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EXECUTIVE SUMMARY

Anomaly detection is the task of sorting data points into normal and anomalous classes. In a

semi-supervised setting, there is only access to normal class samples during the training phase.

Through generating and ranking an appropriate scalar quantity, these training samples can be

used to calibrate the anomaly detector so that it produces a specified false alarm rate. However,

this procedure only controls the global false alarm rate, which can lead to excess misclassification

of certain (normal) sub-classes, or the detector may become miscalibrated if the proportion of

sub-classes drift.

In this technical report, we propose a method for constructing an anomaly detector with a uni-

form false alarm rate for each sub-class: an anomaly detector is trained for each sub-class inde-

pendently and tuned for a specified false alarm rate. These can then be combined into a single

anomaly detector (that flags an anomaly if and only if each sub-detector identifies an anomaly)

that has a maximum specified false alarm rate, regardless of any drift in the sub-class distribution.

This approach brings a number of benefits:

• It protects against imbalance in the sub-classes. The traditional practice of using a single

threshold can cause sub-classes with few samples to become consistently misclassified as

anomalies. This will not happen for separate thresholds, although there can be degraded

performance because of small sample sizes.

• It can produce more robust results when there are concerns about algorithmic bias or

discrimination for particular sub-classes. For example, when sub-classes represent popu-

lations with socially-protected attributes.

• It protects against drift in the sampling distribution. The false alarm rate will remain

nearly constant, even if the proportion of each sub-class changes dramatically.

• It allows different algorithms or metrics to be used for each sub-class. For instance, one

sub-class could use a Gaussian Naïve Bayes algorithm to classify anomalies with the

probability density used as the classification metric, while another sub-class may use a

encoder-decoder neural network with the reconstruction error instead.

• The ensemble anomaly detector can be easily customized. Sub-class anomaly detectors

can be added or removed without having to retrain any other components. This is not

true when a single global threshold is used.

The false positive and negative rates can be estimated by validating each sub-class detector
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Figure 1 Cross-validation can be modified for semi-supervised anomaly detection. The data is separated

into sub-classes, and training, validation, and test sets are constructed. Sub-class anomaly

detectors are constructed (a) and calibrated (b) separately during the training phases. Anomaly

detector false alarm rates and sensitivity to outliers are estimated using data from all of the

sub-classes (c).

against all of the data points, as shown in Figure 1. This allows cross-validation to be applied

to a semi-supervised learning technique (where usually supervised learning is required). While

the actual false negative rate will depend on the specific anomalies encountered, this provides a

general method for assessing the properties of an anomaly detector.

Cross-validation can also provide a level of granular insight not normally available. This is demon-

strated by training a convolutional autoencoder on the MNIST data set: we find the sub-detector

for ‘1’s can effectively reject other digits, while the ‘7’ and ‘9’ detectors are unable to recognize

‘1’s as anomalies. These kinds of insights can be used to guide further improvement of the anom-

aly detector. While the sub-class detectors we constructed seem to somewhat reduce the ability

to detect anomalies (Type-II errors), this nevertheless provides a promising direction for building

more robust and flexible anomaly detectors.
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FIGURES

1. Two potential anomaly detector schemes for a normal class with a bi-Gaussian

distribution. Both have a 5% false alarm rate. The dark regions indicate points

that are identified as coming from the normal class and the blue line shows the

probability density function. a) This detector uses the regions of high probab-

ility density to classify anomalies. b) This anomaly detector is the combination

of high probability density from each of the Gaussians. Note that the central

region in (a) is slightly wider than that found in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Cross-validation can be modified for semi-supervised anomaly detection. The

data is separated into sub-classes, and training, validation, and test sets are

constructed. Sub-class anomaly detectors are constructed (a) and calibrated (b)

separately during the training phases. Anomaly detector false alarm rates and

sensitivity to outliers are estimated using data from all of the sub-classes (c). . . . . . 7

3. Semi-supervised anomaly detector trained on a bi-Gaussian distribution. The

false alarm rate and statistical power of an anomaly detector generated from

the high probability regions (blue) or by composing anomaly detectors from

each sub-class (red). a) The change in the true false alarm rate as the training

set is varied for a fixed nominal false alarm rate (indicated by the black dashed

line). b) The change in the statistical power as the training set is varied. c and

d are similar to a and b, but with the training set held fixed and the test set

varied. Receiver operator characteristic curves are shown for the cases of the

training and test set being drawn from the same (e) and different (f) distributions. 10

4. Semi-supervised anomaly detector trained on a Gaussian and Cauchy mixture

distribution.The false alarm rate and statistical power of an anomaly detector

generated from the high probability regions (blue) or by composing anomaly

detectors from each sub-class (red). a) The change in the true false alarm rate

as the training set is varied for a fixed nominal false alarm rate (indicated by the

black dashed line). b) The change in the statistical power as the training set is

varied. c and d are similar to a and b, but with the training set held fixed and

the test set varied. Receiver operator characteristic curves are shown for the

cases of the training and test set being drawn from the same (e) and different

(f) distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
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TABLES

