
UNCLASSIFIED

UNCLASSIFIED

Mobile Agents for Battlespace Information Exchange

Christos Sioutis and Yulin Ding

Air Operations Division
Defence Science and Technology Organisation

DSTO-TN-1179

ABSTRACT

This report provides an overview of Mobile Agent (MA) technology which is especially suited
for use in networks with ad-hoc connectivity and fluid topology. This is still very much the
case in Defence operations where consumer-level infrastructure is not available. The report
provides an overview of MA characteristics and follows with a description of the
implementation architecture of a specific MA framework. It then proposes their relevance in
application to battlespace information exchange.

RELEASE LIMITATION

Approved for public release

UNCLASSIFIED

UNCLASSIFIED

Published by

Air Operations Division
DSTO Defence Science and Technology Organisation
506 Lorimer St
Fishermans Bend, Victoria 3207 Australia

Telephone: 1300 DEFENCE
Fax: (03) 9626 7999

© Commonwealth of Australia 2013
AR-015-614
May 2013

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

UNCLASSIFIED

Mobile Agents for Battlespace Information Exchange

Executive Summary

An agent is an abstraction, or a concept that provides a convenient and powerful way
to describe a complex software entity that is capable of autonomously accomplishing
tasks on behalf of its owner. More specifically, a Mobile Agent (MA) is an agent which
is able to migrate (move) from one computer to another and to continue its execution
on the destination computer. MA technology was invented in a time when internet
connectivity was not constantly available. The general use case for using an MA is to
instantiate one, send it out to the world in order to achieve something and then
disconnect from the network. The MA returns with the results when the user
reconnects sometime in the future.

The research described in this report has been performed because in the current
Australian battlespace there is no fixed infrastructure for constant network
connectivity. Communication is typically ad-hoc, dropping in and out and with limited
bandwidth. As a result, many critical tasks are still performed on the radio with no
computer support. Other than a satellite link (which is only available to very few
platforms) there is only one other (non-voice) way for military aircraft to communicate
externally, a Tactical Data Link (TDL). TDLs have been around for many years and use
standards to provide communication between platforms via radio waves.

This report proposes that MA technology could provide a means to introduce new
information exchange paradigms and computer automation opportunities in the
battlespace. It is proposed that MAs could be used to traverse over a TDL in order to
achieve specific tasks like mission negotiation and remote data processing. Future
directions of this work would initially involve development (or enhancement) of a MA
context in order to make it able to interoperate with a TDL gateway. When this
capability is available it will become possible to conduct experimentation to identify
how MAs would be used to achieve the scenarios described in this report and/or other
scenarios identified in consultation with ADF stakeholders.

UNCLASSIFIED

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED

UNCLASSIFIED

Authors

Christos Sioutis
Air Operations Division

Dr Sioutis is a research scientist working in the Mission Systems
Integration branch of Air Operations Division at DSTO. He is
currently the Project S&T Advisor for JP2089 Ph3A (Tactical
Information Exchange Domain Infrastructure) and leading the
TDL research within AOD. Christos's research interests are
focused in the areas of software architectures and middleware,
artificial intelligence and tactical data links.

____________________ __

Yulin Ding
Air Operations Division

Yulin currently works on the Multi-TDL network and data link
team for JP2089 project. She has been working on areas related to
software architecture, simulation of data link and network
management, agent technology, Human Machine Interface (HMI)
and Service Oriented Architecture (SOA) in DSTO. Before joining
DSTO, she worked as a senior research associate at The University
of Adelaide. She has also worked in industry as a software
engineer. She obtained her PhD and masters by research degree in
computer science from University of Western Sydney and The
University of Sydney respectively. She also obtained a master’s
degree in computer application and bachelor’s degree in
management engineering in China. Her research interests include
software architecture and modelling, formal methods (model
checking, model update), applied mathematics (classic logic, set
theory, fuzzy logic, kinematics), mission system software
architecture, data link, network management, agent technology,
HMI and now SOA.

____________________ __

UNCLASSIFIED

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED

Contents

1. INTRODUCTION... 1
1.1 Relevance to Defence Operations.. 1

2. LITERATURE REVIEW ... 2
2.1 General Concepts.. 2
2.2 Security Considerations... 3
2.3 Applications in Network Management .. 4

3. IMPLEMENTATION OVERVIEW.. 5
3.1 Software Characteristics .. 5

3.1.1 Mobile Agent Elements .. 5
3.1.2 Execution Contexts.. 6
3.1.3 Transfer and Communication.. 6

3.2 Software Architecture .. 7
3.2.1 Core Constructs ... 8
3.2.1.1 Aglet Class.. 8
3.2.1.2 AgletProxy Interface ... 10
3.2.1.3 AgletContext Interface.. 10
3.2.2 Event Model ... 10

4. APPLICATION IN BATTLESPACE INFORMATION EXCHANGE 13
4.1 Mobility over Tactical Data Links ... 13

5. CONCLUSIONS AND FUTURE WORK ... 15

6. REFERENCES .. 16

UNCLASSIFIED

UNCLASSIFIED

This page is intentionally blank

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
1

1. Introduction

This report describes exploratory research conducted under DSTO Task CIO 07/042 Tactical
Information Exchange. The aim of this research is to investigate new technologies for realising
information exchange within constraints posed by the Australian battlespace environment.

