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ABSTRACT

This report presents a hybrid method for simulating sequences of correlated Gamma
random variables for modelling sea clutter, using a combination of linear and/or non-
linear transforms. Depending on the shape parameter, this method minimises the
use of non-linear transformations. Mathematically the method is simpler than its
counterpart methods which leads to a quicker simulation run time. Two memoryless
non-linear transform (MNLT) approaches are also studied with comparative results
showing that the hybrid approach is more computationally efficient and slightly more
accurate for low shape parameters. The drawback of the proposed method is, however,
that it can only handle positive correlations whilst the two MNLT methods are capable
of handling both positive and negative correlations.
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Generating Correlated Gamma Sequences for Sea-Clutter Simulation

Executive Summary

To support the Generic Phased Array Radar Modelling (GPARM) simulation program of the De-
fence Science and Technology Organisation (DSTO), which in turn supports many Australian
defence programs including SEA1448 (ANZAC ASMD), AIR7000 (future maritime patrol and
response capability) and AIR5077 (Wedgetail), this report proposes a hybrid method and exam-
ines other existing methods for simulating sequences of correlated random variables with a Gamma
distribution.

Radar sea-clutter is a dominant undesired signal seriously affecting radar performance over
the sea surface. It is now widely accepted that in most scenarios, radar sea-clutter can be modelled
as a compound non-Gaussian random process. One of the most popular is the compound K-
distribution which consists of two parts: a fast-varying component representing sea-clutter speckle
which is modelled as a complex Gaussian with zero mean and unit variance and a slowly-varying
component which is Gamma distributed and represents the underlying sea-clutter intensity. These
two components are assumed to be mutually independent.

Depending on radar parameters and sea surface conditions, each component of the received
sea-clutter may be correlated and appropriate correlation models should be included in the simu-
lation. For K-distributed sea-clutter, methods for simulating both correlated Gaussian and Gamma
processes are required. Simulation of the former process is straightforward and can be realised
by a linear transform using either spherically invariant random processes (SIRP) or Fourier syn-
thesis. The advantage of the linear transform is that the desired correlation properties are easily
maintained. However, simulation of the correlated Gamma distribution is more difficult and may
require application of the so-called memoryless non-linear transform (MNLT) to generate the de-
sired correlation.

This report proposes a hybrid method for simulating sequences of correlated Gamma random
variables. The approach depends on both the desired shape parameter and in some cases the
correlation coefficient. For most distributions with a shape parameter greater than 0.5, the method
only requires linear transforms to generate the desired Gamma correlation. However in other cases,
such as when the shape parameter is less than 0.5, the method requires the MNLT to achieve the
desired correlation. The MLNT technique proposed in this report is different from its counterparts.
Compared to the other methods, the proposed one is mathematically simpler making its numerical
implementation easier and more computationally efficient. The drawback is, however, that it can
only handle positive correlation coefficients.

Two implementations of the MNLT are also examined and evaluated in this report. The first
directly implements the numerical integration described by Tough and Ward, while the second is
a polynomial auto-correlation method extended from the former by Weinberg and Gunn. Results
for the former have a high level of accuracy and speed due to the optimised code. The latter also
performs reasonably well except for small shape parameters less than 0.3. Whilst these methods
are much more complex then the hybrid method, they are able to handle negative correlation coef-
ficients. A comparison between methods shows that the hybrid method has a reduced simulation
run time and provides slightly higher accuracy in generating the desired correlated sequences,
particularly for small shape values.
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Another contribution in this report is the provision of criteria for realisable correlation func-
tions. It is shown that not every correlation function can be simulated but only those that have a
positive semi-definite or positive definite covariance matrix.

This report serves as a detailed reference for computer programmers and research scientists
who want to implement correlated Gamma processes to simulate distributions such as the K-
distribution.
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1 Introduction

The compound K-distribution is often used to model radar sea-clutter. It consists of a fast-varying
component representing sea-clutter speckle that is modelled as a Gaussian process with zero mean
and unit variance and a slowly-varying component representing fluctuation of the underlying sea-
clutter intensity that is Gamma distributed.

Depending on radar parameters and sea surface conditions, the received sea-clutter may be cor-
related, with each of the two components making contributions to the correlation. Using a pulsed
Doppler radar, the received sea-clutter data in a coherent processing interval (CPI) is in general a
two-dimensional data-set1 (time-range or Doppler-range). The temporal correlation refers to the
correlation between pulses separated in time, while the spatial correlation refers to the correlation
between range bins. The definition and calculation of both the temporal and spatial correlations is
given in Appendix A.

Methods for simulating correlated K-distributed sea-clutter are a highly relevant topic for the
radar community. Since the fast-varying component is Gaussian distributed, simulating its cor-
relation is relatively easy using the well-established spherically invariant random process (SIRP)
[Rangaswamy, Weiner & Ozturk 1993, Antipov 1998]. On the contrary, the simulation of cor-
related non-Gaussian processes is not straightforward. Methods for simulating these stochastic
processes can be classified into two categories. The first uses the SIRP formulation [Rangaswamy,
Weiner & Ozturk 1993] and requires the processes to be linearly transformable from the Gaussian
process. To implement, a linear transform relationship is first established between the desired and
Gaussian distributions and then the correlation of the desired distribution is mapped onto the cor-
relation of the Gaussian process. The correlated Gaussian process is then realised through SIRP
before being transformed back to the desired distribution. Since the linear transform maintains the
correlation properties, SIRP can achieve a high level of accuracy. However, only a few random
stochastic processes can be linearly connected to the Gaussian process.