1. Information about the anomaly detector constructed from a series of Gaus-

sian mixtures. The top section shows the anomaly detection rate for different

classes and detector channels. The bottom rows provide a summary of the

overall performance. The first of these rows provides the false alarm rate of

each individual detector (which are identical to the diagonal entries in the top

section of the table), the second provides the false alarm rate when all of the

detectors are used, and the final row provides the power of the anomaly de-

tector when the corresponding class detector is removed. . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2. Information about the anomaly detector constructed from a series of auto-

encoders. The top section shows the anomaly detection rate for different classes

and detector channels. The bottom rows provide a summary of the overall per-

formance. The first of these rows provides the false alarm rate of each indi-

vidual detector (which are identical to the diagonal entries in the top section of

the table), the second provides the false alarm rate when all of the detectors

are used, and the final row provides the power of the anomaly detector when

the corresponding class detector is removed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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NOTATION

𝑐 Normal sub-class

𝑛 Number of normal sub-classes

𝑝𝐹𝐴 Probability of false alarm

𝑝𝐹𝑃 Probability of false positive

𝑥 Set of features

𝑦 Classes

𝛿 Anomaly detector

𝛿𝑖 Anomaly detector for 𝑖-th class
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1. INTRODUCTION

In many situations data is generated from a combination of normal and anomalous processes [1].

Discriminating between these classes is called anomaly detection and is pertinent to radar de-

tection [2, 3], cyber-intruder detection [4], image processing [5], fraud detection [6], and other

domains [7]. The properties that make a process ‘normal’ or ‘anomalous’ typically follow from

the context of the problem or user-defined requirements. For example, sensors readings may be

‘anomalous’ when the sensor has been contaminated with an undesired chemical.

In semi-supervised learning there is access to training data generated from the normal process,

but no data for the anomalous process. It is common to create anomaly detectors that have a con-

stant false alarm rate [8–10]. However, this false alarm rate is a global property and in some situ-

ations this may have unintended side effects. Normal processes may be composed of several sub-

populations, or sub-classes. Instances arising from one or more sub-classes may be consistently

misidentified as anomalies if they are rarely observed [11]. This could be a problem if the relative

proportion of the two or more normal sub-classes drifts over time, leading to a higher than expec-

ted false alarm rate, or the two components could represent different social groups and disparate

false alarm rates could contribute to algorithmic bias or discrimination.

The concept of sub-classes and their detection is shown in Figure 1. The normal process is gener-

ated from two normal distributions with standard deviations of 1, centred at 0 and 8, with relative

weightings of 0.97 and 0.03, respectively. An anomaly detector with a 5% false alarm rate may

flag nearly every sample arising from the smaller normal component because of its relatively low

density (the uncoloured region in Figure 1a). An alternative approach is to train anomaly detectors

on each sub-class separately and then combine them into an aggregated anomaly detector for all

the sub-classes. An example of this is shown in Figure 1b with normal regions defined for each of

the Gaussian components.

To the best of our knowledge the approach of aggregating anomaly detectors in this fashion has

not been previously explored in the literature. It is an approach that has a number of intriguing

properties, some of these are beneficial, and some are detrimental. In this technical report, we

evaluate the use of anomaly detectors with uniform false alarm rates across sub-classes. A brief

overview of Bayesian anomaly detection in the supervised anomaly detection case is given in Sec-

tion 2. It provides a description of the process we want to emulate for the semi-supervised case.

In Section 3, we describe our uniform threshold approach in more detail and examine its poten-

tial benefits and limitations. In Section 4, we demonstrate the benefits of this approach for train-

ing data with unbalanced sub-classes using a synthetic data set. In Section 5, a simple anomaly

detector for written digits is constructed by applying the Gaussian Naïve Bayes algorithm to the

MNIST data set [12] which highlights some possible limitations of the approach. An improved an-
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Figure 1 Two potential anomaly detector schemes for a normal class with a bi-Gaussian distribution.

Both have a 5% false alarm rate. The dark regions indicate points that are identified as coming

from the normal class and the blue line shows the probability density function. a) This detector

uses the regions of high probability density to classify anomalies. b) This anomaly detector is

the combination of high probability density from each of the Gaussians. Note that the central

region in (a) is slightly wider than that found in (b).

omaly detector constructed from autoencoders is presented in Section 6, which demonstrates the

ability to iteratively develop an effective anomaly detector using our approach. We discuss other

approaches to calibration and model scoring in Section 7. Finally, concluding remarks are made in

Section 8.
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2. BAYESIAN SOLUTION TO ANOMALY DETECTION

Before considering semi-supervised learning, it is useful to revisit the Bayesian solution to super-

vised anomaly detection, where we assume we have access to the distributions for the normal

and anomalous classes. The odds of a data point 𝑥 belonging to the normal class are

𝑝(𝑦 = 0|𝑥)

𝑝(𝑦 = 1|𝑥)
=
𝑝(𝑥|𝑦 = 0)𝑝(𝑦 = 0)

𝑝(𝑥|𝑦 = 1)𝑝(𝑦 = 1)
, (1)

where 𝑦 = 0 is the normal class, and 𝑦 = 1 is the anomalous class. We can control the false

positive/negative rates by changing the threshold at which we flag
𝑝(𝑦=0|𝑥)

𝑝(𝑦=1|𝑥)
as an anomaly. For

example, we could choose to control the overall false positive rate, the accuracy, or some other

quantity.