Mobile Agent (MA) technology was invented in a time when the internet for the most part
was not always available; that is, people typically utilised slow dialup connections for a
limited time. It was envisaged that MAs could be created offline, populated with
data/instructions and “sent” to roam the internet when briefly connected. MAs would then
autonomously gather information and coordinate activities (e.g. meetings, e-commerce
transactions) on behalf of their owners. Sometime in the future owners would again connect
to the internet and their MAs would return with results from their instructions.

Research applications with MA technology have included [EAKC05] network monitoring and
management, information search and retrieval, integration with business services, intrusion
detection for security, telecommunications and the military. With the advent of broadband
communication (fixed and wireless) a typical consumer is now always connected to the
internet. This means that it has become possible for internet services and client applications to
assume or even require a constant internet connection which is especially prevalent with the
latest trends of cloud computing and mobile apps. Constant connectivity has reduced the
need and therefore research thrust behind MAs.

The research described in this report was performed because the military still work in
environments where there is no fixed infrastructure for constant network connectivity.
Communication is frequently ad-hoc, dropping in and out and with limited bandwidth. As a
result, many critical tasks are still performed on the radio with no computer support. This
report theorises that the current battlespace environment has very similar characteristics to the
pre-broadband consumer world. Consequently the application of technologies like MAs could
provide the means to introduce new information exchange paradigms and automation
opportunities.

1.1 Relevance to Defence Operations

In the current Australian battlespace environment there is no fixed infrastructure for constant
network connectivity. Communication is frequently ad-hoc, dropping in and out with a
limited bandwidth. As a result, many critical tasks are still performed on the radio with no
computer support. Approaches in bringing the cloud to the tactical edge [LEG11] have been
considered, these however pose high associated costs which are a roadblock against wide
implementation.

The battlespace environment has similar characteristics to the consumer pre-broadband
environment. Additionally, due to the stringent security requirements imposed in the
battlespace it is likely that this will remain the case for some time. Consequently the
application of technologies like MAs could provide a means to introduce new information
exchange paradigms and automation opportunities. That is at least until innovations allow for

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
2

the battlespace environment to catch up to today’s consumer world in terms of network
connectivity and bandwidth.

2. Literature Review

An Agent as an abstraction or a concept provides a convenient and powerful way to describe
a complex software entity that is capable of autonomously accomplishing tasks on behalf of its
owner. Agents are typically designed in terms of their desired behaviours as opposed to their
methods and attributes. Being autonomous implies that they can operate without direct
human (or other) intervention or guidance [WOO92]. Agents perform a service by either being
reactive (ie. responding to changes in their environment) or proactive (ie. seeking to fulfil
goals) [CZ98]. Finally, agents have social ability which means they are able to communicate
and coordinate with other agents in order to achieve a given task. Depending on their
intended application the following types of agents have been identified:

 intelligent agents: exhibiting aspects of artificial intelligence theories such as learning
and reasoning,

 swarms: utilising large numbers of simple agents where the desired behaviour is
achieved collectively, and

 mobile agents: agents that can relocate their execution onto different hosts.

2.1 General Concepts

An MA is a composition of computer software and data which is able to migrate (move) from
one computer to another and to continue its execution on the destination computer. MAs are
able to decide when and where to move. MA implementations need to comprise a life-cycle
model, a computational model, a security model, a communication model and a navigation
model. MAs are required to be implemented over a mobility framework that supports agent-
related functions and additionally provide facilities for storage and retrieval of agents,
instantiation, transfer and method invocation [BPL98].

Portability is fundamental because MAs should be able to move in heterogeneous networks
between machines with different operating systems and hardware architectures in order to be
really useful. In [BR05], characteristics of MAs are described as:

 MAs are typically used in wide area and heterogeneous networks in which no
assumptions can be made concerning either the reliability of the connected computers
or the security of the network connections.

 The MAs migration is initiated by the agent itself, in contrast to other systems where
migration is initiated by the underlying operating system or middleware.

 Migration of MAs is performed to access resources available at other computers in the
network.

 MAs are able to migrate more than once (ie. multi-hop ability). After an MA has
visited the first host, it may choose to migrate further to other hosts to continue its
task.

An attempt was made by the Mobile Agent System Interoperability Facility (MASIF) to
standardise the definitions and interfaces of MA frameworks. They are defined using the

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
3

Interface Definition Language (IDL) and utilise the Common Object Request Broker
Architecture (CORBA) standards. MASIF defines two interfaces MAFAgentSystem for MA
management tasks and MAFFinder for MA discovery [MAL98].

