
UNCLASSIFIED

Vector and Matrix Variable Definitions in DAVE-ML

Geoff Brian

Air Vehicles Division
Defence Science and Technology Organisation

DSTO-TN-1146

ABSTRACT

The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a syntactical
language for exchanging flight vehicle dynamic model data. It has been developed in conjunction
with the ANSI/AIAA S-119-2011 Flight Dynamics Model Exchange Standard prepared by the
American Institute of Astronautics and Aeronautics (AIAA) Modeling and Simulation Technical
Committee (MSTC). The purpose of DAVE-ML is to provide a framework to encode entire flight
vehicle simulation data packages for exchange between simulation applications and the long-term
archiving of model data. This report documents an extension to DAVE-ML for managing data as
vectors or n-dimensional matrices. The attributes and dependencies of the additional DAVE-ML
elements are discussed, and examples of encapsulating data as vectors and matrices are provided.

RELEASE LIMITATION

Approved for public release

UNCLASSIFIED

UNCLASSIFIED

Published by

Air Vehicles Division
DSTO Defence Science and Technology Organisation
506 Lorimer St
Fishermans Bend, Victoria 3207 Australia

Telephone: (03) 9626 7000
Fax: (03) 9626 7999

© Commonwealth of Australia 2012
AR-015-431
December 2012

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

Vector and Matrix Variable Definitions in DAVE-ML

Executive Summary

The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a syntactical
language for exchanging flight vehicle dynamic model data. It has been developed in
conjunction with the ANSI/AIAA S-119-2011 Flight Dynamics Model Exchange Standard,
prepared by the American Institute of Astronautics and Aeronautics (AIAA) Modeling
and Simulation Technical Committee (MSTC). The intended purpose of DAVE-ML is to
provide a framework for encoding entire flight vehicle simulation data packages for
exchange between simulation applications and the long-term archiving of model data.
Such data packages are commonly used in research, engineering development, and flight
training simulations. DAVE-ML is designed to provide a programming-language-
independent representation of aerospace vehicle characteristics, such as the aerodynamics,
mass, propulsion, navigation and control properties.

Version 2.0.1 of DAVE-ML supports the storage of static aerospace vehicle characteristic
data in human-readable text form, together with directives for automating the conversion
of data into a form suitable for use in vehicle simulations. It provides a capability to
include statistical properties for embedded data, such as confidence bounds and
uncertainty ranges; along with references to reports, contact information and data
provenance. However, additional functionality is required to support the exchange of
entire flight vehicle simulation models. This includes supporting vector and matrix data,
abstracting sub-system models, detailing dynamics system models (both discrete and
continuous), and defining a dynamic data format (such as time-history data) for validating
dynamics system models and the overall simulation package.

This report documents a DAVE-ML consistent syntax for managing data as vectors and n-
dimensional matrices, including syntax for computing vectors and matrices using
equations, and examples of encoding data using the syntax. The syntax offers an approach
to improve the clarity of encoding aerospace vehicle dynamic model data, and thereby
enhance the ability of DAVE-ML to encode entire flight vehicle dynamic simulation
models and their validation data. This, in turn, will simplify the exchange of vehicle model
data between simulation applications.

UNCLASSIFIED

Author

Mr. Geoff Brian
Air Vehicles Division

Geoff Brian commenced employment at the DSTO in 1989, after
graduating from the University of New South Wales with a degree in
Aeronautical Engineering. During his employment with DSTO, he
has been involved with the analysis of flight data used to develop a
comprehensive flight dynamic model of the F-111C aircraft; the
development of aircraft performance estimation applications; and
coordination of DSTO support to a project replacing the F-111C
aircraft’s Pratt & Whitney TF30-P-103 engines with TF30-P-109
engines. Mr. Brian was attached to the Royal Australian Air Force -
Aircraft Research and Development Unit in 1992, where he was
involved with a performance flight trial of an air-to-air refuelling
capable Boeing 707 aircraft. During 1998 and 1999 Mr. Brian
attended Loughborough University in the United Kingdom being
awarded with a MSc in Industrial Mathematical Modelling. From
2000 - 2005 he coordinated DSTO support to the KC-30 Aerial
Tanker acquisition program. More recently he contributed to and
coordinated the development of an aircraft flight dynamic and
simulation capability within Air Vehicles Division, and contributed
to uninhabited aircraft systems flight dynamic research at DSTO. In
2010 Mr Brian undertook a Defence Science Fellowship at NASA
Langley researching aircraft aerodynamic systems identification and
vehicle modelling and simulation practices.

____________________ __

UNCLASSIFIED

UNCLASSIFIED
DSTO-TN-1146

Contents

ABBREVIATIONS

NOMENCLATURE

ACKNOWLEDGEMENTS

1. INTRODUCTION... 1

2. SIMULATION MODELLING USING VECTORS AND MATRICES 2

3. VECTOR AND MATRIX SYNTAX ELEMENTS.. 3
3.1 Supplementary Elements... 7

4. COMPUTING VECTORS AND MATRICES USING MATHML............................. 7
4.1 Transpose.. 10
4.2 Inverse... 11
4.3 Determinant ... 12
4.4 Scalarproduct ... 13
4.5 Vectorproduct .. 14
4.6 Outerproduct.. 15
4.7 Selector.. 16

4.7.1 Element ... 17
4.7.2 Row.. 18
4.7.3 Column.. 19
4.7.4 Diag ... 20
4.7.5 Mslice .. 20

4.8 Unsupported Vector and Matrix Operators ... 21

5. INPUT VECTOR AND MATRIX VARIABLES .. 22

6. CONCLUSION .. 23

7. REFERENCES .. 24

APPENDIX A: EXAMPLES .. 25
A.1 Example Scalar Variable Definitions ... 25
A.2 Examples of Vector Variables Definitions 27
A.3 Examples of Matrix Variable Definitions.................................. 28
A.4 Examples of Vector and Matrix Operations 29

UNCLASSIFIED

UNCLASSIFIED
DSTO-TN-1146

A.4.1 Vector Magnitude (Norm) .. 29
A.4.2 Transpose Operator ... 30
A.4.3 Inverse and Vector-Product Operators......................... 31
A.4.4 Scalar-Product Operator ... 32
A.4.5 Determinant Operator... 32
A.4.6 Selector Operator ... 33

UNCLASSIFIED

UNCLASSIFIED
DSTO-TN-1146

Abbreviations

AIAA American Institute of Aeronautics and Astronautics

DAVE-ML Dynamic Aerospace Vehicle Exchange Markup Language

DSTO Defence Science and Technology Organisation

DTD Document Type Definition

MathML Mathematical Markup Language

NASA LaRC National Aeronautics and Space Administration, Langley Research Center

XML eXtensible Markup Language

W3C World Wide Web Consortium

Nomenclature

C, Ci Coefficient vector or component
F, Fi Force vector or component
g Gravitational acceleration
I, Iii Mass-moment-of-inertia tensor or component
m Vehicle mass
p Vehicle body-axes angular roll rate
q Vehicle body-axes angular pitch rate

q Kinematic pressure, 250 Vq .

r Vehicle body-axes angular yaw rate
S Reference area
u Vehicle body-axes axial velocity

u Vehicle body-axes axial acceleration

v Vehicle body-axes transverse velocity

v Vehicle body-axes transverse acceleration

V Vehicle body-axes velocity vector , V = [u,v,w]

V Vehicle body-axes acceleration vector ,],,[wvuV
w Vehicle body-axes normal/vertical velocity

w Vehicle body-axes normal/vertical acceleration

 Euler roll angle

 Euler pitch angle

 Atmospheric density

 Body-axes rotational rate vector

UNCLASSIFIED

UNCLASSIFIED
DSTO-TN-1146

UNCLASSIFIED

 ransformation matrix

uperscripts/Subscripts

e ody to earth axes transformation
odynamic

-axes x direction

Acknowledgements

he work documented in this report was conducted while on attachment to NASA Langley

wish to also acknowledge the valuable comments provided in correspondence with Dennis

 T

S

b B
aer Aerodynamic
propulsion Propulsion
x Vehicle body
y Vehicle body-axes y direction
z Vehicle body-axes z direction

T
Research Center under a Visiting Researcher Agreement facilitated through the National
Institute of Aerospace, Hampton, Virginia, USA. I wish to acknowledge the all staff at the
National Institute of Aerospace who assisted with this attachment.