In semi-supervised learning, we no longer have access to 𝑝(𝑥|𝑦 = 1) or 𝑝(𝑦 = 1). Access to

𝑝(𝑦 = 1) is arguably not too important - we can still control the false discovery rate using the

Bayes factor,
𝑝(𝑦=0|𝑥)

𝑝(𝑦=1|𝑥)
. However, without 𝑝(𝑦 = 1|𝑥), we are likely to have either too many false

positives or false negatives.

A potential solution is to replace the real anomalous distribution with an uninformative prior dis-

tribution, which represents anomalies being drawn from a high-entropy distribution. While this

allows Equation 1 to be used, other issues remain. First, prior distributions are usually defined for

the parameters of a model, and not the observations 𝑥 directly, and for semi-supervised learning,

we do not have a model for the anomaly generating process; second, uninformative prior distribu-

tions can be problematic in high dimensions. The uniform prior distribution is not invariant under

coordinate transformations. Invariance can be enforced by using Jeffrey’s prior, but this prior can

have other undesirable properties [13, 14]; finally, uninformative distributions are too easy to dis-

criminate from the normal class, which inflates the apparent utility of the anomaly detector. For

the MNIST dataset, we applied the anomaly detectors trained in Sections 5 and 6 to images drawn

from a uniform distribution and found nearly perfect discrimination, despite the anomaly detect-

ors having limited capability for identifying realistic anomalies.

In spite of these problems with using uninformative prior distributions, we often still employ

them implicitly for semi-supervised anomaly detection. A common approach is to flag anomalies

whenever the likelihood of the normal class, 𝑝(𝑦 = 0|𝑥), drops below a threshold. This is equival-

ent to using the Bayes factor with a uniform probability for the anomalous class (𝑝(𝑦 = 1|𝑥) ∝ 1).

Apart from access to the anomalous class, we are also interested in being robust against changes

in the sub-class distribution. When the probability of each sub-class is known, Equation 1 can be
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expanded to

𝑝(𝑦 = 0|𝑥)

𝑝(𝑦 = 1|𝑥)
=
∑
𝑛
𝑖=1 𝑝(𝑥|𝑦 = 0, 𝑐 = 𝑖)𝑝(𝑐 = 𝑖|𝑦 = 0)𝑝(𝑦 = 0)

𝑝(𝑥|𝑦 = 1)𝑝(𝑦 = 1)
, (2)

where 𝑐 indicates the sub-class and there are 𝑛 sub-classes.

When the probability of each sub-class is unknown, we can still bound the false discovery rate,

argmin
𝑖

𝑝(𝑥|𝑐 = 𝑖, 𝑦 = 0)𝑝(𝑦 = 0)

𝑝(𝑥|𝑦 = 1)𝑝(𝑦 = 1)
≤
𝑝(𝑦 = 0|𝑥)

𝑝(𝑦 = 1|𝑥)
≤ argmax

𝑖

𝑝(𝑥|𝑐 = 𝑖, 𝑦 = 0)𝑝(𝑦 = 0)

𝑝(𝑥|𝑦 = 1)𝑝(𝑦 = 1)
. (3)

If we again treat 𝑝(𝑥|𝑦 = 1) as constant, this is equivalent to using a threshold for the maximum

likelihood of an anomaly that is independent of the sub-class. When treating semi-supervised

learning, we bound the false detection rate, not the false discovery rate, but it is easy to change

between these two approaches, as shown above.
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3. UNIFORM CALIBRATION

As mentioned, we do not have access to the anomalous probability distribution (and usually have

limited knowledge about the normal probability distribution) in semi-supervised learning, so

we cannot apply Bayes’ theorem without further information or by making assumptions about

the anomalous process. Many of the common approaches to semi-supervised learning develop

implicit or explicit representations of how much a data point deviates from normal behaviour.

These include measuring the distance from nearby data points [15], one-class support vector

machines [16], measuring reconstruction error after passing the data through a neural network

autoencoder-autodecoder pair [17], or by approximating the probability density function using

parametric [18] or non-parametric models [19].

These approaches transform a multi-dimensional data point 𝑥 into a scalar quantity [9]. Points

are classified as anomalies depending whether this scalar quantity is greater or less than the

threshold. Rather than choosing a single threshold, we can create an anomaly detector for each

sub-class and calibrate their false alarm rates separately. The threshold values can be estimated

non-parametrically [20], and can be done reliably for even modest sample sizes.

Cross-validation is usually used to estimate the performance of a supervised learning algorithm.