AN MA framework is required to provide the programming constructs and also a multi-
threaded execution environment which allows multiple MAs to be hosted and executed in
parallel. The framework must control their execution and protect the underlying operating
system and other services from unauthorized access. The major technical advantages of MAs
are [BR05]:

Delegation of tasks: Instead of using computer systems as interactive tools that are able to

work only under direct control by a user, autonomous MAs aim at undertaking entire
tasks and working without constant control. As a result, the user can devote time and
attention to other more important things.

Asynchronous processing: Once MAs have been initialized and set up for a specific task, they

physically leave their owner’s computer system and from then on migrate freely
through a network. Only for this first migration must a network connection be
established. This is more stable than a client-server architecture due to the
independence from network connectivity.

Adaptable service interfaces: MAs can offer a chance to design a client driven interface that is

optimized for the client user. The complex and user-driven interactions can then be
translated into straight forward comprehensive requests with remote services.

Transfer of algorithms/behaviour: Instead of sending unprocessed data and making multiple

requests, only MAs are transmitted. MAs encapsulate the required
algorithms/behaviour to be performed remotely and only carry the associated results
back. This reduces network traffic and saves time when operating on networks with
high-latency and low bandwidth if the MA code is smaller than the data that must be
processed.

2.2 Security Considerations

Security is a major concern when dealing with MAs from three perspectives. Firstly, MA hosts
effectively hand over execution rights to a foreign program with unknown behaviours.
Secondly, due to the fact that MAs are fully transferred to remote hosts they also offer
themselves to the mercy of that host (e.g. they could be forcibly suspended and their contents
inspected). Finally, the nature of MA systems encourages interaction which introduces a risk
of malicious MAs hacking into other MAs whilst communicating. Some specific
considerations in regards to security are [BR05]:

Authenticity: This is a major requirement and the foundation of many security solutions. It

demands that each MA is able to prove their identity. Similarly, MAs must authenticate
on each host in order to decide whether the MA is trusted.

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
4

Confidentiality: This demands that information contained within MAs is protected against
unauthorised access. An example of this problem is when an MA is performing
information gathering. At each stop the MA may be gathering confidential information
which cannot be revealed to other hosts.

Integrity: This is necessary in order to ensure that information contained within an MA has

not been modified at some point in time without detection. For example, on
instantiation an MA could be provided with an itinerary of hosts it needs to visit. This
itinerary must not be able to be changed otherwise the MA could be made to visit
arbitrary hosts.

Accountability: This requires hosts and/or MAs to maintain a record of actions performed

during a visit. If accountability is not maintained it becomes possible for MAs to take
actions and to deny the responsibility of their effects.

Availability: This ensures that access to services required by MAs cannot be forcibly

restrained. Conversely, it guarantees reliable and prompt access to data and resources
for authorized MAs. Examples include malicious MAs causing problems to other MAs
in a host and/or a malicious host refusing to let an MA migrate out of it.

Anonymity: This is the antithesis of authenticity however it is required in certain applications

where hosts offer limited services to unauthenticated MAs. In such cases the owners of
MAs may also wish to remain anonymous.

2.3 Applications in Network Management

Much of the research effort in MA technology occurred nearly a decade ago which was a
booming time for the area. More recent research in MAs is combined with newer technologies
such as web services [NG11] and distributed systems integration [SJ02].

Several groups have focused on the applicability of MAs for network management tasks.
[RD99, RAL02, RAL03] described a network management system based on MAs. The authors
compared the MA paradigm with client-server based approaches for typical management
tasks, with regards to performance and network load. The response time results showed that
MAs are less sensitive to the latency and the bandwidth of a bottleneck link that connects the
management station to the managed hosts, but was more influenced by the task to be
performed. In addition, the MA paradigm performed well depending on the following factors:
a) the number of messages that traverse the bottleneck link, b) the incremental size of the MAs
when returning to the management station after visiting a fixed number of nodes.

[KAL97] presented a design and implementation of an Intelligent Mobile Agent (IMA)
framework for distributed network management. The authors delegated part of the
management responsibility to the managed entity and used the response time as a measure to
compare the performance of the MAs. The performance results indicated a significant
improvement in response time for the tasks performed by the managed entity. When the

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
5

number of nodes was greater, the MA response time decreased compared to traditional
methods like that of the Simple Network Management Protocol (SNMP).

[GAL99] presented a secure and fault tolerant management framework based on MAs, which
addresses the limitations of traditional centralised network management by introducing two
efficient, lightweight polling modes. Results indicate a significant improvement in both
response time and traffic overhead when comparing the introduced polling modes to
traditional centralised polling. The choice of transport protocol used for MA transfers has
proven a critical factor regarding the polling modes’ performance.