I
Linse, Bruce Jackson (NASA LaRC), Shane Hill (DSTO), Dan Newman (Quantitative
Aeronautics) and Rob Curtin (Qinetiq Consulting Australia) during the formulation of the
concepts that are encompassed in this document.

UNCLASSIFIED
DSTO-TN-1146

1. Introduction

The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a syntactical
language for exchanging flight vehicle dynamic model data [1]. It was developed in
conjunction with the ANSI/AIAA S-119-2011 Flight Dynamics Model Exchange Standard [2],
prepared by the American Institute of Astronautics and Aeronautics (AIAA) Modeling and
Simulation Technical Committee. The intended purpose of DAVE-ML is to provide a
framework for encoding entire flight vehicle dynamic model data packages for exchange
between simulation applications and the long-term archiving of model data. Such data
packages are commonly used in research, engineering development, and flight training
simulations.

DAVE-ML provides a programming-language-independent representation of aerospace
vehicle characteristics, such as the aerodynamics, mass, propulsion, navigation and control
properties. It employs a text-based format built upon the eXtensible Markup Language (XML)
Version 1.1 [3], and the Mathematical Markup Language (MathML) Version 2.0 [4] open
standards developed by the World Wide Web Consortium (W3C). DAVE-ML defines
additional grammar to provide a domain-specific language for aerospace flight dynamics
modelling, verification, and documentation. Version 2.0.1 of DAVE-ML, [5], is able to store
static aerospace vehicle characteristic data in human-readable text form, together with
directives for automating the conversion of data into a form suitable for use in vehicle
simulations. Furthermore, it provides the capability to include statistical properties for
embedded data such as confidence bounds and uncertainty ranges, along with references to
reports, contact information and data provenance.

While Version 2.0.1 of DAVE-ML provides much of the functionality envisioned for
exchanging aerospace vehicle data, it only supports scalar time-independent data. Additional
functionality is required to support the exchange of entire flight vehicle dynamic models. This
includes supporting vector and matrix data, abstracting sub-system models, detailing
dynamics system models (both discrete and continuous), and defining a dynamic data format
(such as time-history data) to support validation of dynamics system models and the overall
simulation package. This report documents extensions to DAVE-ML to permit the
management of vector and matrix data. Additional syntax for storing data as vectors or
matrices is defined, together with syntax for computing vectors and matrices using an
equation. Examples of encoding data using the extended syntax are also provided.

The vector and matrix syntax improves DAVE-ML’s ability to encode entire flight vehicle
dynamic simulation models, and in-turn the exchange of aerospace vehicle model data.

UNCLASSIFIED
1

UNCLASSIFIED
DSTO-TN-1146

2. Simulation Modelling using Vectors and Matrices

Collating data as vectors and matrices permits parameters that have a common basis to be
grouped when exchanging vehicle data, and in doing so, improve data clarity. For example,
an aircraft’s three body-axes aerodynamic force components (Fx, Fy, and Fz), or force
coefficient components (Cx, Cy, and Cz), may be managed as a single vector parameter
Faerodynamic as shown in Equation (1), where q is the kinematic pressure and S the reference
area.

 (1)

Similarly, the aircraft’s mass-moments-of-inertia may be grouped as an inertia tensor I,
Equation (2).

 (2)

Furthermore, collating parameters into vector and matrices permits aerospace flight
behaviour simulation applications to use generalised equations for defining the vehicle‘s
motion instead of the more commonly used component forms of these equations. This has the
added benefit of simplifying the coding of simulation applications. For example, Equations (3-
5) represent the flat non-rotating earth body-axes linear accelerations of a vehicle commonly
used in simulation applications, while Equation (6) represents the generalised equation for the
vehicle acceleration.

 (3)

 (4)

 (5)

 (6)

In Equation (6), Caerodynamic represents the aerodynamic force coefficient vector, Fpropulsion the
propulsion force vector, the rotational rate vector (p,q,r), V the linear velocity vector (u,v,w),
and [T] the earth-axes to body-axes Euler transform matrix.

UNCLASSIFIED
2

UNCLASSIFIED
DSTO-TN-1146

3. Vector and Matrix Syntax Elements

Vectors and matrices are analogous to scalar variables except that they represent a series of
values instead of a singular value. The capability of the DAVE-ML variable definition element,
variableDef, has been extended to embrace the encoding of data as scalars, vectors or matrices.
Sub-elements are included to define the dimensions of vectors and matrices, and to specify the
data of the vector or matrix. These data can be numeric, references to other defined variables,
or a combination. Alternatively, the contents of a vector or matrix can be computed using the
calculation sub-element by defining a suitable MathML expression. Figure 1 represents the
revised variable definition for DAVE-ML where the additional sub-elements supporting
vector and matrix definitions, highlighted in bold text, are listed in Table 1.

Figure 1: DAVE-ML variable definition with additional sub-elements supporting vectors and matrices

variableDef : name, varID, units, [axisSystem], sign, alias,
 symbol, [initialValue], minValue, maxValue

description?
(provenance | provenanceRef)?
(dimensionDef | dimensionRef)?
(calculation | array)?
(isInput | isControl | isDisturbance)?
IsState?
IsStateDeriv?
IsOutput?
IsStdAIAA?
uncertainty?

Table 1: Additional sub-elements for the DAVE-ML variable definition supporting vectors and
matrices

array The data for the vector or matrix
dimensionDef A list of dimensions (dim) for the vector or matrix
dimensionRef A reference to a dimensionDef element

Figure 2 illustrates an example defining a vector using this syntax, while examples of defining
two- and three-dimensional matrices are presented in Figure 3.

UNCLASSIFIED
3

UNCLASSIFIED
DSTO-TN-1146

Figure 2: An example of defining a vector using the extended DAVE-ML variable definition syntax

<variableDef name=”matrixName_nd” varID=”matrixID” units=”nd”>
 <dimensionDef dimID=”matrix_2x3”>
 <dim>2</dim> <!-- Number of rows in the matrix -->
 <dim>3</dim> <!-- Number of columns in the matrix -->
 </dimensionDef>
 <array>
 <dataTable>
 1.0, 2.0, 3.0, <!-- Row #1 -->
 0.0, 2.0, 5.0, <!-- Row #2 -->
 </dataTable>
 </array>
</variableDef>

a) A two-dimensional matrix,

<variableDef name=”matrixName_nd” varID=”matrixID” units=”nd”>
 <dimensionDef dimID=”matrix_2x2x3”>
 <dim>2</dim> <!-- Number of 2x3 matrices -->
 <dim>2</dim> <!-- Number of rows in the matrix -->
 <dim>3</dim> <!-- Number of columns in the matrix -->
 </dimensionDef>
 <array>
 <dataTable>
 <!-- Matrix #1 -->
 1.0, 2.0, 3.0, <!-- Row #1 -->
 0.0, 2.0, 5.0, <!-- Row #2 -->
 <!-- Matrix #2 -->
 7.0, 8.0, 9.0, <!-- Row #1 -->
 2.0, 9.0, 6.0, <!-- Row #2 -->
 </dataTable>
 </array>
</variableDef>

b) A three-dimensional matrix,

<variableDef name=”vectorName_nd” varID=”vectorID” units=”nd”>
 <dimensionDef dimID=”vector_3”>
 <dim>3</dim> <!-- Number of data points in the vector -->
 </dimensionDef>
 <array>
 <dataTable> 1.0, 2.0, 3.0 </dataTable>
 </array>
</variableDef>

Figure 3: Example of defining two- and three-dimensional matrices using the extended DAVE-ML
variable definition syntax

UNCLASSIFIED
4

UNCLASSIFIED
DSTO-TN-1146

The list of dimensions for a vector or matrix is defined using the dimensionDef element,
specifying either the number of data entries in a vector or the size of each dimension in an n-
dimensional matrix. The lowest entry of the list specifies the number of columns of the base
matrix. The subsequent higher entries specify the number of rows in the base matrix, the
number of base matrices making up the third dimension, and so forth for n-dimensional
matrices. This is illustrated in Figure 4.