We adapt this procedure to assess the performance of an ensemble anomaly detector. An out-

line of the procedure is shown in Figure 2. The data set is partitioned by sub-class, and then fur-

ther split into training, validation, and test sets. Depending on the type of anomaly detector being

used, not all of these sets may be required. The training set is used to construct a representation

of each normal sub-class. This could, for instance, involve representing each sub-class as a sep-

arate Gaussian distribution and tuning their means and standard deviations. The validation set

is used to tune the thresholds to achieve a desired false positive rate. Finally, the test set can be

used to confirm the false positive rate and to estimate the false negative rate by validating the

classification against other sub-classes. The false positive rate for the validation and test set are

usually similar. This is because the thresholds are one-dimensional scalar quantities, which re-

stricts our ability to unintentionally overfit their values, and the sub-classes are partitioned dur-

ing the training phase, so data leakage between sub-class detectors is minimized. There may be

scope to tune the anomaly detectors to improve their power for a given false alarm rate. How-

ever, the ultimate aim is to create an anomaly detector that discriminates data points that are

generated from the anomalous class, which are not included in the test set. Nevertheless, the

cross-validation false negative rates can serve as a useful guide.

Once each sub-class detector has been calibrated and assessed, they can be combined into an

ensemble anomaly detector. This ensemble anomaly detector will only identify a data point as an

OFFICIAL

5



OFFICIAL

DST-Group-TR-3765

anomaly if and only if each sub-detector identifies it as an anomaly,

𝛿(𝑥) =

𝑛

�

𝑖=1

𝛿𝑖(𝑥), (4)

where 𝛿 is the aggregate anomaly detector and outputs 1 to indicate an anomaly, and 𝛿𝑖 is the

anomaly detector for the 𝑖-th normal sub-class.

By design the ensemble anomaly detector will never produce a false positive rate (𝑃𝐹𝑃) greater

than that specified for each of the sub-classes, irrespective of changes in the mixture,

𝑃𝐹𝑃 = �𝛿(𝑥)𝑝(𝑥|𝑦 = 0, 𝑐 = 𝑖)𝑑𝑥 = �

𝑛

�

𝑗=1

𝛿𝑗(𝑥)𝑝(𝑥|𝑦 = 0, 𝑐 = 𝑖)𝑑𝑥 (5)

≤ �𝛿𝑖(𝑥)𝑝(𝑥|𝑦 = 0, 𝑐 = 𝑖)𝑑𝑥 = 𝛼, (6)

where the 𝑐 is used to identify the sub-class for normal samples, 𝛼 is the maximum false alarm

rate for each sub-class, and the inequality applies for samples from any sub-class (𝑖 ∈ 1,⋯ , 𝑛).

When detectors for different sub-classes disagree about the status of a data point, we call this

interference. Interference leads to a reduction in the false positive rate, which in isolation is bene-

ficial. However, this is counter-balanced by a higher false negative rate (𝑃𝐹𝑁),

𝑃𝐹𝑁 = �(1 − 𝛿(𝑥))𝑝(𝑥|𝑦 = 0, 𝑐 = 𝑖) 𝑑𝑥 = ��1 −

𝑛

�

𝑗=1

𝛿𝑗(𝑥)�𝑝(𝑥|𝑦 = 0, 𝑐 = 𝑖) 𝑑𝑥 (7)

≥ �(1 − 𝛿𝑖(𝑥))𝑝(𝑥|𝑦 = 0, 𝑐 = 𝑖) 𝑑𝑥. (8)

Again, this holds true for any sub-class (𝑖 ∈ 1,⋯ , 𝑛). While we can set uniform false positive rates

for each of the sub-class detectors, there is likely to be some variation in the sub-class false pos-

itives rates during test time, and achieving true uniform calibration across all sub-classes may be

difficult or impossible. As a counter-example, consider two one-dimensional Gaussian distribu-

tions with identical means, but different standard deviations. If we use the high probability re-

gions to perform anomaly detection, then the false alarm rates can never be the same, except in

the trivial cases of complete or vanishing coverage.
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Figure 2 Cross-validation can be modified for semi-supervised anomaly detection. The data is separated

into sub-classes, and training, validation, and test sets are constructed. Sub-class anomaly

detectors are constructed (a) and calibrated (b) separately during the training phases. Anomaly

detector false alarm rates and sensitivity to outliers are estimated using data from all of the

sub-classes (c).
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4. EFFECT OF COMPOSITION ON GAUSSIAN MIXTURES

To demonstrate the benefits of a uniform false detection rate when there is sub-class imbalance,

we consider a normal class consisting of two Gaussians centred at the points (−1, 0) and (1, 0),

and the anomalous class is a single Gaussian centred at the point (0,2). Each Gaussian has a stand-

ard deviation of 1 for each component with no covariance. The robustness of the global and uni-

form false alarm rates are verified by varying the mixture of the two normal sub-classes at either

test or training time. The training and test sets are generated using random sampling, and consist

of the normal, and the normal and anomalous classes, respectively. Owing to the large sample

sizes, the Monte Carlo error is negligible.