In [BAL05] the authors designed a two level architecture where MA-based servers within a
sub-network were allowed to build and evolve the logical network dynamically. MAs enlisted
at a central server called domain manager which was responsible for coordinating
connectivity. The major usage of this approach was an enhanced ability to recover from failure
situations. Specifically, if the connection to the domain manager was broken a new one was
automatically elected. The author used the same toolkit as in [BR05] to implement its
behaviour.

3. Implementation Overview

3.1 Software Characteristics

There are two kinds of mobility: strong and weak mobility. Both strong and weak mobility
involve the transferring the MA’s runtime information and execution code. Additionally, strong
mobility includes the MA’s execution information. The practical difference between the two is
that with weak mobility execution effectively restarts and program flow always begins from a
defined entry point method. Conversely strong mobility allows an MA to continue processing
exactly from where it left off. Strong mobility is similar in concept to an operating system
context switch where the execution information of a process (e.g. stack, program counter,
registers) is stored such that the process can be resumed at the next scheduled slot.

3.1.1 Mobile Agent Elements

An MA has five basic elements [LO98]:

State: The state is defined as the runtime information gathered whilst an MA is executing. The

state is what makes an MA unique with respect to other MAs as it encodes experiences
from its travels.

Implementation: The business logic or instructions/code that the MA executes. This needs to

be executable on all hosts that the MA visits. The easiest way to achieve this is to utilise
scripting or interpreted languages that provide hardware abstraction (e.g. a virtual
machine). Use of traditional programming languages which compile code down to
specific assembly instructions are not preferred because it requires MAs to be locked
down to a specific hardware architecture and set of supporting runtime libraries.

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
6

Interface: This exposes a set of methods which can be signalled by other MAs in order to
communicate. The specific infrastructure and protocol used for communication depends
on the chosen framework. It is preferred however that communication is based on an
open standard like CORBA or Knowledge Query Manipulation Language (KQML),
which allows MAs implemented through frameworks from different vendors to
communicate.

Identifier: This provides a means to specifically identify an MA. When the MA identifier is

coupled with a directory service (e.g. CORBA Name Service) then a specific MA can be
contacted whilst located anywhere on a network.

Principals: This provides metadata that is specific to an MA instance. Examples include: the

MA’s implementation framework vendor and version; the owner of the MA (ie. the
person/system who instantiated it); its purpose for instantiation.

3.1.2 Execution Contexts

The execution contexts are used to host MAs. They provide a means to instantiate new MAs as
well as send and receive other MAs. They have four elements [LO98]:

Engine: The engine is vendor specific and has two main responsibilities. First, it provides the

necessary resources required for MAs to execute effectively. Second, it provides
safeguards to ensure MAs are hosted without compromising other operations and/or
security.

Resources: An MA is instantiated by assigning certain resources to it. At the very least this

includes allocations of memory to load and CPU time to execute. Additional resources
include access to local data and/or network communication.

Location: This provides the concept of a uniquely addressable identifier of a context which

MAs can travel to. One of the biggest advantages of mobile MAs comes from the fact
that not all locations must be contactable from every other location. An MA will search
the network of hosts until it finds one where its target destination is directly contactable.

Principals: Similarly to MAs, contexts can be populated with metadata that describe

additional information. One example is the owner of the hosts upon which the context is
available.

3.1.3 Transfer and Communication

A key feature provided by MA frameworks is the necessary processing and communication
required for MAs to transfer between different hosts. The transfer process has multiple steps
as shown below, items shown in bold are performed by the MA whilst the remaining items
are performed by the supporting framework:

Suspend Serialise Encode Transfer Decode De-serialise Resume

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
7

The transfer process can be initiated by the MA itself or another entity within the network.
Firstly, the MA is notified that the transfer process has been initiated and it is given the choice
to deny the transfer or to continue with it. If the MA chooses to continue with the transfer it
secondly performs any required processing to prepare for the transfer and suspends its
execution, at this point the host context takes over. The MA is thirdly serialised into a
persistent byte representation that can be stored and/or transferred. The serialised data are
subsequently segmented into chunks, encoded within the required transport protocol and
transferred over the network. Once the MA arrives at its destination the new context
assembles the data, decodes it into its original form, de-serialises the MA then loads it into
memory. Finally, the context adds the MA into its processing schedule and begins executing it
when the CPU becomes available. In addition to transfer, MAs are able to communicate over
the network. Communication in this context is simply an MA remotely calling a method from
another MA’s interface. The following types of communication operations can be used
depending on the desired effect:

Synchronous: This is used when the MA needs to know if communication has succeeded. The

calling operation blocks until a response is received. The response itself can simply be
an indication that the communication has successfully completed at which point the
MA’s processing continues.

Asynchronous: This is used when the MA does not need to know if communication was

successfully achieved. This type of communication is best suited for high volume
periodic communication. That is, repeatedly sending updated data (e.g. monitoring a
sensor) whereby such data becomes obsolete at the next update sent shortly afterwards.

Multi-point: This is a special case of asynchronous communication where the MA sends out a

single message which is simultaneously received by multiple receivers. This approach is
more efficient in comparison to sending a message to each MA individually.