<dimensionDef dimID=”vector_3”>
 <dim>3</dim> <!-- Number of entries in the vector -->
</dimensionDef>

a) A vector with three entries,

<dimensionDef dimID=”matrix_2x2x2”>
 <dim>2</dim> <!-- Number of matrices for the 3rd dimension -->
 <dim>2</dim> <!-- Number of rows in the base matrix -->
 <dim>2</dim> <!-- Number of columns in the base matrix -->
</dimensionDef>

b) A three-dimensional matrix,

<dimensionDef dimID=”matrix_n_dimension”>
 <dim>2</dim> <!-- Number of matrices for the nth dimension -->
 ………………………………
 <dim>2</dim> <!-- Number of matrices for the 3rd dimension -->
 <dim>2</dim> <!-- Number of rows in the base matrix -->
 <dim>2</dim> <!-- Number of columns in the base matrix -->
</dimensionDef>

c) An n-dimensional matrix,

Figure 4: Examples of defining the dimensions of vectors and matrices using the extended DAVE-ML
variable definition syntax

A reference to a dimension definition can be used as an alternative to explicitly specifying the
dimensions as part of the variable definition. This permits the reuse of dimensionDef elements
for vectors or matrices having a common size. The dimensionRef references an identifier dimID
associated with the dimension definition, as illustrated in Figure 5.

UNCLASSIFIED
5

UNCLASSIFIED
DSTO-TN-1146

Figure 5: An example of using a reference to define the dimensions of a two-dimensional matrix

The data for a vector or matrix are specified using the array element. This is in effect a table of
data, and thus the dataTable element from DAVE-ML is utilised for encoding the vector and
matrix entries. The table of data represents consecutive entries for a vector. The entries for a
matrix are specified such that the column entries of the first row are listed first followed by
column entries for subsequent rows until the base matrix is complete. This sequence is
repeated for higher order matrix dimensions until all entries of the matrix are specified.
Figure 6 illustrates this procedure.

<array>
 <dataTable>
 0.0, eulerInclinationAngle, eulerRollAngle
 </dataTable>
</array>

a) A vector with three entries,

<array>
 <dataTable>
 <!-- First 2x2 Matrix -->
 1.0, 0.0, <!-- Row #1 -->
 0.0, 1.0, <!-- Row #2 -->

 <!-- Second 2x2 Matrix -->
 inertiaIXX, -20.4, <!-- Row #1 -->
 -15.6 , inertiaIYY, <!-- Row #2 -->
 </dataTable>
</array>

b) A three-dimensional matrix,

<dimensionDef dimID=”matrix_2x3”>
 <dim>2</dim> <!-- Number of rows in the matrix -->
 <dim>3</dim> <!-- Number of columns in the matrix -->
</dimensionDef>

<variableDef m trixName_nd” varID=”matrixID” units=”nd”> na e=”ma
 <dimensionRef dimID=”matrix_2x3”>
 <array>
 <dataTable>
 1.0, 2.0, 3.0, <!-- Row #1 -->
 0.0, 2.0, 5.0, <!-- Row #2 -->
 </dataTable>
 </array>
</variableDef>

Figure 6: An example of encoding data as either a vector or matrix using the extended DAVE-ML
variable definition syntax

UNCLASSIFIED
6

UNCLASSIFIED
DSTO-TN-1146

3.1 Supplementary Elements

The dimensionDef, dimensionRef and array elements are dependent on sub-elements to encode
vector and matrix data. The dimensionDef uses a sub-element of dim to define the size of each
dimension of the vector or matrix. An optional attribute dimID can also be specified defining a
reference identifier permitting the instance of the dimension definition to be reused. The
dimensionRef specifies the reference identifier of an associated dimensionDef, while array uses
the dataTable sub-element to encode the entries of the vector or matrix. It is therefore
necessary to include definitions for these elements within the DAVE-ML syntax. Figure 7
presents the additional syntax for DAVE-ML defining the supplementary element supporting
vector and matrix data.

Figure 7: Supplementary element definitions for encoding data as vectors and matrices using the

extended DAVE-ML syntax

<!ELEMENT dimensionDef (dim+)>
<!ATTLIST dimensionDef dimID ID #IMPLIED>

a) The definition of the dimensionDef element added to the DAVE-ML

syntax

<!ELEMENT dim (#PCDATA)>

b) The definition of the dim element

<!ELEMENT dimensionRef EMPTY>
<!ATTLIST dimensionRef dimID IDREF #REQUIRED>

c) The definition of the dimensionRef element

<!ELEMENT array (dataTable)>

d) The definition of the array element

4. Computing Vectors and Matrices Using MathML

The calculation sub-element of the DAVE-ML variable definition permits the value of a
variable to be computed from an equation defined using the open standard MathML syntax,
[4]. MathML contains operators for computing the transpose, inverse, determinant,
vectorproduct1, scalarproduct2, and outerproduct3 of vectors and matrices. These operators

1 The MathML definition for vectorproduct is equivalent to that of the cross product [5, 6].

UNCLASSIFIED
7

UNCLASSIFIED
DSTO-TN-1146

are in addition to operators for adding, subtracting, and multiplying data. Furthermore,
MathML contains an operator, named selector, which identifies entries to be extracted from a
vector or matrix. Operators such as plus, times, and minus apply equally to scalars, vectors
and matrices, and can be used when mixing variable types. The transpose, inverse,
determinant, vectorproduct, scalarproduct, outerproduct, and selector operators are only
relevant to vector and matrix variable types.

Utilising an equation to compute variables involving vectors and matrices is similar to
computing scalar variables through the equivalent DAVE-ML constructs. However, it is
necessary to define the size of the vector or matrix that results from the calculation. This is not
required if the result of the calculation is a scalar value. An example of multiplying a matrix
M and a vector V to calculate a resultant vector R, as shown in Equation (5), is presented in
Figure 8.

 (5)

Figure 8: An example of multiplying a matrix by a vector.

<variableDef name="R" varID="R" units="">
 <description> Multiplying a matrix and vector</description>
 <dimensionDef>
 <dim>2</dim> <!-- Number of entries in the output vector-->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <times/>
 <ci>M</ci>
 <ci>V</ci>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

A more complex example is presented in Figure 9, where Equation (6) is encoded using
MathML vector and matrix operators.

2 The MathML definition for scalarproduct is equivalent to that of the dot product [5, 6].
3 The outerproduct multiplies two vectors to form a matrix: A = uvT, where u and v are vectors [4].

UNCLASSIFIED
8

UNCLASSIFIED
DSTO-TN-1146

 (6)

Figure 9: An example of coding vector and matrix algebra using the MathML operators.

<variableDef name="R" varID="R" units="">
 <description>
 Vector and Matrix operations using MathML
 </description>
 <dimensionDef>
 <dim>3</dim> <!-- Number of entries in the output vector -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <times/>
 <apply>
 <inverse/>
 <ci>I</ci>
 </apply>
 <apply>
 <vectorproduct/>
 <apply>
 <times/>
 <apply>
 <transpose/>
 <ci>T</ci>
 </apply>
 <apply>
 <scalarproduct/>
 <ci>r</ci>
 <ci>r</ci>
 </apply>
 </apply>
 <ci>Q</ci>
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

Sections 4.1 to 4.7 detail the MathML vector and matrix operators and their use in defining
vector and matrix variables through the DAVE-ML syntax. In addition, examples are
presented for each operator. Appendix A presents more complex examples of the vector and
matrix syntax.

UNCLASSIFIED
9

UNCLASSIFIED
DSTO-TN-1146

4.1 Transpose

The operation of transposing a vector or matrix is defined using the transpose operator. It
applies only to one vector or matrix, which is identified using a reference to a predefined
variable definition. The syntax for the transpose operator is:

<transpose/>
<ci>vectorOrMatrix</ci>

Figure 10 illustrates transposing a [2,3] matrix to form a [3,2] matrix.