The first row of Figure 3 shows the change in the false positive and negative rates of an anomaly

detector constructed using a single threshold (blue) and one generated from two sub-class detect-

ors with uniform thresholds (red). The detection rates are shown as the mixture varies between

5% and 95% of the first sub-class. The uniform threshold detector has consistent performance

for different training sets, showing the expected increase in robustness. The false alarm rate of

the uniform threshold detector is lower than its nominal rate (shown by the dashed black line in

Figure 3c) because of the interference between the sub-class detectors. While the reduced false

alarm rate is beneficial, it has the undesired side effect of reduced statistical power, too (the dif-

ference between the red and blue lines in Figure 3d). The global anomaly detector (blue) attains

its nominal false alarm rate when the training and test sets have the same sampling distributions,

which can be seen by the minimum at 0.6 in Figure 3a. The false alarm rate increases for highly

polarized mixtures (<0.2 and >0.8), with some improvement in the statistical power of the de-

tector. The inflated false alarm rate is consistent with our expectations, and demonstrates the

limitations of a global threshold when there is drift in the data.

Plots (c) and (d) show the changes in detector effectiveness when a fixed training set is used with

a variable test set. Again, the uniform detector has a lower false alarm rate and statistical power

than the global detector and stable performance. Since the training set is constant the statistical

power of the global detector does not vary either (Figure 3d). The false alarm rate is over twice

its nominal rate for very polarized mixtures (less than 10% of the first sub-class), but actually has

a better-than-expected false alarm rate when the test mixture is strongly biased in the other dir-

ection. This is because samples are predominately generated in the high probability region of the

Gaussian mixture.

The trade-off between the false alarm rate and statistical power is visualized through the receiver

operating characteristic curve. In (e) the training and test sets come from the same distribution.

The performance of detector trained separately on each sub-class is virtually the same. When

there is some discrepancy between the training and test data (f), the local threshold detector
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maintains its original performance, while the global threshold detector is degraded.

As a final comparison, we repeat the analysis in which one of the Gaussian components in the nor-

mal mixture is replaced by a bi-Cauchy distribution with no correlation between the features and

scale parameters of 0.3. The introduction of a heavy-tailed distribution is used to simulate cases

in which the normal component has significant variation, so the notion of anomalous behaviour is

harder to define. The results are shown in Figure 4, with the same patterns of behaviour as in the

Gaussian case: the uniform threshold detector has both a lower false alarm rate and lower statist-

ical power. The main benefit is that the performance is more consistent when there are changes

in the relative sub-class proportions. The inconsistency of the global threshold model is, again,

most acute for highly polarized mixtures. The receiver operator characteristic curves shown in

Figure 4a and b show the uniform and global threshold detectors have similar performance. The

global detector outperforms the uniform detector somewhat when the training and test sets are

drawn from the same distribution (e), but the trend is reversed for small false alarm rates when

this is not the case (f). While these two datasets lack realistic complexity, they provide a demon-

stration that anomaly detectors can, under some circumstances, be made more robust without a

loss in performance.
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Figure 3 Semi-supervised anomaly detector trained on a bi-Gaussian distribution. The false alarm rate

and statistical power of an anomaly detector generated from the high probability regions (blue)

or by composing anomaly detectors from each sub-class (red). a) The change in the true false

alarm rate as the training set is varied for a fixed nominal false alarm rate (indicated by the

black dashed line). b) The change in the statistical power as the training set is varied. c and d

are similar to a and b, but with the training set held fixed and the test set varied. Receiver

operator characteristic curves are shown for the cases of the training and test set being drawn

from the same (e) and different (f) distributions.
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Figure 4 Semi-supervised anomaly detector trained on a Gaussian and Cauchy mixture distribution.The

false alarm rate and statistical power of an anomaly detector generated from the high

probability regions (blue) or by composing anomaly detectors from each sub-class (red). a) The

change in the true false alarm rate as the training set is varied for a fixed nominal false alarm

rate (indicated by the black dashed line). b) The change in the statistical power as the training

set is varied. c and d are similar to a and b, but with the training set held fixed and the test set

varied. Receiver operator characteristic curves are shown for the cases of the training and test

set being drawn from the same (e) and different (f) distributions.
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5. COMBINING GAUSSIAN MIXTURES TO DETECT MNIST ANOM-

ALIES

An anomaly detector was developed for handwritten digits by fitting a Gaussian Naïve Bayes

model for each digit of the MNIST data set using Scikit-learn [21]. The pixels were scaled to have

a maximum intensity of 255. Thresholds were chosen to produce a false alarm rate of 20% using

the 𝜒2 statistic, which is equivalent to thresholding the marginal likelihood of each digit, with

any pixel with an average intensity of less than 1 ignored as they are likely to be part of the back-

ground. The MNIST pixel intensities display strong spatial correlations and the variation is clearly

not Gaussian, so we expect the Gaussian Naïve Bayes detectors to perform poorly, and create a

loss in statistical power when the sub-class detectors are combined.