3.2 Software Architecture

This section describes the software architecture of the Aglets [LO98] MA framework which is
written in Java. It has been selected for this research because it provides a full working
implementation and is open source.

The Aglets name is a composite word from agent and applet. This provides a hint to the fact
that Aglets are designed based on the principles of Java applets. On reflection one can deduce
that applets provide many of the features of MAs. This is true, except that applets provide a
generic way for executing Java code on remote clients within very strict security restrictions.
Aglets provides specific functionality and security functions specifically designed for MA
applications. The Aglets framework was originally developed by IBM as a proprietary
research system. It was subsequently made open source. Development had stagnated since

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
8

2002 with version 2.0.2 but has resumed in 2012 with version 2.5. The following sections detail
our view of the Aglets architecture as described by Lange and Oshima [LO98].

One of the drawbacks in using Java as the language for a building an MA framework is that
the JVM does not allow an application to explicitly access its runtime data (e.g. processing
stack) and hence it becomes impossible to obtain the full execution state of an MA. Therefore,
Aglets can offer only weak mobility whereby execution is restarted rather than resumed after
every transfer. Another drawback is a lack of resource control by the JVM which means that
MAs could potentially consume all host resources.

3.2.1 Core Constructs

The Aglets framework makes extensive use of the observer/listener pattern [GHJV95]. This is
a software design pattern in which one software object maintains a list of other observer
objects and notifies them about specified events during execution through calling one of their
methods. These methods, termed callbacks, are typically pre-specified in an abstract listener
interface. Applications provide object adaptors that implement the listener interface. By
convention callback names typically begin with an “on” or “handle”. For example,
Aglet.onCreation is called when an MA is first created.

3.2.1.1 Aglet Class

A MA is defined by extending the Aglet class and building upon its methods. Code Listing 1
lists the commonly used subset of these methods. The Aglet.onCreation and
Aglet.onDisposing callbacks are used for initialisation and destruction respectively. The
Aglet.run() method is the execution entry point and should contain the main instructions
that the MA performs. Other methods are provided for accessing elements of the MA’s
runtime infrastructure, dispatching custom events, receiving messages, as well as managing
adapter objects for persistency, cloning and mobility.

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

public class Aglet {
 //lifecycle callbacks
 void onCreation(Object init)
 void onDisposing()

 //runtime callbacks
 void run()
 boolean handleMessage(Message message)

 //runtime methods
 AgletContext getAgletContext()
 AgletProxy getProxy()
 void dispatchEvent(AgletEvent ev)

 //listener management methods
 void addPersistencyListener(PersistencyListener listener)
 void removePersistencyListener(PersistencyListener listener)
 void addCloneListener(CloneListener listener)
 void removeCloneListener(CloneListener listener)
 void addMobilityListener(MobilityListener listener)
 void removeMobilityListener(MobilityListener listener)
}

Code Listing 1: Aglet class

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

public interface AgletProxy {
 //lifecycle methods
 void activate()
 Object clone()
 void deactivate(long duration)
 void dispose()

 //mobility methods
 AgletProxy dispatch(Ticket ticket)
 String getAddress()

 //aglet inspection methods
 Aglet getAglet()
 String getAgletClassName()
 AgletID GetAgletID()
 AgletInfo getAgletInfo()
 boolean isActive()
 boolean isRemote()
 boolean isState(int type)
 boolean isValid()

 //communication methods
 Object sendMessage(Message msg)
 void sendOnewayMessage(Message msg) //async
 FutureReply sendFutureMessage(Message msg)
}

Code Listing 2: AgletProxy Interface

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
10

3.2.1.2 AgletProxy Interface

As shown in Code Listing 2, the AgletProxy interface provides lifecycle methods; mobility
methods; inspection methods and communication methods. MAs are required to use the
AgletProxy interface instead of directly accessing objects in memory; there are two reasons
for this:

a) It provides a security layer whereby all accesses are consulted against a security
management service to ensure that they are allowable.

b) It keeps track of the MA as it migrates around the network and consequently offers
location transparency. When an MA is located on a remote host the proxy will forward
requests and return the result over the network.

MAs communicate by exchanging Message objects which are sent using the AgletProxy
interface. The AgletProxy.sendMessage() method implements synchronous
communication as described in section 3.1.3. MA execution halts at this point until a response
is received. On the other side the MA receives a Aglet.handleMessage() callback with the
relevant message. The return value of this callback is a Boolean that indicates if the message
was successfully handled.

Conversely, the methods AgletProxy.sendOnewayMessage() and AgletProxy.
sendFutureMessage()are used to send messages asynchronously allowing the originating
MA to continue execution. The latter method utilises a FutureReply object which is filled
out by the remote MA sometime in the future and is returned to the originating MA with the
result upon request.

