

2 − (𝛼𝑥0 + 𝛽𝑥1)
2), (87)

as above.

For small examples, both approaches require a similar amount of effort. However, in the next sec-

tion we show that sometimes the power series can yield much faster calculations.

4.5. Faster Calculation of Shapley Values

Shapley values are calculated by averaging over 𝑛! possible permutations, each of length 𝑛 + 1

when including the no feature case. The total number of models to evaluate for the Shapley val-

ues calculation is then (𝑛 + 1)𝑛!. This can be reduced by reusing some of the sub-sequences in
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the permutations [22]. Nevertheless, the number of evaluations required quickly becomes im-

practical.

We can reduce the computation considerably using the power series formulation if we have prior

knowledge about the values of coefficients or there are structural constraints, such as when inter-

actions only occur between pairs of features. We can form a single permutation and calculate the

feature importance from the marginal change in performance between adjacent terms, for a total

of only 𝑛 + 1 calculations. Similarly, if only first and second-order terms are present, we only need

to sample 𝑛 permutations, for a total of 𝑛2+1 evaluations. We demonstrate this by construction

below.

To calculate the total number of permutations we first calculate the empty model and then

sample a random permutation. We will assume for simplicity (and without loss of generality) that

the permutation is

𝜋0 = (𝑓0, 𝑓𝑛−1, 𝑓𝑛−2, … , 𝑓1), (88)

where 𝑓𝑖 represents the addition of feature 𝑖 to the set of features used to construct the statistical

model. The set of features is sequential, so the second entry in 𝜋 includes features 𝑓0 and 𝑓𝑛−1. If

we are calculating global feature importance, these terms would explicitly be

𝜋0 = (𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥0))], 𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥0, 𝑥𝑛−1))], … , 𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥0, … , 𝑥𝑛−1))]). (89)

We can then shift the permutation right, up to 𝑛 − 1 times, and re-evaluate the model perform-

ance,

𝜋1 = (𝑓1, 𝑓0, 𝑓𝑛−1, 𝑓𝑛−2, … , 𝑓2), (90)

…

𝜋𝑛−1 = (𝑓𝑛−1, 𝑓𝑛−2, … , 𝑓1, 𝑓0). (91)

The diagonal entries all involve 𝑓0 and interactions with other features. The diagonal pattern is

replicated for the other features, too. The structure allows the individual and second-order inter-

actions to be easily deduced. The first entry in each permutation provides the individual feature
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contributions. Assuming we have calculate 𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(∅))] once, the first-order terms are

𝑉0 = 𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥0))] − 𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(∅))] (92)

and so.

The second entry in each permutation is the combination of two known individual contributions

(for example, 𝑉0 and 𝑉𝑛−1), and one unknown second-order interaction (for example 𝑉0,𝑛−1). Basic

arithmetic allows the second-order interaction to be identified. Using the first two terms in 𝜋0 and

the first term in 𝜋𝑛−1,

𝑉0,𝑛−1 = 𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥0, 𝑥𝑛−1))] − 𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥0))] − 𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(𝑥𝑛−1))] − 𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(∅))],

(93)

or

𝑉0,𝑛−1 = 𝜋0[1] − 𝜋0[0] − 𝜋𝑛−1[0] + 𝐸𝑋,𝑌[𝐿(𝑦, 𝛿(∅))], (94)

where we are using the square brackets to identify entries in the permutation (note that the last

term changes sign because the permutation terms each include an empty set contribution.)

As we have assumed there are no higher-order interactions, a similar process follows for the third

entry in each permutation and so on. Iterating this process allows all the interaction terms to be

determined from only 𝑛2 + 1 evaluations. Shapley values can be immediately derived from the

power series if desired.

We can reduce the number of evaluations even further by noting that we don’t have to calculate

permutations. We can generate a model using any subset of features without having to gener-

ate any intermediate models. This allows us to map the inclusion of features onto a 2-level design

problem, and use the design of experiments to minimize the number of required evaluations [23].

For example, fractional factorial designs can suppress ‘aliasing’, the confounding of low and high-

order interactions. These procedures allow Shapley values to be calculated even for complex mod-

els including those with a large number of dimensions.
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4.6. Analogous Properties

Shapley values are renowned for having several desirable properties: efficiency, symmetry, lin-

earity, and null player. These each have close analogs in the power series formulation (as may be

expected). We briefly describe and prove each.