<variableDef name="matrixTranspose"
 varID="matrixTranspose" units="">
 <description>
 This represents an example of the transposing a 2x3 matrix.
 matrix1: [2,3];
 result = ~matrix1: [3,2];
 </description>
 <dimensionDef>
 <dim>3</dim> <!-- Number of rows in the matrix -->
 <dim>2</dim> <!-- Number of columns in the matrix -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <transpose/>
 <ci>matrix1</ci>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

Figure 10: An example of transposing a 2x3 matrix

UNCLASSIFIED
10

UNCLASSIFIED
DSTO-TN-1146

4.2 Inverse

The operation of computing the inverse of a matrix is defined using the inverse operator.
MathML also uses this operator to specify the inverse of a function. When used for matrix
operations it applies only to one matrix, which is square (i.e. n x n). The matrix is identified
using a reference to a predefined variable definition. The syntax for the inverse operator is:

<inverse/>
<ci>matrix</ci>

Figure 11 illustrates inverting a [3,3] matrix.

<variableDef name="matrixInverse"
 varID="matrixInverse" units="">
 <description>
 This represents an example of inverting a 3x3 matrix.
 matrix1: [3,3];
 result = !matrix1: [3,3];
 < >/description
 <dimensionDef>
 <dim>3</dim> <!-- Number of rows in the matrix -->
 <dim>3</dim> <!-- Number of columns in the matrix -->
 </dimensionDef>
 <calculation>

 <math>
 <apply>
 <inverse/>
 <ci>matrix1</ci>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

Figure 11: An example of inverting a 3x3 matrix

UNCLASSIFIED
11

UNCLASSIFIED
DSTO-TN-1146

4.3 Determinant

The operation of computing the determinant of a matrix is defined using the determinant
operator. It is a requirement that the matrix must be square (i.e. n x n) to compute the
determinant, where the result is a scalar. It applied only to one matrix, which is identified
using a reference to a predefined variable definition. The syntax for the determinant operator
is:

<determinant/>
<ci>matrix</ci>

Figure 12 illustrates the procedure for computing the determinant of a matrix.

<variableDef name="matrixDeterminant"
 varID="matrixDeterminant" units="">
 <description>
 This represents an example of computing the determinant of
 a 3x3 matrix.
 matrix1: [3,3];
 result = |matrix1|: [scalar];
 </description>
 <calculation>
 <math>
 <apply>
 <determinant/>
 <ci>matrix1</ci>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

Figure 12: An example of computing the determinant of a 3x3 matrix

UNCLASSIFIED
12

UNCLASSIFIED
DSTO-TN-1146

4.4 Scalarproduct

The operation of computing the scalar-product of two vectors is defined using the
scalarproduct operator. The scalar-product is equivalent to the dot-product as defined in
References [5] and [6]. The two vectors are required to have the same number of entries, and
are identified using references to predefined variable definitions. The result is a scalar. The
syntax for the scalarproduct operator is:

<scalarproduct/>
<ci>vector1</ci>
<ci>vector2</ci>

Figure 13 illustrates the procedure for computing the scalar-product of two vectors.

<variableDef name="scalarProduct"
 varID="scalarProduct" units="">
 <description>
 This represents an example of computing the scalar-product
 of two vectors – vector1 and vector2.
 result = vector1.vector2: [scalar];
 </description>
 <calculation>
 <math>
 <apply>
 <scalarproduct/>
 <ci>vector1</ci>
 <ci>vector2</ci>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

Figure 13: An example of computing the scalar-product of two vectors

UNCLASSIFIED
13

UNCLASSIFIED
DSTO-TN-1146

4.5 Vectorproduct

The operation of computing the vector-product of two vectors is defined using the
vectorproduct operator. The vector-product is equivalent to the cross-product as defined in
References [5] and [6]. The two vectors are each required to have three entries, and they are
identified using references to predefined variable definitions. The result is a vector of three
entries. The syntax for the vectorproduct operator is:

<vectorproduct/>
<ci>vector1</ci>
<ci>vector2</ci>

Figure 14 illustrates the procedure for computing the vector-product of two vectors.

<variableDef name="vectorProduct"
 varID="vectorProduct" units="">
 <description>
 This represents an example of computing the vector-product
 of two vectors with 3 entries each – vector1 and vector2.
 result = vector1 x vector2: [3];
 </description>
 <dimensionDef>
 <dim>3</dim> <!-- Number of entries in the result vector -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <vectorproduct/>
 <ci>vector1</ci>
 <ci>vector2</ci>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

Figure 14: An example of computing the vector-product of two vectors

UNCLASSIFIED
14

UNCLASSIFIED
DSTO-TN-1146

4.6 Outerproduct

The operation of computing the outer-product of two vectors is defined using the
outerproduct operator. The outer-product multiplies two vectors to form a matrix: A = uvT,
where u and v are vectors, [4]. The size of the resulting matrix is:

number of rows = number of entries of u, and
number of columns = number of entries of v.

The two vectors are identified using references to predefined variable definitions. The syntax
for the outerproduct operator is:

<outerproduct/>
<ci>vector1</ci>
<ci>vector2</ci>

Figure 15 illustrates the procedure for computing the outer-product of two vectors.

<variableDef name="outerProduct"
 varID="outerProduct" units="">
 <description>
 This represents an example of computing the outer-product
 of two vectors
 vector1: [3];
 vector2: [4];
 result = matrix1: [3,4];
 </description>
 <dimensionDef>
 <dim>3</dim> <!-- Number of rows in the matrix -->
 <dim>4</dim> <!-- Number of columns in the matrix -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <outerproduct/>
 <ci>vector1</ci>
 <ci>vector2</ci>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

Figure 15: An example of computing the outer-product of two vectors

UNCLASSIFIED
15

UNCLASSIFIED
DSTO-TN-1146

4.7 Selector

The selector operator identifies those entries to extract from a vector, as well as identifying
rows, columns, diagonals or sub-matrices to extract from a matrix. The extraction type (i.e. a
single entry, a row, a column, etc.) is defined using the other attribute of the selector operator
by assigning it one of the descriptors listed in Table 2. The extraction types are discussed in
Sections 4.7.1 to 4.7.5 of this report.

Table 2: Descriptors that may be used when extracting entries from a vector or matrix using the
selector operator

element To extract a single entry from a vector or matrix
row To extract a row(s) from a matrix
column To extract a column(s) from a matrix
diag To extract a diagonal(s) from a matrix
mslice To extract a sub-matrix from a matrix

The syntax for the selector operator is:

<selector other=”option”/>
<ci>argument_1</ci>
<cn>argument_2</cn>
<cn>...</cn>

The dimensions of the originating vector or matrix, together with the choice of extraction type,
define the number of arguments associated with the selector operator. For example, the
operator requires two arguments in order to extract a single element from a vector. The first
argument specifies the variable index (varID) of the originating vector, and the second
argument defines the index4 of the entry to be extracted, as illustrated in Figure 16 (a).
Similarly, the list of arguments for extracting a row or column from a two-dimensional matrix
must specify both the originating matrix and the index of the row or column to be extracted.
Extracting a diagonal from a two-dimensional matrix requires three arguments to be specified,
namely the originating matrix, and the row and column indices of the starting entry for the
diagonal. This is also the case for extracting a sub-matrix from a larger two-dimensional
matrix. Multiple non-consecutive entries from a vector and/or matrix can be extracted by
grouping arguments for each extraction within XML <apply></apply> element definitions.
Examples illustrating the extraction of multiple non-consecutive entries from vectors and
matrices are presented in Appendix A.

4 The numbering of entries in a vector, as well as the rows and columns of matrices, starts at 1 and
increases using a unit increment, [4].

UNCLASSIFIED
16

UNCLASSIFIED
DSTO-TN-1146

4.7.1 Element

The element descriptor provides the ability to extract a single entry from a vector or matrix.
One argument is specified for each dimension of the vector or matrix in order to nominate the
element to be extracted. The result is a scalar. Figure 16 illustrates the procedure for extracting
single entries from a vector and a two-dimensional matrix.