3.2.1.3 AgletContext Interface

The context is a special software container where MAs can be created, execute and be
disposed. Moving MAs hence means transferring them between contexts. The
AgletContext interface, shown in Code Listing 3, provides ways for MAs to query
information about the context they are operating within; modify aspects of the context; obtain
proxies to other MAs; and even to create new MAs.

3.2.2 Event Model

Aglets employs an event model to notify MAs when certain things have occurred. MAs can
make use of the event model by overriding the relevant callback methods with new
implementations. The Aglet class itself provides lifecycle callbacks whilst cloning, mobility
and persistence callbacks are provided by listener interfaces as shown in Code Listing 4. MAs
keep track of their state through handling different combinations of the event model callbacks
as described as follows.

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

public interface AgletContext {
 //context inspection methods
 void addContextListener(ContextListener listener)
 void removeContextListener(ContextListener listener)
 URL getHostingURL()
 String getName()
 void setProperty(String key, Object value)
 Object getProperty(String key)

 //aglet control methods
 AgletProxy createAglet(URL codeBase, String code, Object init)
 Enumeration getAgletProxies()
 AgletProxy getAgletProxy(AgletID id)
 ReplySet multicastMessage(Message msg)
 AgletProxy retractAglet(URL url, AgletID aid)
}

Code Listing 3: AgletContext Interface

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

public interface CloneListener {
 void onClone(CloneEvent event)
 void onCloning(CloneEvent event)
 void onCloned(CloneEvent event)
}

public interface MobilityListener {
 void onDispatching(MobilityEvent event)
 void onArrival(MobilityEvent event)
 void onReverting(MobilityEvent event)
}

public interface PersistenceListener {
 void onActivation(PersistencyEvent event)
 void onDeactivation(PersistencyEvent event)
}

Code Listing 4: Event Model Listener Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

EnterpriseQueryAdaptor implements MobilityListener {
 onArrival() {
 if(localContext.equals(EnterpriseContext)){
 getAgletContext().getEnterpriseHandle().performSomeQuery()
 dispatch(MyContext)
 } else {
 getAgletContext().getMyApplicationHandle().notifyResults()
 dispose()
 }
 }
}

MyAglet extends Aglet {
 onCreation(){
 addMobilityListener(new EnterpriseQueryAdaptor)
 dispatch(EnterpriseContext)
 }
}

Code Listing 5: Enterprise Query Pseudocode

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
12

Creation
 External application (or another MA) calls AgletContext.createAglet()
 MA constructor is called on instantiation
 New MA receives callback Aglet.onCreation()
 New MA receives callback Aglet.run() to start normal execution

Disposal

 MA calls AgletProxy.dispose() on its proxy
 MA receives callback Aglet.onDispose() to perform final processing
 Execution is halted
 MA is destroyed

Cloning

 MA calls AgletProxy.clone()
 MA receives callback CloneListener.onCloning() when about to be cloned
 Framework clones the MA
 Original MA receives callback CloneListener.onCloned()
 Clone of MA receives callback CloneListener.onClone()

Persistence

 MA calls AgletProxy.deactivate()
 MA receives callback PersistenceListener.onDeactivation()
 Framework deactivates the MA and stores it
 Another MA or application calls AgletProxy.activate()
 Frameworks retrieves MA from storage and activates it
 MA receives callback PersistenceListener.onActivation()

Mobility

 MA calls AgletProxy.dispatch() with required destination context
 MA receives callback MobilityListener.onDispatching() when about to be

transferred
 Framework transfers the MA
 MA receives callback MobilityListener.onArrival() when instantiated in

remote host context
 MA receives callback Aglet.run()to resume execution

The pseudo-code shown in Code Listing 5 illustrates how an MA is implemented that travels
to a remote context in order to query an enterprise system and then returns to provide the
result. A specific point of interest is that MA does not make use of the run() method because
it does not perform any persistent processing.

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
13

4. Application in Battlespace Information Exchange

MA technology has already been considered as one option to enhance the utility of systems
that enable network-centric warfare [CER01]. The vision in this case is that MAs are used to
provide assistance in command and control, intelligence acquisition and tactical information
dissemination. MAs could potentially switch their operating context from a real-time tactical
domain (ie. troops, planes and ships) to the Web/enterprise domain (ie. command centres,
enterprise facilities). Example scenarios of this include:

Tactical domain: A troop party on the ground can instantiate an MA and push it to a nearby

aircraft/UAV. The MA would make its way to a distant ship and/or command centre to
exchange information about the mission progress. It would then return to its owner to
report any new information and/or updated mission parameters.

Enterprise domain: Upon detection of an unknown entity a tactical aircraft can instantiate an

MA and send it to a command centre with access to enterprise military intelligence
systems. The MA could exchange information with other MAs and collectively perform
a range of queries on intelligence databases in order to identify the unknown entity. The
MA would then return to the originating aircraft and offer its new information for
fusion into the mission system.