Efficiency says the sum of all the terms in the series should equal the expected loss,

𝐸𝑌|𝑥[𝐿(𝑦, 𝛿(𝑥))] = �

𝑘⊆{0,…,𝑛−1}

𝑣𝑘(𝑥). (95)

This is true by construction.

Symmetry says that if two features (𝑥𝑖 and 𝑥𝑗) change the expected loss in an identical manner,

then they must have identical power series coefficients,

𝐸𝑌|𝑥[𝐿(𝑦, 𝛿(𝑥𝑠 ∪ 𝑥𝑖))] = 𝐸𝑌|𝑥[𝐿(𝑦, 𝛿(𝑥𝑠 ∪ 𝑥𝑗))] ∀ 𝑥𝑠 ∈ 𝑥 ⧵ 𝑥𝑖, 𝑥𝑗 ⇒ 𝑣𝑖,𝑠 = 𝑣𝑗,𝑠. (96)

Since the expected losses are the same we have

𝑣𝑆∪𝑖(𝑥) = 𝐸𝑌|𝑥𝑆∪𝑖[𝐿(𝑦, 𝛿(𝑥𝑆 ∪ 𝑥𝑖))] −�

𝑠⊊𝑆

𝑣𝑠(𝑥 ∪ 𝑥𝑖) (97)

= 𝐸𝑌|𝑥𝑆∪𝑗[𝐿(𝑦, 𝛿(𝑥𝑆 ∪ 𝑥𝑗))] −�

𝑠⊊𝑆

𝑣𝑠(𝑥 ∪ 𝑥𝑗) = 𝑣𝑆∪𝑗(𝑥). (98)

Therefore

𝑣𝑖,𝑠(𝑥) = 𝑣𝑗,𝑠 ∀ 𝑠 ∈ {0,… , 𝑛 − 1} ⧵ {𝑖, 𝑗}. (99)

Linearity says that if the loss can be decomposed into two other loss functions (𝐿0 and 𝐿1), then

the power series coefficients for 𝐿 are also a linear combination of the power series coefficients

for 𝐿0 and 𝐿1,

𝐿 = 𝛼𝐿0 + 𝛽𝐿1 ⇒ 𝑣𝑖 = 𝛼𝑣0𝑖 + 𝛽𝑣1𝑖 , (100)
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where the superscripts indicate which loss function the coefficients belong to. This follows from

the linearity of expected values,

𝑣∅ +

𝑛−1

�

𝑖=0

𝑣𝑖 ⋅ 𝐼𝑖 +

𝑛−1

�

𝑖=1

𝑖−1

�

𝑗=0

𝑣𝑖𝑗 ⋅ 𝐼𝑖 ⋅ 𝐼𝑗 +

𝑛−1

�

𝑖=2

𝑖−1

�

𝑗=1

𝑗−1

�

𝑘=0

𝑣𝑖𝑗𝑘 ⋅ 𝐼𝑖 ⋅ 𝐼𝑗 ⋅ 𝐼𝑘… (101)

= 𝐸𝑌|𝑥[𝐿(𝑦, 𝛿(𝑥))] = 𝐸𝑌|𝑥[(𝛼𝐿0(𝑦, 𝛿(𝑥)) + 𝛽𝐿1(𝑦, 𝛿(𝑥)))] (102)

= 𝛼𝐸𝑌|𝑥[𝐿0(𝑦, 𝛿(𝑥))] + 𝛽𝐸𝑌|𝑥[𝐿1(𝑦, 𝛿(𝑥))]. (103)

= 𝛼(𝑣0∅ +

𝑛−1

�

𝑖=0

𝑣0𝑖 +⋯) + 𝛽(𝑣1∅ +

𝑛−1

�

𝑖=0

𝑣1𝑖 +⋯). (104)

Therefore

𝑣𝑖 = 𝛼𝑣0𝑖 + 𝛽𝑣1𝑖 ∀ 𝑖 ⊆ {0,… , 𝑛 − 1} (105)