Figure 16: The syntax for extracting an entry from a vector and matrix

<variableDef name=”vectorElement” varID=”vectorElementID”>
 <calculation>
 <math>
 <apply>
 <selector other=”element”/>
 <ci>vectorID</ci>
 <cn>2</cn> <!-- Entry 2 of vectorID -->
 </apply>
 </math>
 </calculation>
</variableDef>

(a) Extracting an entry from a vector,

<variableDef name=”matrixElement” varID=”matrixElementID”>
 <calculation>
 <math>
 <apply>
 <selector other=”element”/>
 <ci>matrixID</ci>
 <cn>2</cn> <-- Row number of Entry in matrixID -->
 <cn>2</cn> <-- Column number of Entry in matrixID -->
 </apply>
 </math>
 /calculation> <
</variableDef>

(b) Extracting an entry from a two-dimensional matrix,

UNCLASSIFIED
17

UNCLASSIFIED
DSTO-TN-1146

4.7.2 Row

The row descriptor provides the ability to extract a row(s), or part of a row, from a matrix. An
argument is specified for each plane of the matrix if it has more than two dimensions, together
with an argument indicating the nominated row to be extracted. The result is a vector when
only one row is extracted; otherwise, the result is a matrix. The value specifying the variable's
dimension (through dimensionDef), or column dimension when extracting multiple rows,
indicates the number of elements to be extracted from the nominated row, starting from the
first entry. Figure 17 illustrates the procedure for extracting a row from a matrix.

Figure 17: The syntax for extracting a row from a matrix

<variableDef name=”matrixRow” varID=”matrixRowID”>
 <description>
 Extracting row 2 from the 4th plane of a three-dimensional
 matrix, [4,3,3].
 </description>
 <dimensionDef>
 <dim>3</dim> <!-- Number of entries in the result vector -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other=”row”/>
 <ci>matrixID</ci>
 <cn>4</cn> <!-- Plane 4 of matrixID -->
 <cn>2</cn> <!-- Row 2 of [3,3] matrix -->
 </apply>
 /math < >
 </calculation>
</variableDef>

(a) extracting a row from a three-dimensional matrix,

<variableDef name=”matrixRow” varID=”matrixRowID”>
 <dimensionDef>
 <dim>3</dim> <!-- Number of entries in the result vector -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other=”row”/>
 <ci>matrixID</ci>
 <cn>2</cn> <!-- The 1st 3 entries of row 2 -->
 </apply>
 /math < >
 </calculation>
</variableDef>

(b) extracting a partial row from a [3,4] matrix,

UNCLASSIFIED
18

UNCLASSIFIED
DSTO-TN-1146

4.7.3 Column

The column descriptor provides the ability to extract a column(s), or part of a column, from a
matrix. An argument is specified for each plane of the matrix if it has more than two
dimensions, together with an argument indicating the nominated column to be extracted. The
result is a vector when only one column is extracted; otherwise the result is a matrix. The
value specifying the variable's dimension (through dimensionDef), or row dimension when
extracting multiple columns, indicates the number of elements to be extracted from the
nominated column, starting from the first entry. Figure 18 illustrates the procedure for
extracting a column from a matrix.

Figure 18: The syntax for extracting a column from a matrix

<variableDef name=”matrixColumn” varID=”matrixColumnID”>
 <description>
 Extracting column 2 from two-dimensional matrix, [4,3].
 </description>
 <dimensionDef>
 <dim>4</dim> <!-- Number of entries in the result vector -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other=”column”/>
 <ci>matrixID</ci>
 <cn>2</cn> <!-- Column 2 of [4,3] matrix -->
 </apply>
 </math>
 </calculation>
</variableDef>

(a) extracting a column from a two-dimensional matrix,

<variableDef name=”matrixColumn” varID=”matrixColumnID”>
 <dimensionDef>
 <dim>3</dim> <!-- Number of entries in the result vector -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other=”column”/>
 <ci>matrixID</ci>
 <cn>1</cn> <!-- The 1st 3 entries of column 1 -->
 </apply>
 /math < >
 </calculation>
</variableDef>

(b) extracting a partial column from a [4,3] matrix,

UNCLASSIFIED
19

UNCLASSIFIED
DSTO-TN-1146

4.7.4 Diag

The diag descriptor provides the ability to extract a planar diagonal(s), or part there of, from a
matrix. An argument is specified for each plane of the matrix if it has more than two
dimensions, together with an argument indicating the starting row number and an argument
indicating the starting column number. The result is a vector when only one diagonal is
extracted; otherwise the result is a matrix with the diagonals arranged as the columns of the
matrix. The value specifying the variable's dimension (through dimensionDef), or row
dimension when extracting multiple diagonals, indicates the number of elements to be
extracted from the nominated diagonal(s). Figure 19 illustrates the procedure for extracting a
diagonal from a matrix.

<variableDef name=”matrixDiagonal” varID=”matrixDiagonalID”>
 <dimensionDef>
 <dim>2</dim>
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other=”diag”/>
 <ci>matrixID</ci>
 <cn>1</cn> <!-- Row number of initial entry -->
 <cn>1</cn> <!-- Column number of initial entry -->
 </apply>
 </math>
 </calculation>
</variableDef>

Figure 19: The syntax for extracting a diagonal vector from a two-dimensional [2,2] matrix

4.7.5 Mslice

The mslice descriptor provides the ability to extract one matrix from another matrix, where
the dimension of the extracted matrix is equal to or less than the dimension of the original
matrix. The number of entries extracted in each dimension is specified through the variable's
dimension element, dimensionDef. Arguments are specified by nominating where the
extraction is to start, with an argument for each dimension of the original matrix. Figure 20
illustrates the procedure for extracting a three-dimension matrix from a larger matrix starting
at row one and column two of the second plane.

UNCLASSIFIED
20

UNCLASSIFIED
DSTO-TN-1146

<variableDef name=”matrixMslice” varID=”matrixMsliceID”>
 <description>
 Extracting a three-dimensional [2,2,2] matrix from
 a larger matrix with dimension [4,4,3]
 </description>
 <dimensionDef>
 <dim>2</dim> <!-- Number of planes in the result matrix -->
 <dim>2</dim> <!-- Number of rows in the result matrix -->
 <dim>2</dim> <!-- Number of columns in the result matrix -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other=”mslice”/>
 <ci>matrixID</ci>
 <cn>2</cn> <!-- The 2nd plane of matrixID -->
 <cn>1</cn> <!-- Row number to start extraction -->
 <cn>2</cn> <!-- Column number to start extraction -->
 </apply>
 </math>
 </calculation>
</variableDef>

Figure 20: The syntax for extracting a matrix from a larger matrix

4.8 Unsupported Vector and Matrix Operators

The MathML Version 2.0 syntax does not include operators for computing the trace, adjoint or
rank of vectors or matrices. In addition, the syntax does not include operators for computing
the eigenvectors and the associated eigenvalues of a matrix, or populating larger vectors and
matrices using sub-vectors and matrices. The availability of these operators would assist the
task of defining dynamics system models within the DAVE-ML syntax.

A method of defining elements such as trace, adjoint, rank, eigenvectors, eigenvalues could be
introduced through a syntax that extends the MathML syntax. Alternatively, these elements
could be added to the DAVE-ML syntax. However, there is a preference within the DAVE-ML
community to keep the definition of mathematical operators separate from the definition of
variables and data structures. Future versions of the MathML syntax may include these
operators thereby alleviating the need to develop a separate syntax.