4.1 Mobility over Tactical Data Links

The enterprise domain example in the previous section mentions a tactical aircraft sending
and receiving MAs. For this to occur there must be some sort of connectivity between aircraft
and/or the ground. Other than a satellite link (which is only available to very few platforms)
there is only one other way at present for military aircraft to communicate externally; a
Tactical Data Link (TDL). TDLs have been around for many years and provide
communication between platforms via radio waves.

The most widely used TDL for military aircraft currently is Link 16 (L16). One of the
limitations of L16 is that due to the frequencies it uses for transmissions its range is limited to
within Line-Of-Sight (LOS) between platforms. This limitation requires that some platforms
must be configured to provide a relay function in order to establish end-to-end connectivity.
Such platforms will effectively re-transmit information they receive therefore pushing it
further along the network.

A mock-up example of a L16 network is illustrated in Figure 1. The icons illustrate platform
locations of which the shape indicates their environment. It is important to also understand
that the network topology is not static. As aircraft and ships move around at different speeds
the topology and hence connectivity of the network will constantly change. L16 will
automatically maintain a cohesive network as long as all platforms are within LOS of their
neighbour. It is also possible for the network to be segmented if a relay platform drops out
until it reconnects and/or another platform takes its place.

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
14

Figure 1: Mock-up of a Link 16 Tactical Data Link Network

(a) Mobile Agent Traversal

 (b) Information Gathering

(c) Remote Data Processing

(d) Mission Negotiation

Figure 2: Mobile Agents through Tactical Data Links

aircraft
ship
ground station

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
15

L16 information is encoded into a number of fixed (J-series) messages which are broadly
grouped based on their function, for example: Participant Location and Identification,
Surveillance, Command & Control. Of particular interest in this context is a message called
J28.2-FreeText. This is a variable length message which does not have a predefined structure.
The payload of this message is simply a sequence of octets. It is proposed that MAs could be
encoded into a String and transmitted through L16 using such messages. Figure 2 provides a
number of examples of how MAs could be envisaged to operate over a L16 network. The red
dots illustrate MAs instantiated within platforms and the red arrows illustrate the path MAs
have followed within the network.

Mobile Agent Traversal: Illustrates three instantiated MAs, two of which have moved

through the network and are executing on remote platforms.

Information Gathering: Illustrates an information gathering example. The ground node has

instantiated an MA and sent it out into the network with the goal to execute on each and
every platform in order to gather specific information from the operators of each
platform.

Remote Data Processing: Illustrates a scenario whereby the ground station has access to a

number of high-speed data feeds from relevant enterprise systems. One of the tactical
platforms requires some information and sends an MA over to the ground station in
order to query the enterprise data feeds and to consolidate the required information.
The MA then returns and provides the results.

Mission Negotiation: The last example illustrates a scenario where there is a need to update

mission parameters. In this case the ground station provides a meeting place for MAs to
converge and engage with the mission commander on how to proceed sharing any
relevant information. The MAs could then return and provide the updated mission
parameters to each platform.

5. Conclusions and Future Work

The MA technology was specifically designed for achieving tasks over networks with low
bandwidth ad-hoc connectivity. A general use case for using an MA is to configure one
offline, send it out to achieve something when briefly connected and obtain the results
sometime in the future. It is proposed that MAs could be used to traverse over a L16 TDL in
order to achieve specific tasks like mission negotiation and remote data processing.
Implementing MAs requires heavy use of an underlying framework to provide specialised
resources and functions as well as events to notify MAs as they encounter different situations.
Future directions of this work would initially involve development (or enhancement) of an
MA context in order to make it able to interoperate with a L16 TDL gateway. When this
capability is available it will become possible to conduct experimentation to identify how MAs
would be used to achieve the TDL scenarios described in this report and/or other scenarios
identified in consultation with ADF stakeholders.

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
16

6. References

[BAL05] Peter Braun et al. (2005). Multi-agent approach to management a network of mobile agent
servers. Informatica 29(2005) 111-121.

[BPL98] Andrzej Bieszczad, Bernard Pagurek and Tony White. (1998). Mobile agents for network
management. IEEE communications surveys, Vol. 1 No.1.

[BR05] Peter Braun and Wilhelm Rossak. (2005). Mobile Agents—Basic concepts, Mobility models
& the Tracy toolkit. Elsevier Inc. Pp.441.

[CER01] Marion Ceruti (2011), Mobile Agents in Network-Centric Warfare, IEICE Transactions on
Communications, Vol.E84-B No.10.

[CZ98] William R Cockayne and Michael Zyda. (1998) Mobile Agents. Manning Publications.
Manning publications. Pp.312

[EAKC05] Mohamad Eid, Hassan Artail, Ayman Kayssi, and Ali Chehab (2005). Trends in
mobile agent application. Journal of Re-search and Practice in Information Technology,
37(4).