Null player says that a feature 𝑥𝑖 that provides no predictive power should have all terms in the

power series zero. Since

𝐸𝑌|𝑥[𝐿(𝑦, 𝛿(𝑥𝑠 ∪ 𝑥𝑖))] = 𝐸𝑌|𝑥[𝐿(𝑦, 𝛿(𝑥𝑠))] ∀ 𝑥𝑠 ∈ 𝑥 ⧵ 𝑥𝑖, (106)

it follows from equation 12 that all power series terms involving 𝑖 are zero,

𝑣𝑖,𝑠 = 0. (107)

Similar proofs follow for the instance and global feature importance by substituting 𝜈 or 𝑉 for 𝑣,

and either replacing the expectation with a single value of 𝑦 or using the expectation 𝐸𝑋,𝑌.
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4.7. Contrasting Power Series and Shapley Values

Shapley values do not explicitly indicate how features interact together. There can be ambigu-

ity when features contribute super- or subadditively. The ambiguity can be resolved by moving

to the more expressive power series formulation. This is demonstrated through three probabil-

ity distributions with different interactions between features, but identical Shapley values. Each

distribution has two binary features (𝑥0 and 𝑥1), a single class (𝑦 = 0 or 1), and accuracy as the

performance metric. These distributions are shown in Figure 2.

The first distribution is an ‘exclusive-OR’ problem with uniform and uncorrelated probabilities for

each feature, the second distribution has some correlation between the two features, and the

third distribution has strong redundancy - all three features are perfectly correlated (𝑥0 = 𝑥1 = 𝑦)

with 𝑝(𝑦 = 0) = 1/2.

In the first instance, both features need to be observed for there to be any gain in predictive ac-

curacy. The power series expansion indicates this through individual contributions of 0 and a pos-

itive interaction term of 1/2, the second distribution has individual contributions of 1/4 each and

no interaction terms, and the third distribution has two individual contributions of 1/2 and a neg-

ative interaction of -1/2. These situations are ambiguous when Shapley values are used, while the

contributions of each term are clear using the power series formulation.

While the power series formulation provides a more nuanced view of feature interactions, this

comes at the cost of some added complexity. The greater number of feature importance terms

can make the interpretation and analysis more complicated than for standard Shapley values. In

some cases, the complexity may also increase the computational difficultly. The power series for-

mulation and Shapley values both require 2𝑛 permutations to be calculated for exact solutions.

However, a number of approximations have been developed for calculating Shapley values and

it is unclear if these can be immediately applied to the power series formulation [24–26]. Addi-

tionally, there is usually no closed-form solution for directly calculating the feature importance

for complex models, so the terms need to be estimated numerically, often through some form of

Monte Carlo simulation. The greater number of terms in the power series formulation means that

convergence of these numerical estimates may be slower than for a direct calculation of the Shap-

ley values, although we have not attempted a numerical comparison of existing approaches.

4.8. Shapley Values for Compound Features

We defined power series terms for compound features in section 3.3. Following a similar proced-

ure we can define Shapley values for compound features. The literature contains several incon-

sistent definitions for feature interactions [9]. Feature interactions would form a natural basis for

defining compound Shapley values. However, it is unclear which, if any, definition is best. We will
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Figure 2 Three sampling distributions with identical Shapley distributions, but different probability

structures. The probability density function is represented by boxes along the top row and the

expected accuracy of the Bayes-optimal model is given as function of available features along

the bottom row. a) An exclusive-OR function with uniform probabilities, b) An exclusive-OR

function with non-uniform probabilities, c) An AND-function with the states 𝑥0 = 𝑥1 = 0 and

𝑥0 = 𝑥1 = 1 having equal probabilities.

define the compound feature Shapley values by using the standard formula for Shapley values and

replacing a single feature with a set of features. Following our approach for the power series (sec-

tion 3.3), we will introduce the compound feature using a pair of features, {𝑖, 𝑗},

𝑆{𝑖,𝑗} = �

𝑟⊆𝑞⧵{𝑖,𝑗}

|𝑟|!(|𝑞| − |𝑟| − 1)!

|𝑞|!
[ℎ𝑟∪{𝑖,𝑗}(𝑥𝑟∪{𝑖,𝑗}) − ℎ𝑟(𝑥𝑟)], (108)

where the features are defined in section 4.1, and these can be ‘translated’ into our formalism.