UNCLASSIFIED
21

UNCLASSIFIED
DSTO-TN-1146

5. Input Vector and Matrix Variables

This report defines a syntax enabling the management of data as vectors and matrices within
the DAVE-ML framework. Whilst not directly concerned with the syntax for defining vector
and matrix variables, the following recommendations are provided as guidance for interacting
with vector and matrix variables that are specified as inputs5.

a. If a vector or matrix variable is defined as an input variable, then an external
application should set that variable using a vector or matrix having the equivalent
number of entries.

b. The DAVE-ML syntax permits scalar input variables to be set using either the

initialValue attribute of the variableDef, or a scalar value from an external application,
which is then stored for future reference. The ability to initialise a vector or matrix by
setting the initialValue using a scalar value should be retained. The vector and matrix
syntax supports initialising a vector or matrix with a sequence of data via the array
sub-element. If the array sub-element is not specified then all entries in the vector or
matrix should be set to the scalar value assigned to the initialValue. Similarly, if an
external application sets the value of the vector or matrix using only a scalar, then all
entries of the variable should be set to that value.

c. When setting a matrix using a vector it should be assumed that the vector represents a

row of data for the matrix, and that all rows are set using the same data vector.

d. Setting large dimension matrices, greater than two-dimensional, using sub-matrices is
not recommended.

5 In DAVE-ML an input variable is indicated using the isInput sub-element when defining the
variableDef.

UNCLASSIFIED
22

UNCLASSIFIED
DSTO-TN-1146

6. Conclusion

DAVE-ML, together with the ANSI/AIAA-S119-2011 Flight Dynamic Model Exchange
Standard, provides a framework for encoding flight vehicle simulation data packages for
exchange between simulation applications and the long term storage of model data; however,
it only supports scalar time-independent data.

Syntax consistent with the DAVE-ML has been developed to manage data as vectors and n-
dimensional matrices. The syntax provides the capability to either directly encode data for a
vector or matrix based parameter, or compute the parameter using an algebraic equation. In
addition, it permits parameters having a common basis to be grouped in a simplified format,
and in doing so, improve the clarity of encoding data for aerospace vehicle models.

The vector and matrix syntax will enhance the ability of the DAVE-ML to encode entire flight
vehicle dynamic simulation models and their validation data, and simplify the exchange of
aerospace vehicle dynamic model data between simulation applications.

UNCLASSIFIED
23

UNCLASSIFIED
DSTO-TN-1146

UNCLASSIFIED
24

7. References

[1] Jackson, E.B, “Dynamic aerospace Vehicle Exchange Markup Language, (DAVE-ML)
Reference Version 2.0”, AIAA Modeling and Simulation Technical Committee,
https://info.aiaa.org/tac/ASG/MSTC, May, 2010.

[2]ANSI/AIAA-S119-2011 – Flight Dynamics Model Exchange Standard, American Institute
of Aeronautics and Astronautics, Reston, VA, USA.

[3] World Wide Web Consortium (W3C) “W3C Recommendation: Extensible Markup
Language (XML)”, http://www.w3.org/TR/xml/, 2008-11-26.

[4] World Wide Web Consortium (W3C) “Mathematical Markup Language (MathML)
Version 2.0 (Second Edition)”, http://www.w3.org/TR/MathML2/, 2003.

[5] John H. Hubbard, Barbara Burke Hubbard, Vector Calculus, Linear Algebra and
Differential Forms – A Unified Approach, Prentice Hall, New Jersey, 1999.

[6] Benjamin C. Kuo, Automatic Control Systems 5th Ed, Prentice Hall, New Jersey, 1987.

UNCLASSIFIED
DSTO-TN-1146

Appendix A: Examples

The examples presented in this Appendix supplement those presented previously in the body
of this report. They define vectors and matrices using the DAVE-ML syntax extensions, as
well as apply vector and matrix operations to compute new variables.

A.1 Example Scalar Variable Definitions

These scalar variable definitions are included here as they are used during the definition of
the vector and matrix examples.

<!-- ++
 Scalar Variable Definitions: (used by vector and matrix definitions)
 ++ -->

<!-- Inputs Variables -->
<variableDef name="fuelMass_kg" varID="fuelMass" units="kg"
 initialValue="1.0">
 <description>
 Represents a consumable fuel mass for the body
 </description>
 <isInput>
</variableDef>

<variableDef name="eulerInclinationAngle_rad"
 varID="eulerInclinationAngle"
 units="rad" initialValue="0.08726">
 <description>
 Represents the Euler inclination angle – Theta
 </description>
 <isInput>
</variableDef>

<variableDef name="eulerRollAngle_rad" varID="eulerRollAngle"
 units="rad" initialValue="0.52356">
 <description>
 Represents the Euler roll (bank) angle – Phi
 </description>
 <isInput>
</variableDef>

<variableDef name="eulerAzimuthAngle_rad" varID="eulerAzimuthAngle"
 units="rad" initialValue="0.052356">
 <description>
 Represents the Euler azimuth (yaw) angle – Psi
 </description>
 <isInput>
</variableDef>

UNCLASSIFIED
25

UNCLASSIFIED
DSTO-TN-1146

<!-- Internal Variables -->
<variableDef name="inertiaIXX_kgm2" varID="inertiaIXX" units="kgm2">
 <description>
 This represents the XX inertia of the body
 </description>
 <calculation>
 <math>
 <apply>
 <plus/>
 <apply>
 <times/>
 <cn>2000.0</cn>
 <ci>fuelMass_</ci>
 </apply>
 <cn>30000.0</cn>
 </apply>
 </math>
 </calculation>
</variableDef>

<variableDef name="inertiaIYY_kgm2" varID="inertiaIYY" units="kgm2">
 <description>
 This represents the YY inertia of the body
 </description>
 <calculation>
 <math>
 <apply>
 <plus/>
 <apply>
 <times/>
 <cn>200.0</cn>
 <ci>fuelMass_</ci>
 </apply>
 <cn>3000.0</cn>
 </apply>
 </math>
 </calculation>
</variableDef>

<variableDef name="inertiaIZZ_kgm2" varID="inertiaIZZ" units="kgm2">
 <description>
 This represents the ZZ inertia of the body
 </description>
 <calculation>
 <math>
 <apply>
 <plus/>
 <apply>
 <times/>
 <cn>400.0</cn>
 <ci>fuelMass_</ci>
 </apply>
 <cn>6000.0</cn>
 </apply>
 </math>
 </calculation>
</variableDef>

UNCLASSIFIED
26

UNCLASSIFIED
DSTO-TN-1146

<variableDef name="inertiaIXZ_kgm2" varID="inertiaIXZ"
 units="kgm2" initialValue="540.0">
 <description>
 This represents the XZ inertia of the body
 </description>
</variableDef>

<variableDef name="inertiaIXY_kgm2" varID="inertiaIXY"
 units="kgm2" initialValue="650.0">
 <description>
 This represents the XY inertia of the body
 </description>
</variableDef>

<variableDef name="inertiaIYZ_kgm2" varID="inertiaIYZ"
 units="kgm2" initialValue="2300.0">
 <description>
 This represents the YZ inertia of the body
 </description>
</variableDef>

A.2 Examples of Vector Variables Definitions

The following are sample vector variable definitions. The first is a vector of numeric values,
whilst the second is a vector containing references to variables that were previously defined. It
should also be noted that mixing numeric and reference entries is acceptable.

<!-- ++
 Vector Variable Definitions:
 ++ -->

<variableDef name="vector1_nd" varID="vector1" units="nd">
 <description>
 An example of encoding a vector of data in
 a DAVE-ML XML file.
 </description>
 <dimensionDef>
 3 <!-- Number of entries --> <dim> </dim>
 </dimensionDef>
 <array>
 <dataTable>1.0, 2.0, 3.0</dataTable>
 </array>
 <isOutput/>
</variableDef>

<variableDef name="eulerAngle_rad" varID="eulerAngles" units="rad">
 <description>
 An example of encoding a vector of references in
 a DAVE-ML XML file.
 </description>
 <dimensionRef dimID=”vector_3”>
 <array>
 <dataTable>

UNCLASSIFIED
27

UNCLASSIFIED
DSTO-TN-1146

 eulerAzimuthAngle,
 eulerInclinationAngle,
 eulerRollAngle,
 </dataTable>
 </array>
 <isOutput/>
</variableDef>

A.3 Examples of Matrix Variable Definitions

The following are sample matrix variable definitions. The first is a two-dimensional matrix of
numeric values, whilst the second is a matrix containing references to variables that were
previously defined. The second matrix represents the inertia tensor of a body. It should also
be noted that mixing numeric and reference entries is acceptable.