[GAL99] D. Gavalas, D. Greenwood, M. Ghanbari and M. O'Mahony. (1999). Using Mobile
Agents for Distributed Network Performance Management, In Proc.of the 3rd International
Workshop on Intelligent Agents for Telecommunication Applications (IATA'99), LNCS
Vol. 1699, Springer-Verlag, Albayrak, S. (Ed.), Pp. 99-115, Stockholm, Sweden, 9-11
August 1999. [LEG11] Mary Legere (2011), Land ISRNet Path to Network Centric Warfare,
presented at Network Centric Warfare Conference, Canberra.

[GHJV95] E. Gemma, R. Helm, R. Johnson, R. Vlissides (1995), Design Patterns, elements of
reusable software architecture, Addison Wesley, Massachusetts.

[KAL97] Hosoon Ku, Gottfried W.R.Luderer and Baranitharan Subbiah. (1997). An Intelligent
Mobile Agent Framework for Distributed Network Management, In proc. Of Global
Telecommunications Conference (GLOBECOM’97). Vol.1 Pp.160-164. IEEE

[LO98] Danny Lange and Mitsuru Oshima (1998), Programming and Deploying Java Mobile
Aglets with Aglets, Addison Wesley Longman, Massachusetts.

[MAL98] D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, K. Kosaka, D.
Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White. MASIF: The
OMG Mobile Agent System Interoperability Facility. In Proceedings of the Second
International Workshop on Mobile Agents, volume 1477 of Lecture Notes in Computer
Science, pages 50–67, Stuttgart, Germany, September 1998. Springer-Verlag.

[NG11] Mydhili K. Nair and V. Gopalakrishna. (2011). Applying Web Services With Mobile
Agents for Computer Network Management. International journal of computer networks
and communications (IJCNC) Vol.3 No.2, Pp.125-143, March, 2011

[RAL02] Marcelo G. Rubinstein et al. (2002). Evaluating the performance of a network management
application based on mobile agents. In proc. Of the 2nd International IFIP-TC6 Networking
conference: Networking Technologies, Services, and Protocols, Performance of
Computer and Communication Networks and Mobile and Wireless Communications
(Networking 2002), Pisa Italy, Vol. 2345 Pp.515-526. Springer0Verlag.

[RAL03] Marcelo G. Rubinstein et al. Scalability of a network management application based on
mobile agents. Journal of Communication and Networks, IEEE/Korean Institute of
Communications Science (KICS), 5(3):240-248.

UNCLASSIFIED
DSTO-TN-1179

UNCLASSIFIED
17

[RD99] Marcelo G. Rubinstein & Otto C. M. B. Duarte. (1999). Evaluating tradeoffs of mobile
agents in network management. Networking and Information Systems Journal. 2(2):237-
252.

[SJ02] Nils P. Sudmann & Dag Johansen. (2002). Software deployment using mobile agents. In
procs. Of IFIP/ACM Working conference on component deployment (CD 2002), Berlin
Germany. Vol. 2370 Pp.97-107. Springer-Verlag.

[WOO92] Michael Wooldridge. (1992). The Logical Modelling of Computational Multi-agent
Systems. Ph.D Thesis, The University of Manchester

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. PRIVACY MARKING/CAVEAT (OF DOCUMENT)

2. TITLE

Mobile Agents for Battlespace Information Exchange

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

 Document (U)
 Title (U)
 Abstract (U)

4. AUTHOR(S)

Christos Sioutis and Yulin Ding

5. CORPORATE AUTHOR

DSTO Defence Science and Technology Organisation
506 Lorimer St
Fishermans Bend Victoria 3207 Australia

6a. DSTO NUMBER
DSTO-TN-1179

6b. AR NUMBER
AR-015-612

6c. TYPE OF REPORT
Technical Note

7. DOCUMENT DATE
May 2013

8. FILE NUMBER
2012/1227872/1

9. TASK NUMBER
CIO 07/042

10. TASK SPONSOR
A/DGEA (CIO)

11. NO. OF PAGES
17

12. NO. OF REFERENCES
17

DSTO Publications Repository

http://dspace.dsto.defence.gov.au/dspace/

14. RELEASE AUTHORITY

Chief, Air Operations Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Yes
18. DSTO RESEARCH LIBRARY THESAURUS

Agents, Tactical Data Links, Information.

19. ABSTRACT

This report provides an overview of Mobile Agent (MA) technology which is especially suited for use in
networks with ad-hoc connectivity and fluid topology. This is still very much the case in Defence operations
where consumer-level infrastructure is not available. The report provides an overview of MA characteristics
and follows with a description of the implementation architecture of a specific MA framework. It then
proposes their relevance in application to battlespace information exchange.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Authors
	Contents
	1. Introduction
	1.1 Relevance to Defence Operations

	2. Literature Review
	2.1 General Concepts
	2.2 Security Considerations
	2.3 Applications in Network Management

	3. Implementation Overview
	3.1 Software Characteristics
	3.2 Software Architecture

	4. Application in Battlespace Information Exchange
	4.1 Mobility over Tactical Data Links

	5. Conclusions and Future Work
	6. References
	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