Following considerations of symmetry, we deduce that the Shapley value will decompose to

𝑆{𝑖,𝑗} = (𝑉𝑖 + 𝑉𝑗 + 𝑉𝑖𝑗) +
1

2
�

𝑘⊆{0,…,𝑛−1}⧵{𝑖,𝑗},𝑘≠∅

(𝑉𝑖𝑘 + 𝑉𝑗𝑘 + 𝑉𝑖𝑗𝑘)

+
1

3
�

𝑘,𝑙⊆{0,…,𝑛−1}⧵{𝑖,𝑗},𝑘,𝑙≠∅

(𝑉𝑖𝑘𝑙 + 𝑉𝑗𝑘𝑙 + 𝑉𝑖𝑗𝑘𝑙) + …

(109)
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where {0, … , 𝑛 − 1} represents the set of possible features and 𝑘 is used as a dummy index for the

summation. Generalizing to compound features involving any set of features 𝛺,

𝑆{𝛺} = �

𝜔⊆𝛺

�𝑉𝜔 +
1

2
�

𝑘⊆{0,…,𝑛−1}⧵𝛺,𝑘≠∅

𝑉𝜔𝑘 +
1

3
�

𝑘,𝑙⊆{0,…,𝑛−1}⧵𝛺,𝑘,𝑙≠∅

𝑉𝜔𝑘𝑙 +…� (110)

The Shapley values from equation 110 match those from the modified power series given in equa-

tion 62, as expected.

It is interesting to note that the compound Shapley values are not the sum of their constituent

Shapley values, that is,

𝑆{𝑖,𝑗} ≠ 𝑆𝑖 + 𝑆𝑗. (111)

Since the sum of the Shapley values is fixed, this implies that regrouping features together alters

the Shapley values of the untransformed features, too. To demonstrate this effect concretely, con-

sider a class 𝑦 that is determined by the parity of three features, 𝑥0, 𝑥1, 𝑥2, which are independ-

ently distributed with equal probabilities for their two states. If the three features are treated

separately each will have the same Shapley value of 1/6 (the change in predictive accuracy from

1/2 to 1, divided by three). If two of the features are combined into a compound feature, then

both the remaining features will have Shapley values of 1/4. The synthesis of features is there-

fore non-additive and affects features in a non-local way. This is a consequence of the symmetry

property that underlies Shapley values (see Fujimoto et al [9] for a list of Shapley properties). It

may be possible to create an additive version of Shapley values. For the power series approach

this might be through a weighting factor, or for the standard definition of Shapley values this could

possibly be accomplished by weighting the orderings of the permutations [20, 27]. We leave this

as an open problem.
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5. ALTERNATIVE MEASURES OF FEATURE IMPORTANCE

There are many formulations of feature importance. Identifying the core principles involved in

each formulation can help to clarify when each is valid, and when they can be expected to provide

consistent conclusions. These methods were chosen for their diversity and popularity, and are

non-exhaustive. Nevertheless, they provide contrasting perspectives on what principles can be

used to define feature importance and their applications to different problems.

We compare our power series expansion against a number of other methods in Table 2 and

through the discussion below. The columns in Table 2 attempt to encapsulate, somewhat imper-

fectly, the main attributes of each method. We will briefly unpack each of these attributes.

Metric refers to how the model performance is quantified. Only two were identified in the meas-

ures of feature importance we considered: ‘Predictive’ that quantifies how closely a predicted and

observed output match, such as accuracy, and ‘fidelity’ that quantifies the similarity between the

model outputs before and after the features have been perturbed. Other possible metrics include

model size and computation time.

Principle captures the core idea used by each method for determining feature importance. Some

of the most common principles encountered in the literature are:

• Permutation The importance of a feature is determined by comparing the model with

and without randomly permuting the feature value between data points. This has a sim-

ilar effect to randomly resampling some of the features independently of the data point’s

dependent feature. The principle could be generalized by introducing other kinds of ran-

domization, such as Gaussian noise, although to the best of our knowledge this has not

been used for calculating feature importance to date.

• Imputation Feature importance is measured by measuring changes in model performance

when missing features are imputed using the conditional probability density or with a

function that generates a ‘best guess’ for the missing features using the known features.

• Retraining The original model is compared with a separate model trained on a data set

with some features removed.

• Sensitivity analysis The change in a model’s output is measured in response to a per-

turbed input.

• Model-specific There are some measures of feature importance that are specific to cer-

tain models or representations, called model-specific measures. These are usually difficult
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to directly compare against model-agnostic methods and may have little in common with

each other except for their limited applicability.