<!-- ++
 Matrix Variable Definitions:
 ++ -->

<!-- Internal Variable -->
<variableDef name="identityMatrix" varID="identityMatrix" units="">
 <description> An identity matrix. </description>
 <dimensionDef>
 <dim>3</dim> <!-- Number of rows -->
 <dim>3</dim> <!-- Number of columns -->
 </dimensionDef>
 <array>
 <dataTable>
 1.0, 0.0, 0.0, <!-- Row 1 -->
 0.0, 1.0, 0.0, <!-- Row 2 -->
 0.0, 0.0, 1.0, <!-- Row 3 -->
 </dataTable>
 </array>
</variableDef>

<!-- Output Variable -->
<variableDef name="inertiaTensor_kgm2" varID="inertiaTensor"
 units="kgm2">
 <description>
 An example of encoding a matrix of references in
 a DAVE-ML XML file.
 </description>
 <dimensionRef dimID=”matrix_3x3”>
 <array>
 <dataTable>
 inertiaIXX, -inertiaIXY, -inertiaIXZ, <!-- Row 1 IXX,-IXY,-IXZ -->
 -inertiaIXY, inertiaIYY, -inertiaIYZ, <!-- Row 2 -IXY,IYY,-IYZ -->
 -inertiaIXZ, -inertiaIYZ, inertiaIZZ, <!-- Row 3 -IXZ,-IYZ,IZZ -->
 </dataTable>
 </array>
 <isOutput/>
</variableDef>

UNCLASSIFIED
28

UNCLASSIFIED
DSTO-TN-1146

A.4 Examples of Vector and Matrix Operations

The following examples use MathML vector and matrix operators to compute new variables.
The examples include:

 computing the magnitude (or norm) of a vector,

 calculating the scalar (dot) and outer-products using the transpose MathML syntax,

 calculating the scalar product using the MathML syntax,

 using the inverse MathML syntax with the vector (cross) product to compute a vector,
in this case the Euler angle rates,

 calculating the determinant of a square matrix,

 and extraction of various components from a matrix

A.4.1 Vector Magnitude (Norm)

<!-- ++
 Norm Example:
 ++ -->

<variableDef name="normValue" varID="normValue" units="">
 <description>
 This represents the magnitude (or norm) of a vector, that is the
 square root of the sum of squares of the individual elements.
 It can be computed as:
 result = square root(dot(V1, V1)), or
 = square root(scalarproduct(V1, V1)) using the MathML tags
 For vector1, defined previously, the result would be the square root
 of 14, which is approximately equal to 3.74166
 </description>
 <calculation>
 <math>
 <apply>
 <root/>
 <apply>
 <scalarproduct/>
 <ci>vector1</ci>
 <ci>vector1</ci>
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

UNCLASSIFIED
29

UNCLASSIFIED
DSTO-TN-1146

A.4.2 Transpose Operator

<!-- ++
 Transpose Examples:
 ++ -->

<variableDef name="transposeToScalar" varID="transposeToScalar" units="">
 <description>
 This represents an example of using the transpose directive to
 form a scalar. It is equivalent to the scalar product of two vectors.

 vector1 : [3,1]; eulerAngles: [3,1]
 ~vector1: [1,3]; eulerAngles: [3,1]
 result = ~vector1 * eulerAngles: [1,1] (scalar)
 </description>
 <calculation>
 <math>
 <apply>
 <times/>
 <apply>
 <transpose/>
 <ci>vector1</ci>
 </apply>
 <ci>eulerAngles</ci>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

<variableDef name="transposeToMatrix" varID="transposeToMatrix" units="">
 <description>
 This represents an example of the transpose directive to form a
 matrix. It is equivalent to the 'outerproduct' of two vectors.

 vector1: [3,1]; eulerAngles: [3,1]
 vector1: [3,1]; ~eulerAngles: [1,3]
 result = vector1 * ~eulerAngles: [3,3]
 </description>
 <dimensionRef dimID=”matrix_3x3”>
 <calculation>
 <math>
 <apply>
 <times/>
 <ci>vector1</ci>
 <apply>
 <transpose/>
 <ci>eulerAngles</ci>
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

UNCLASSIFIED
30

UNCLASSIFIED
DSTO-TN-1146

A.4.3 Inverse and Vector-Product Operators

<!-- ++
 Inverse & Vector (Cross) product Examples:
 ++ -->

<variableDef name="eulerRates_rad_s" varID="eulerRates" units="rad_s">
 <description>
 This represents the calculation of the Euler rates from known
 angular velocities, the inertia tensor and the applied moments.
 result = !inertiaTensor *
 ((-angularVelocity X (inertiaTensor * angularVelocity)) +
 moment)

 MathML defines the cross product as the 'vectorproduct',
 which is the operator used in this example.
 </description>
 <dimensionDef>
 <dim>3</dim> <!-- Number of entries -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <times/>
 <apply>
 <inverse/>
 <ci>inertiaTensor</ci>
 </apply>
 <apply>
 <plus/>
 <apply>
 <vectorproduct/>
 <apply>
 <minus/>
 <ci>angularVelocity</ci>
 </apply>
 <apply>
 <times/>
 <ci>inertiaTensor ci> </
 <ci>angularVelocity</ci>
 </apply>
 </apply>
 <ci>moment</ci>
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

UNCLASSIFIED
31

UNCLASSIFIED
DSTO-TN-1146

A.4.4 Scalar-Product Operator

<!-- ++
 Scalar (Dot) Product Examples:
 ++ -->

<variableDef name="dotProduct" varID="dotProduct" units="">
 <description>
 This represents the calculation of the dot product of two vectors.
 The result is a scalar.
 MathML defines the dot product as the 'scalarproduct', which is the
 operator used in this example.
 </description>
 <calculation>
 <math>
 <apply>
 <scalarproduct/>
 <ci>vector1</ci>
 <ci>eulerAngles</ci>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

A.4.5 Determinant Operator

<!-- ++
 Determinant Examples:
 ++ -->

<variableDef name="determinantInertia" varID="determinantInertia"
 units="">
 <description>
 This represents the calculation of the determinate of a matrix.
 The matrix must be square to compute the determinant. The result
 is a scalar.
 </description>
 <calculation>
 <math>
 <apply>
 <determinant/>
 <ci>inertiaTensor</ci>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

UNCLASSIFIED
32

UNCLASSIFIED
DSTO-TN-1146

A.4.6 Selector Operator

<!-- ++
 Selector Examples:
 An extension to the MathML 'selector' operator has been developed. The examples
 shown here use the 'other' attribute to provide context for the 'selector' operator
 having entries of either:
 element : for the extraction of an entry,
 row : for the extraction of a row(s) from a matrix,
 column : for the extraction of a column(s) from a matrix,
 diag : for the extraction of a diagonal(s) vector from a matrix,
 mslice : for the extraction of a sub-matrix.

 The number of arguments that need to be set depends on the selection of the 'other'
 attribute and the dimension of the vector or matrix. The argument immediately after
 the 'selector' operator is the name of the vector or matrix from which data is to be extracted.
 The following arguments define the plane, row or column to be extracted, or where
 extraction starts.
 ++ -->

<!-- ++
 Extracting elements:
 ++ -->

<variableDef name="elementSelection" varID="elementSelection" units="">
 <description>
 This represents the process for extracting an entry from
 a vector or matrix. The result is a scalar.
 The entry extracted is [IYY].
 MathML numbers rows and columns of vectors and matrices from 1.
 Thus IYY is element [2,2]
 </description>
 <calculation>
 <math>
 <apply>
 <selector other="element"/>
 <ci>inertiaTensor</ci>
 <!-- Need one argument for each dimension of the matrix -->
 <cn>2</cn> <!-- Row number of entry -->
 <cn>2</cn> <!-- Column number of entry -->
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