The statistical power and false alarm rates for each sub-class detector is given in Table 1, along

with the effectiveness of the ensemble detector, where we define statistical power as the percent-

age of data points that are flagged as anomalies when the sub-class detector for the true class

is removed. The individual detector performance is separated into the performance for each di-

git to provide a finer-grained view of their performance. The empirical false alarm rate for each

detector channel is given by the diagonal entries and also along one of the bottom rows. The val-

ues all hover around 20%, as expected from the calibration step. The minor discrepancy possibly

comes from different people contributing to the digits in the training and test sets (a deliberate

feature of the MNIST data set). The detector channels for digits ‘0’ and ‘1’ seem particularly ef-

fective at discriminating other digits, with the ability to correctly identify anomalies more than

90% of the time. Surprisingly, the other detectors seem to have difficultly correctly rejecting ‘1’s

as false alarms. The ‘2’ and ‘5’ digit anomaly detectors only reject 3% of the ‘1’s as anomalies, and

the ‘8’ channel only identifies it as an anomaly 2% of the time. The low anomaly detection rate vi-

olates the common assumption that the false negative rate will exceed the false positive rate, and

exemplifies the need to check anomaly detection performance. The high false negative rate could

arise from filtering out the pixels with low activation for each anomaly detector, and suggests this

information should be retained.

The overall performance of the ensemble anomaly detector is along the bottom of Table 1 with

the false alarm rate and power against each class. The false alarm rate is how many times the true

class was flagged as an anomaly by the corresponding detector channel, and is extracted from the

diagonal entries. The ‘false alarm rate (all)’ is the probability that all the detector channels identify

the digit as an anomaly and therefore the ensemble anomaly detector would flag it as an anom-

aly. Since all of these data points are from the normal sub-classes, any anomalies are false alarms.

When the sub-class detectors are combined the false alarm rate is reduced from the 20% for each

individual channel because of interference between channels. The false alarm rate of the ‘4’ and

OFFICIAL

12



OFFICIAL

DST-Group-TR-3765

Table 1 Information about the anomaly detector constructed from a series of Gaussian mixtures. The

top section shows the anomaly detection rate for different classes and detector channels. The

bottom rows provide a summary of the overall performance. The first of these rows provides

the false alarm rate of each individual detector (which are identical to the diagonal entries in

the top section of the table), the second provides the false alarm rate when all of the detectors

are used, and the final row provides the power of the anomaly detector when the

corresponding class detector is removed.

True class

0 1 2 3 4 5 6 7 8 9

0 0.16 1.00 0.98 0.96 1.00 0.94 0.98 0.91 0.99 0.99

1 1.00 0.19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 0.83 0.03 0.19 0.53 0.67 0.75 0.57 0.63 0.65 0.76

3 0.81 0.05 0.71 0.16 0.61 0.59 0.79 0.50 0.41 0.49

4 0.98 0.44 0.98 0.93 0.19 0.88 0.86 0.45 0.76 0.19

5 0.80 0.03 0.85 0.43 0.40 0.19 0.83 0.51 0.31 0.34

6 0.96 0.42 0.93 0.95 0.84 0.95 0.22 0.90 0.96 0.77

7 1.00 0.75 0.99 0.97 0.77 0.97 0.99 0.20 0.96 0.43

D
e
te
ct
o
r
ch
a
n
n
e
l

8 0.82 0.02 0.75 0.52 0.49 0.45 0.55 0.51 0.18 0.34

9 0.99 0.41 0.99 0.94 0.55 0.95 0.90 0.50 0.89 0.19

False alarm 0.16 0.19 0.19 0.16 0.19 0.19 0.22 0.20 0.18 0.19

False alarm (all) 0.14 0.01 0.16 0.12 0.17 0.14 0.17 0.13 0.14 0.12

Power 0.73 0.01 0.61 0.27 0.35 0.32 0.47 0.29 0.24 0.14

‘6’ digits remain high at around 17%, while the false alarm rate for the ‘1’ digits is only 1%. In-

terference between channels also reduces the power of the ensemble, which is the proportion of

data points identified as an anomaly by every detector channel, excluding the detector channel of

the true class. This ranges from just 1% for the ‘1’ digits, up to 73% for the ‘0’ digits. The strong

interference between the channels probably arises from the simplistic nature of the detectors we

used.

Table 1 suggests our ability to identify new types of anomalies will strongly depend on their struc-

ture. Anomalies that have a shape similar to that of ‘1’s will usually be identified as normal, while

anomalies that have loops in them, like ‘0’s, ‘6’s and some of the ‘2’s, are much more likely to be

flagged as anomalies.
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6. COMBINING CONVOLUTIONAL AUTOENCODERS TO DETECT

MNIST ANOMALIES

Handwritten digits tend to be quite distinctive to humans and can be classified with more than