• Data point influence Some data points may have a disproportionate effect on what model

is learnt. Data point influence is measured using similar principles to those found in fea-

ture importance methods, except data points are perturbed or removed, rather than fea-

tures.

• Unsupervised learning These methods try to find structure in the model or data. Unlike

feature importance methods, they do not quantify model performance. They provide a

different approach to understanding model structure and can be used in conjunction with

feature importance methods.

The Scope of the method is ‘local’ if it operates on a single point or neighbourhood, or ‘global’ if it

addresses the performance of the entire model.

The Output can be unique or plural. A unique output indicates there is a single measure of fea-

ture importance that is self-consistent and coherent. We recognize the output as unique even if

there are multiple values, so long as they provide a single picture. Thus we consider a collection

of Shapley values unique. We use plural to indicate that there may be inconsistent or independent

measures from a single formulation. For example, it is possible to generate multiple anchors or

counterfactuals for a data point, and these may provide conflicting views about which features are

important.

Free parameters identifies if the model has tuning parameters that can be specified by the user,

but exclude choices that are related to the quantity the method calculates. For example, we

identify surrogate models as having a free parameter because the user can arbitrarily choose a

type of model, such as decision tree or linear regression, and can impose other constraints like the

maximum depth of a tree. While we exclude the choice of loss function for our method it is dic-

tated by the context or scenario, and should not be arbitrarily chosen by the user. The distinction

of what constitutes a free parameter in this context can sometimes be ambiguous or subjective.

5.1. Partial Dependence Plots

Partial dependence plots calculate the average dependence of a model on a subset of features 𝑥𝑠

and average over the remaining complement of features, 𝑥𝑐, that are treated as independent [28].

Formally the definition of the partial dependence is

𝛿𝑠(𝑥𝑠) = �𝛿(𝑥𝑠, 𝑥𝑐)𝑝(𝑥𝑐 = 𝑋𝑐)𝑑𝑋𝑐, (112)
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where the terms have a similar meaning to that use in our formalism: 𝛿 is a statistical model that

predict 𝑦 using 𝑥, 𝑥𝑠 are the subset of features we are plotting, 𝑥𝑐 is the complement, and 𝛿𝑠 is

the reduced model that only uses a subset of features. The partial dependence plot visualises

the model’s structure and is usually applied to features with continuous values. It does not nu-

merically quantify feature importance and is independent of the model’s predictive performance.

Individual Conditional Expectation plots [29] and Accumulated Local Effects [30] rely on similar

principles.

Our Bayesian formulation of missing data accounts for the correlation between the subset and

complement by averaging over the conditional probability of the complement, so it is effectively

𝛿𝑠(𝑥𝑠) = �𝛿(𝑥𝑠, 𝑥𝑐)𝑝(𝑥𝑐 = 𝑋𝑐|𝑥𝑠)𝑑𝑋𝑐. (113)

This alternative formulation was suggested by Friedman [28], although he cautioned against its

use because he was concerned it would confound the influences of 𝑥𝑠 and 𝑥𝑐.

5.2. Permutation Importance

The permutation test is a classical non-parametric method for checking for trends or associations

between features [31]. It has since been adapted for high-dimensional statistical models [32].

The model performance is evaluated before and after permuting the values of a feature, either

at training or test time. The relative change in performance for each permuted feature provides a

measure of feature importance.

Permuting the feature at training time is similar to removing the feature from the model entirely,

and will roughly correspond to removing all first and higher-order power series terms associated

with that feature. Applying the permutation to the test data is similar to the partial dependence

plot with a single feature in the complement of equation 112.

The permutation importance does not explicitly separate first and higher-order terms, and there

can be ambiguity about whether features contribute individually or as a synergistic effect. If there

are three perfectly correlated binary features and the model uses a majority vote to determine

the class, then the permutation test will show that none of the features are important, which is

clearly not true.