UNCLASSIFIED
33

UNCLASSIFIED
DSTO-TN-1146

<!-- ++
 Extracting rows:
 ++ -->

<variableDef name="rowSelection" varID="rowSelection" units="">
 <description>
 This represents the process for extracting a row from a matrix.
 The result is a vector. The row extracted is [-IXZ, -IYZ, IZZ].
 MathML numbers rows and columns of vectors and matrices from 1.
 Thus the row is #3
 </description>
 <dimensionDef>
 <dim>3</dim> <!-- Number of entries in the resulting vector -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other="row"/>
 <ci>inertiaTensor</ci>
 <cn>3</cn> <!-- Row number to extract -->
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

<variableDef name="multiRowSelection" varID="multiRowSelection" units="">
 <description>
 This represents the process for extracting two rows from a matrix.
 </description>
 <dimensionDef>
 <dim>2</dim> <!-- Number of rows in resulting matrix -->
 <dim>3</dim> <!-- Number of columns in resulting matrix -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other="row"/>
 <apply> <!-- 1st row to extract -->
 <ci>inertiaTensor</ci>
 <cn>3</cn> <!-- Row number to extract -->
 </apply>
 <apply> <!-- 2nd row to extract -->
 <ci>inertiaTensor</ci>
 <cn>1</cn> <!-- Row number to extract -->
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

UNCLASSIFIED
34

UNCLASSIFIED
DSTO-TN-1146

<!-- ++
 Extracting columns:
 ++ -->

<variableDef name="columnSelection" varID="columnSelection" units="">
 <description>
 This represents the process for extracting a column from a matrix.
 The result is a vector. The column extracted is [-IXY, IYY, -IYZ].
 MathML numbers rows and columns of vectors and matrices from 1.
 Thus the column is #2
 </description>
 <dimensionDef>
 <dim>3</dim> <!-- Number of entries in the resulting vector -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other="column"/>
 <ci>inertiaTensor</ci>
 <cn>2</cn> <!-- Column number to extract -->
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

<variableDef name="multiColSelection" varID="multiColSelection" units="">
 <description>
 This represents the process for extracting two columns from a matrix.
 </description>
 <dimensionDef>
 <dim>3</dim> <!-- Number of rows in resulting matrix -->
 <dim>2</dim> <!-- Number of columns in resulting matrix -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other="column"/>
 <apply> <!-- 1st column to extract -->
 <ci>inertiaTensor</ci>
 <cn>1</cn> <!-- Column number to extract -->
 </apply>
 <apply> <!-- 2nd column to extract -->
 <ci>inertiaTensor</ci>
 <cn>3</cn> <!-- Column number to extract -->
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

UNCLASSIFIED
35

UNCLASSIFIED
DSTO-TN-1146

<!-- ++
 Extracting diagonals:
 ++ -->

<variableDef name="diagSelection" varID="diagSelection" units="">
 <description>
 This represents the process for extracting a planar diagonal
 from a matrix. The diagonal extracted is [IXX, IYY, IZZ].
 MathML numbers rows and columns of vectors and matrices from 1.
 The starting element in the matrix is [1,1]
 </description>
 <dimensionDef>
 <dim>3</dim> <!-- The number of entries in the resulting vector -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other="diag"/>
 <ci>inertiaTensor</ci>
 <cn>1</cn> <!-- Row number to start extraction -->
 <cn>1</cn> <!-- Column number to start extraction -->
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

<variableDef name="multiDiagSelection" varID="multiDiagSelection"
 units="">
 <description> This represents the process for extracting two
 diagonals from a matrix.
 </description>
 <dimensionDef>
 <dim>2</dim> <!-- Number of rows in resulting matrix -->
 <dim>2</dim> <!-- Number of columns in resulting matrix -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other="diag"/>
 <apply> <!-- 1st diagonal to extract -->
 <ci>inertiaTensor</ci>
 <cn>2</cn> <!-- Row number to start extraction -->
 <cn>1</cn> <!-- Column number to start extraction -->
 </apply>
 <apply> <!-- 2nd diagonal to extract -->
 <ci>inertiaTensor</ci>
 <cn>1</cn> <!-- Row number to start extraction -->
 <cn>2</cn> <!-- Column number to start extraction -->
 </apply>
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

UNCLASSIFIED
36

UNCLASSIFIED
DSTO-TN-1146

UNCLASSIFIED
37

<!-- ++
 Extracting a matrix:
 ++ -->

<variableDef name="matrixSlice" varID="matrixSlice" units="">
 <description>
 This represents the process for extracting a matrix from a matrix.
 The result is a matrix.
 The dimension of the extracted matrix is equal to or less than the
 dimension of the original matrix. The number of entries extracted
 in each dimension is defined by the dimensionDef properties for
 the sub-matrix.

 The element from which to start extracting the sub-matrix needs
 to be defined.

 The matrix extracted is [IXX, -IXY; -IXY, IYY].
 MathML numbers rows and columns of vectors and matrices from 1.
 The starting element in the matrix is [1,1],
 </description>
 <dimensionDef>
 <dim>2</dim> <!-- The number of rows in sub-matrix -->
 <dim>2</dim> <!-- The number of columns in sub-matrix -->
 </dimensionDef>
 <calculation>
 <math>
 <apply>
 <selector other="mslice"/>
 <ci>inertiaTensor</ci>
 <!-- Need one argument for the starting row of the matrix -->
 <!-- Need one argument for the starting column of the matrix -->
 <cn>1</cn> <!-- Row number to start extraction -->
 <cn>1</cn> <!-- Column number to start extraction -->
 </apply>
 </math>
 </calculation>
 <isOutput/>
</variableDef>

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)

2. TITLE

Vector and Matrix Variable Definitions in DAVE-ML

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

 Document (U)
 Title (U)
 Abstract (U)

4. AUTHOR(S)

Geoff Brian

5. CORPORATE AUTHOR

DSTO Defence Science and Technology Organisation
506 Lorimer St
Fishermans Bend Victoria 3207 Australia

6a. DSTO NUMBER
DSTO-TN-1146

6b. AR NUMBER
AR-015-431

6c. TYPE OF REPORT
Technical Note

7. DOCUMENT DATE
December 2012

8. FILE NUMBER
2011/1038268/1

9. TASK NUMBER
AVD-MSTS4

10. TASK SPONSOR
Chief, Air Vehicles
Division

11. NO. OF PAGES
37

12. NO. OF REFERENCES
6

13. DSTO Publications Repository

http://dspace.dsto.defence.gov.au/dspace/

14. RELEASE AUTHORITY

Chief, Air Vehicles Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Yes
18. DSTO RESEARCH LIBRARY THESAURUS http://web-vic.dsto.defence.gov.au/workareas/library/resources/dsto_thesaurus.shtml

Aerospace simulation, Modelling standards, Aircraft flight dynamics data exchange

19. ABSTRACT
The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a syntactical language for exchanging flight vehicle dynamic
model data. It has been developed in conjunction with the ANSI/AIAA S-119-2011 Flight Dynamics Model Exchange Standard prepared by
the American Institute of Astronautics and Aeronautics (AIAA) Modeling and Simulation Technical Committee (MSTC). The purpose of
DAVE-ML is to provide a framework to encode entire flight vehicle simulation data packages for exchange between simulation applications
and the long-term archiving of model data. This report documents an extension to DAVE-ML for managing data as vectors or n-dimensional
matrices. The attributes and dependencies of the additional DAVE-ML elements are discussed, and examples of encapsulating data as vectors
and matrices are provided.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Author
	Contents
	Abbreviations
	Nomenclature
	Acknowledgements
	1. Introduction
	2. Simulation Modelling using Vectors and Matrices
	3. Vector and Matrix Syntax Elements
	3.1 Supplementary Elements

	4. Computing Vectors and Matrices Using MathML
	4.1 Transpose
	4.2 Inverse
	4.3 Determinant
	4.4 Scalarproduct
	4.5 Vectorproduct
	4.6 Outerproduct
	4.7 Selector
	4.8 Unsupported Vector and Matrix Operators

	5. Input Vector and Matrix Variables
	6. Conclusion
	7. References
	Appendix A: Examples
	A.1 Example Scalar Variable Definitions
	A.2 Examples of Vector Variables Definitions
	A.3 Examples of Matrix Variable Definitions
	A.4 Examples of Vector and Matrix Operations

	DOCUMENT CONTROL DATA