99% accuracy using state-of-the-art classifiers [22]. This suggests that more sophisticated detect-

ors should allow additional detector channels to be added without such a large drop in statistical

power. To test this hypothesis, we trained a series of convolutional autoencoders [23]. The en-

coder had six layers, alternating between convolutional layers and max-pooling layers. The con-

volutional layers each had a three by three kernel, and six, four and two filters, respectively. The

max-pooling used a two-by-two window. The decoder layer was like a mirror image, with six lay-

ers alternating between convolutional layers and upsampling layers. The convolutional layers had

two, four, and six filters, respectively, and a three by three kernel. The upsampling layers were

two-by-two. We also used the mean-square reconstruction error to detect anomalies. The mean-

square error was used because it is commonly employed in the literature (for example [17]) and

conceptually simple. Other metrics like absolute-mean reconstruction error can also be imple-

mented. Convolutional neural networks are effective for classifying MNIST digits and convolu-

tional autoencoders have been found to provide excellent anomaly detection for perturbed MNIST

digits and other data sets [24, 25], so we expected convolutional-based methods to work well

when the anomaly detector for each digit is trained separately.

Overall, the results were encouraging (Table 2). The power for most digits was over 70%. How-

ever, there was substantial variation at the more granular level. Like the Gaussian mixtures, the

anomaly detectors tended to identify ‘1’s as belonging to their own class. They only recognized

‘1’ as an anomaly 2-20% of the time, in many cases less than the false alarm rate of the ‘1’ sub-

detector. More encouragingly, the ‘1’ detector channel was able to effectively reject the other

digits. We are unsure why this asymmetry with ‘1’ digits occurs. It could be due to the relatively

low spatial complexity of ‘1’s as compared with the other digits. The digits ‘2’, ‘4’, ‘5’, ‘7’, and ‘9’

sometimes have lines that look similar to ‘1’s in their structure. This may mean their autoencoders

automatically learnt to reproduce line-like structures, allowing the ‘1’s to be effectively repro-

duced. Conversely, the autoencoder for the ‘1’ digit probably has little incentive to learn loop and

curve structures that occur in the other digits, causing it to have a large reconstruction error for

other shapes.

It is likely that the results could be improved using more sophisticated autoencoder architectures.

Nevertheless, the low false alarm rate and high power for most of the digits (the exceptions being

1, 7 and 9) show combining anomaly detectors can be an effective strategy.
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Table 2 Information about the anomaly detector constructed from a series of auto-encoders. The top

section shows the anomaly detection rate for different classes and detector channels. The

bottom rows provide a summary of the overall performance. The first of these rows provides

the false alarm rate of each individual detector (which are identical to the diagonal entries in

the top section of the table), the second provides the false alarm rate when all of the detectors

are used, and the final row provides the power of the anomaly detector when the

corresponding class detector is removed.

True class

0 1 2 3 4 5 6 7 8 9

0 0.20 0.20 1.00 1.00 1.00 1.00 0.99 0.98 1.00 1.00

1 1.00 0.19 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 0.97 0.06 0.18 0.97 0.95 0.99 0.98 0.28 0.95 0.69

3 1.00 0.12 0.94 0.16 0.99 0.92 0.99 0.61 0.97 0.84

4 1.00 0.10 1.00 1.00 0.17 1.00 0.97 0.76 1.00 0.53

5 0.89 0.06 0.99 0.86 0.98 0.19 0.88 0.85 0.99 0.86

6 1.00 0.03 1.00 1.00 0.99 0.99 0.21 0.98 1.00 0.99

7 1.00 0.12 1.00 1.00 0.99 1.00 1.00 0.19 1.00 0.94

D
e
te
ct
o
r
ch
a
n
n
e
l

8 0.97 0.02 0.97 0.91 0.83 0.93 0.83 0.80 0.19 0.45

9 1.00 0.13 1.00 1.00 0.90 1.00 1.00 0.62 1.00 0.16

False alarm 0.20 0.19 0.18 0.16 0.17 0.19 0.21 0.19 0.19 0.16

False alarm (all) 0.19 0.01 0.18 0.16 0.16 0.18 0.20 0.13 0.19 0.12

Power 0.85 0.01 0.91 0.79 0.78 0.87 0.77 0.24 0.91 0.29
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7. DISCUSSION

The fundamental idea of statistical calibration can be traced back to the work of Ronald Fisher

and Jezzy Neyman. Fisher advocated for using p-values, while Neyman favoured testing the null

and alternate hypotheses [26]. These distinct approaches to statistical tests somewhat mirror the

differences in unsupervised, semi-supervised, and supervised anomaly detection. The concept

of calibration has evolved and been applied to contemporary machine learning models, like one-

class support vector machines [16] and neural networks [27]. These approaches tend to rely on

fixing the false positive rate while associating the normal class with the high density regions [28,

29].

The high density regions are often implicitly or explicitly identified by assuming some kind of

reference distribution for the anomalous class, usually a uniform distribution [30]. This approach

effectively bridges the gap between unsupervised and supervised learning [8], which provides

quantitative criteria for assessing the performance of anomaly detectors and increases the

breadth of techniques that can be applied. However, the reference distribution will not be invari-

ant under coordinate transformations [31], so the ‘best’ anomaly detector will be sensitive to (for

example) the units the features are expressed in. Another problem is that the anomalous class

is unlikely to resemble the reference distribution. For example, if we are looking for anomalous

images (as in sections 5 and 6), then these images are likely to have some kind of structure. The

reference of a uniform density would only be useful if we were trying to identify random noise.