Permuting the features is similar to introducing noise, so can be thought of as measuring model

robustness. This is different to hiding information, and there may be disagreement between our

power series formulation and the results of a permutation test.
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5.3. Counterfactuals

Counterfactuals are a form of sensitivity analysis. They identify what minimal change in the input

would be required for the statistical model to make a different prediction or recommendation,

where the size of the change is quantified by a chosen metric [33]. In general there will be mul-

tiple counterfactuals. For example, a counterfactual for a home loan could quantify how much

an applicant’s income would need to increase for the loan to be approved. Another counterfac-

tual for the same applicant could identify what change in credit score would allow the loan to be

approved. Some of the counterfactuals may even produce combinations of features that are im-

plausible or impossible. The user may choose to favour one counterfactual based on contextual

relevance, although in general there will be ambiguity about which counterfactual, if any, is the

most “interpretable”.

Counterfactuals are a fundamentally different way to the power series formulation for looking at

feature importance. They examine model sensitivity to local feature variation and do not consider

the impact of missing data. Counterfactuals are arguably better suited to situations in which one

in trying to steer a recommendation or decision, such as a loan application, while the power series

is better placed to address missing data or the costs of data collection.

5.4. Anchors

Anchors are a subset of features that, within a local neighbourhood, are sufficient to probabilist-

ically guarantee a model’s output [34]. There is a trade-off between the probability that the guar-

antee is met and the coverage of the rule. Generally, localized rules will provide outputs with high

confidence, but are rarely applicable, and vice versa for larger neighbourhoods. The interpretation

of anchors is that the subset elucidates the locally important features. Similar to the counterfac-

tuals, there can be ambiguity in the interpretation of features since the anchors are usually non-

unique. When anchors are deterministic, there is a one-to-one correspondence between anchors

and counterfactuals [35], and they share many properties.

Deterministic anchors can be identified from the power series formulation. These will be local

measures of feature importance that exclude all first and higher-order terms associated with a

feature. Anchors are defined for a local neighbourhood, while our method uses point or global

estimation. Our method could be modified to sample only around a pre-defined neighbourhood

to increase the similarity to anchors.

5.5. Surrogate models

There is sometimes value in training one model, called a surrogate model, that mimics the beha-

viour of a different model [36]. This may be of interest because the original model is expensive in
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terms of computation cost or memory footprint [37], to increase model robustness [38], or per-

haps the model is proprietary and we cannot access its internal structure [39, 40]. A surrogate

model can potentially achieve similar performance without these downsides.

Surrogate models are also used to transform complex models into simpler, more interpretable

ones. These surrogate models are generally shallow decision trees or linear regressions [3]. The

surrogate model can be trained to mimic the other model’s structure for a local region [14] or

globally [36]. The user can then use the structure of the surrogate model to understand the be-

haviour of the original, more complicated model.

Surrogate models are agnostic with respect to the original model, and there is freedom for the

end user to shape the surrogate model to highlight features of interest. There can often be mul-

tiple surrogate models that perform well, creating ambiguity in which ‘interpretable’ surrogate

model is the correct one [3]. Other issues are that the surrogate model may perform poorly in

areas of low sample density, that they will provide correct behaviour for only some data points

(otherwise they would be as uninterpretable as the original model), and as we showed in Section

2.6, highly faithful models can suffer from degraded performance.

When maximizing the fidelity, our approach can be thought of as creating a global surrogate

model with missing features.

5.6. Node Importance for Decision Trees

There are several measures of feature importance that are calculated from a model’s parameters

or structure. These techniques cannot be applied to other representations or types of models. A

popular example is a measure of feature importance for decision trees proposed by Breiman [32].

The importance measure is generated from changes of the squared error risk at the internal nodes

of a decision tree.

There are usually several decision trees that can be constructed for a single mapping, as shown in

Figure 3, which means the feature importance is not usually uniquely defined. The lack of unique-

ness affects some other model-specific measures. Neural networks can be visualized by identify-

ing images that maximize a neurons activation [41], but it can be possible to find two neural net-

works with different connections that nevertheless produce identical predictions. We suggest as

a general principle that feature importance should be independent of the model representation,

since the representation can be modified with no change in predictive performance.

Our method is independent of a model’s internal representation and cannot be meaningfully com-

pared against node importance or other model-specific measures. We suggest that dependence

on the internal structure of the model in measures of feature importance is best avoided if pos-
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Figure 3 The mapping of features to prediction does not uniquely define a decision tree’s internal

structure. a) A simple mapping from two features to three possible classes. A possible decision

tree representation that first splits on the feature 𝑥0 (b) and 𝑥1 (c).

sible, otherwise the feature importance is not uniquely defined.

5.7. Influential Data Points

While data point sensitivity is distinct from feature importance, we include it here because of the

similarities between the methods. Data point sensitivity has classically been investigated with the

bootstrap, jackknife and other methods of data resampling [42]. More modern methods usually

rely on similar principles. Commonly, a single data point is removed from the training set and a

new model is constructed [43]. Approximations are often necessary to avoid the severe computa-

tion time of retraining the model multiple times [44, 45]. Our power series formulation can work

cooperatively with these approximations to quickly generate detailed views of how data points

contribute to the final model.

5.8. Representative Data Points

It can be useful to visualize a small subset of data points that highlight key properties of the prob-

ability distribution. There are a huge number of clustering and outlier detection methods in the

literature. One example is prototypes and criticisms developed by Kim et al [46]. Prototypes rep-

resent typical points in the distribution and exemplify classes. Criticisms are atypical data points

designed to highlight the complexities of the sample space. Visualization of data points is a local

process and provides a good counterbalance against our measure of feature importance that aver-
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ages over the sampling distribution, and may therefore be insensitive to some outliers.

5.9. Coordinate Transformations

Features can become more interpretable following a coordinate transformation. There are clas-

sical methods like principal component analysis, and more sophisticated kernel and stochastic

decomposition methods. We view these transformations as complementary to the power series

method. Coordinate transforms can be applied prior to training the model or during testing to

concentrate the importance into a few key features (see section 3 for some discussion about fea-

ture transformation).

5.10. Shapley Additive Explanations

Shapley additive explanations (SHAP) [17] are closely related to our approach. The SHAP explana-

tion model is generated by mapping the original model that uses all of the data to a smaller model

with missing values. Feature independence and model linearity are assumed, while our approach

uses the conditional probability distribution. The SHAP model decomposes the feature contribu-

tions into a set of Shapley values and uses kernels to improve feature interpretability. Our power

series formulation decomposes Shapley values into interaction terms. We briefly discussed the

use of kernels or other transformations (see Section 3.3), but have not analysed their application

in detail. A global variant of SHAP, Shapley Additive Global Importance (SAGE), was recently pro-

posed [47].

5.11. Comparison with Other Shapley Formulations

Numerous methods, like SHAP, have been proposed for modifying Shapley values to calculate fea-

ture importance. The unifying ingredient of these methods is that they each use a modified ver-

sion of Shapley’s formula, given in Equation 69, to calculate the average marginal contribution of

each feature. The methods differ in their assumptions, their treatment of missing features, and

their implementation details. These differences are non-trivial, and can produce different numer-

ical outputs. In this sub-section we discuss some ways in which the methods vary and compare

them with our power series formulation. These relate to the choices we made when defining our

formulation of feature importance in Section 2.

• Metric. Most formulations assume accuracy is the key metric of performance [7, 10, 22]

Goodness-of-fit (𝑅2) has sometimes been used for linear models [48]. Our formulation

starts with a generic loss function 𝐿, and we examined the specific cases of accuracy and

fidelity in section 2.6.
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• Model-dependence. Feature importance can be defined intrinsically as a correlation

between independent and dependent features for a sampling distribution, or extrinsically

by the impact a feature has on a particular model. Most formulations can only be used

to describe the extrinsic feature importance (see [18] and references therein), while our

formulation allows both intrinsic and extrinsic feature importance to be treated.

A second way model-dependence can arise is through coupling between the model’s in-

ternal representation and the feature importance. This is a common property of feature

importance measures developed for neural networks, for example, see [17, 24, 49]. Many

of the formulations in the literature are specific to certain learning algorithms like lin-

ear models or artificial neural networks. These properties reduce the applicability of the

methods and often violate the principle we suggested in section 5.6 that feature import-

ance should only be sensitive to the model’s output. Our formulation is applicable to any

standard statistical model and can be adapted for other scenarios, like data importance

(see section 3.7).

• Baseline for comparison. The treatment of missing features varies throughout the lit-

erature. Some methods try to impute the missing values using a single baseline value,

like the mean, median, or mode [18]. Others impute a distribution for the missing values

that can be dependent [50] or independent [51] of the known feature values. Yet another

method is to retrain the model with a subset of features removed [51]. These approaches

for treating missing data are not equivalent and will produce different results. We sug-

gest model retraining is appropriate for measuring feature importance for a learning al-

gorithm, while imputation with the conditional probability is more sensible for a fixed

model (see section 2.2).