In fact, for some anomaly detectors that use the high density region for classification [27], it was

found they were more confident in their (incorrect) classification of anomalies as normal samples

than they were for true normal samples! This parallels our results for MNIST, where we found the

‘7’ detector was more likely to identify ‘7’s as anomalies than ‘1’s.

There is ongoing research into making anomaly detectors more robust against adversarial ex-

amples [32], noise [33], for different anomalous classes [34, 35], and concept drift [36, 37]. It is

the final area which has the greatest similarity to our work, which focuses on achieving robust-

ness against drift in the composition of the normal class. Although we do not demonstrate it here,

there is no reason to think robustness against (say) adversarial examples could not be incorpor-

ated alongside sub-class composition robustness.

We have used a single model for each sub-class channel, although it is easy to build an ensemble

for each sub-channel, so that the overall architecture consists of an ensemble of ensembles.

There are a range of available techniques, including bagging [8], boosting [8], stacking [8], and

voting procedures [38]. Similarly, Bayesian techniques can be used to select an appropriate

generative model, or an elicitation procedure [39, 40] can be used to rank models, or to perform

model checking [14]. This could be useful when we have contextual information about the kinds
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of anomalies we are interested in detecting.

Unlike supervised learning, where cross-validation is used, there is no de facto standard for evalu-

ating the performance of semi-supervised anomaly detection, especially with multiple sub-classes.

This makes it difficult to compare the performance of two or more anomaly detectors. Faria et al

[37] suggest using a confusion matrix to evaluate multiple sub-class performance of the anom-

aly detector. The matrix specifies the classification of each class, with an additional column for

‘unknown’. Their approach is closer to conventional cross-validation than ours, and uses unsuper-

vised learning to identify clusters that represent different sub-classes, while our sub-classes were

generated from pre-existing labels. Mass-volume and excess-mass curves [28, 29] provide met-

rics that are similar to receiver operating characteristic curves, which makes them easy to inter-

pret. They tend to assume a reference distribution and this can introduce some other problems as

discussed above. Identification of anomalies from clusters can be evaluated from standard unsu-

pervised learning criteria, like the sum-of-squares within clusters or the elbow method [8]. These

criteria are generally seen as more subjective than other evaluation methods and perhaps less

trustworthy. Finally, there can also be a role for human-based evaluation, for example, identifying

that certain handwritten digits have an atypical structure. This allows domain knowledge to be

incorporated into the evaluation process, but it is hard to automate and what constitutes the nor-

mal class may not be obvious to a human either. It is difficult to directly compare these different

approaches for evaluating anomaly detector performance because they rely on such diverse prin-

ciples. There is also little reason to expect their results to be strongly correlated. While this places

some burden on the end user to justify their choice of evaluation method, subjective criteria can

also appear in supervised learning problems, like the choice of the loss function.

In this technical report, we decided on a threshold for each detector channel, and then estimated

the overall false alarm rate. This procedure could be modified so that an overall false alarm rate

is selected, then the false alarm rate for the sub-class detectors is adjusted until that overall false

alarm rate is obtained. There is also scope for implementing a false discovery rate [41] for each

sub-class detector or the ensemble detector. This flexibility allows the general idea to be tailored

for a specific application.
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8. CONCLUSION

We have developed a procedure for calibrating an anomaly detector such that there is a uniform

false alarm rate for each sub-class. The primary benefits of using a uniform false alarm rate across

sub-classes are:

• It protects against imbalance in the sub-classes. The traditional practice of using a single

threshold can cause sub-classes with few samples to become consistently misclassified as

anomalies. This will not occur for separate thresholds, although there can be degraded

performance because of small sample sizes.

• It can produce more robust results when there are concerns about algorithmic bias or

discrimination for particular sub-classes. For example, when sub-classes represent popu-

lations with socially-protected attributes.

• It protects against drift in the sampling distribution. The false alarm rate will remain

nearly constant, even if the proportion of each sub-class changes dramatically.

• It allows different algorithms or metrics to be used for each sub-class. For instance, one

sub-class could use a Gaussian Naïve Bayes algorithm to classify anomalies with the

probability density used as the classification metric, while another sub-class may use a

encoder-decoder neural network with the reconstruction error instead.

• The ensemble anomaly detector can be easily customized. Sub-class anomaly detectors

can be added or removed without having to retrain any other components. This is not

true when a single global threshold is used.

The downsides of using separate thresholds for each sub-group are:

• It can reduce the power of the ensemble anomaly detector for a given false detection

rate.

• It can introduce elements of subjectivity when the criteria for creating sub-classes is am-

biguous.

On the balance there can be legitimate concerns about a reduction in statistical power. However,

there are a number of compelling benefits that may override these concerns in some circum-

stances.
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