• Prospective or retrospective? Feature importance could refer to the expected importance

prior to inspecting its value, or the conditional importance after the feature was observed.

This can also be expressed as global and local feature importance. With a few exceptions

[20, 47], most approaches assume the local feature importance is of interest.

• Interactions Standard Shapley values and its variants can obscure interactions between

different players in cooperative game theory or between features in machine learning.

Extensions of Shapley values, like the power series formulation we developed, allow these

interactions to be explicitly identified [9, 10]. As these interaction terms are defined in

slightly different ways they are not immediately comparable.

• InterpretationMolnar [21] interprets the Shapley value as ‘Given the current set of

feature values, the contribution of a feature value to the difference between the actual

and the mean predication is the estimated Shapley value.’ This is different to how many
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people intuitively interpret feature importance - as a measure of how the model perform-

ance would change in response to a feature value being censored or locally perturbed.

The interpretation is also difficult to use when there is strong interactions or correlations

between features, as we explored in section 4.7. Our formulation can be interpreted as

the weighted change in the expected local or global loss when a feature is removed from

the training or test data sets, when interactions and correlations are explicitly accounted

for.
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6. CONCLUSION

Statistical models are rapidly evolving in scope and sophistication. Their integration into complex

systems creates new capabilities but also introduces additional risks. There is potential for signific-

ant financial damage or even loss of life if these system behave in unexpected ways. Conventional

numerical measures of model performance are insufficient for guaranteeing model generalization;

interpretable machine learning can provide a complementary validation by providing insight into

how models determine their outputs.

We have introduced a power series representation of feature importance which explicitly quan-

tifies the value of information. It separates individual and multi-feature contributions, and high-

lights synergies and redundancies in feature information. A weighted average of these contri-

butions can be used to transform the power series into Shapley values. Our method inherits the

desirable properties of Shapley values, while providing greater insight into how features interact

together. Our method can identify joint contributions, such as in the exclusive-OR problem, that

are ambiguous from the generic Shapley values. Our approach motivates alternative approaches

to calculating the Shapley values that can speed up the calculations considerably. In particular, we

showed a substantial reduction in the number of model evaluations required when only first and

second-order feature interactions are present.

There are potentially wider applications of the power series formulation. Perhaps the coefficients

could be used to select better subsets of features for sparse but accurate models. There may also

be scope to use redundant features to construct anomaly detectors or develop error-correction

processes for suppressing noise. For example, we could flag an anomaly when two features with

generally high redundancy provide disparate predictions for a particular instance. The generality

of the method means it is compatible with most statistical models (it does not require a specific

model architecture, like a neural network, to be used), and only its basic utility has been explored

in this technical report.

The literature contains several methods for defining feature importance. These can provide in-

consistent views of which features are important and there is a lack of guidance in the literature

about which method to choose. In our view, the power series formulation complements, rather

than replaces, these alternative formulations. For example, visualization of key data points can

provide insight into the data structure that may not be adequately captured by quantitative met-

rics. Similarly, coordinate transformations can make the features more interpretable, and can even

be a pre-processing step prior to calculating feature importance. Counterfactuals are often better

placed than the series expansion for suggesting possible actions. For example, it may be useful

to know what features to modify so that a home loan is approved, rather than how missing data

affects the quality of loan decisions. Existing methods are generally inappropriate for identifying
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causal structure without additional domain knowledge, which limits their application to detecting

and correcting algorithmic bias or understanding mechanisms that link features together. Domain

knowledge and causal models can support the interpretation of feature importance.

Any formulation of feature importance should account for the context and the topics of interest.

We highlighted this with a hypothetical example of prospectively deciding whether an x-ray is

likely to yield useful information against the retrospective of how access to the x-ray did affect

the medical diagnosis. Our framework can naturally accommodate a range of topics and contexts

while retaining common operating principles. The greater coherence in the approach allows it to

be reused more broadly than some alternative methods, and reduces the risk of generating in-

consistent conclusions, which is a possibility when different principles are haphazardly employed.

The improved ability to interpret data and models will assist Defence in creating and maintaining

sophisticated statistical models.
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