The generation of correlated Gamma random fields via SIRP theory is examined in [Conte
et al. 1991, Armstrong & Griffiths 1991]. In these papers, the Gamma random process is ex-
pressed as a sum of Gaussian processes when the Gamma shape parameter ν has special values.
The method of [Conte et al. 1991] shows that the Gamma distribution, in the range of 0 < ν ≤ 2,
closely resembles a Gaussian process and hence the correlated Gamma with a shape parame-
ter in that range can be produced via SIRP. On the other hand, the method of [Armstrong &
Griffiths 1991] only considers a special correlation case where the correlation follows a geometric
progression (i.e., the correlation coefficients form a geometric sequence) for ν, having values of
ν = 0.5n where n is a natural number.

The second category of methods for simulating correlated random stochastic processes is the
memoryless non-linear transformation (MNLT). This method is examined extensively in [Tough
& Ward 1999] for simulating different correlated non-Gaussian variates including Gamma. The
difficulty of the MNLT lies in the non-linear mapping of the auto-correlation of the output (the
desired non-Gaussian process) to the auto-correlation of the input (the Gaussian process).

This report proposes a hybrid method for simulating correlated Gamma random variables. The
approach depends on both the desired shape parameter and in some cases the correlation coeffi-
cient. For most distributions with a shape parameter greater than 0.5, the method only requires

1It can be three-dimensional if radar has a multi-channel receiver.
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linear transforms of SIRP to generate the desired Gamma correlation. However in other cases,
such as when the shape parameter is less than 0.5, the method requires the MNLT to achieve the
desired correlation.

Two implementations of the MNLT are also examined and evaluated in this report. The first
directly implements the approximation of the non-linear mapping described in [Tough & Ward
1999]. This method is referred to as the MNLT with numerical integration. The second method is
described in [Weinberg & Gunn 2011a] and extends this method with a polynomial approximation
to allow near optimal control between the input and output processes. This method is referred to
as the MNLT with polynomial approximation.

The report is organised as follows. In Section 2, the proposed hybrid method for simulating
correlated Gamma random variables is described. The method extends those of [Conte et al. 1991,
Armstrong & Griffiths 1991] to enable an arbitrary shape parameter to be obtained through SIRP
for most cases. Details of the two MNLT methods are then briefly described in Section 3 with
evaluation and comparison of the three methods presented in Section 4.
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2 The Hybrid Method

A random variable Z is said to have a Gamma distribution if it has a probability distribution
function (PDF) of,

pZ(z) =


1

γ(ν)θν
zv−1 exp

(
−z
θ

)
, z > 0,

0 z < 0,
(1)

where γ(ν) = (ν − 1)! is the Gamma function. The above Gamma distribution is commonly
denoted by Z ∼ Γ(ν, θ), where ν is the shape parameter and θ the scale parameter. It is known
that the Gamma distribution has the following property:

Lemma 1: If Zk ∼ Γ(νk, θ) for k = 1, . . .K (i.e., all have the same scale parameter, but may
have different shape parameters), and all Zk are mutually independent, then

∑K
k=1 Zk ∼ Γ (ν, θ),

where ν =
∑K

k=1 νk.

Lemma 1 only requires that Zk are mutually independent and not whether sequences of Zk
are auto-correlated. Consider samples of the random process Zk taken at intervals t = n∆t

where 1/∆t is the sampling rate. A discrete sequence is defined by zk[n] ∼ Γ (ν, θ) where n
is a natural number. The following two properties reveal the relationship between Gamma and
Gaussian processes and thus SIRP can be established from Gaussian to Gamma.

Property 1: If X is a real Gaussian variable, X ∼ N(0, θ/2), then its intensity Z = |X|2 has a
Gamma distribution of Z ∼ Γ(0.5, θ).

Property 2: If X is a complex Gaussian variable, X ∼ CN(0, θ), then its intensity Z has a
Gamma distribution of Z ∼ Γ(1, θ).

Strictly speaking, sea-clutter in general is not a wide-sense stationary (WSS) process. However,
the correlation of the Gamma can be assumed stationary. The goal of the hybrid method is to
generate a sequence z[n] that has a Γ (ν, θ) distribution and a correlation coefficient ρk given by,

ρk =
E{z[n]z[n+ k]} − z̄2

var(z)
k = 0, 1, . . . and ρ−k = ρk. (2)

where var(z) is the variance of z. The relationship between the covariance E{(z[n] − z̄)(z[n +
k] − z̄)} and the correlation coefficient ρk is governed by (1). Since z[n] is Gamma distributed,
as Z ∼ Γ(v, θ), z̄ = vθ, z2 = v θ2 + v2θ2 and var(z) = vθ2, then ρ0 = 1 and |ρk| ≤ 1 for
k > 0. Note that if the correlated Gamma is formed by linear correlated Gaussian processes, the
lowest bound of ρk achievable is inherently 0 which means E{z[n]z[n + k]} ≥ E2{z[n]}. This
will become clear in the next subsection2.

The approach of the hybrid method utilises these properties to efficiently produce the corre-
lated random sequence. The exact approach depends on both the desired shape parameter and
in some cases the correlation coefficient. For most distributions with a shape parameter greater
than 0.5, the method only requires linear transforms of SIRP or Fourier synthesis to generate the
desired correlation. However in other cases, such as when the shape parameter is less than 0.5, the
method requires the MNLT to achieve the desired correlation. The following three cases describe
this in more detail.

2However, if correlated Gamma is formed by the MNLT methods discussed in Section 3, E{z[n]z[n + k]} <
E2{z[n]} and ρk < 0 is achievable.
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2.1 Case I – Shape parameter to be an integer

The first case considers an integer shape parameter. With this restriction, the method of [Armstrong
& Griffiths 1991] first introduced the transform between a correlated Gaussian and correlated
Gamma. However, their method only considered the case of geometrical correlation. In this
section, the linear method is extended to include any realisable correlation function but limited to
ρk ≥ 0. The criteria for realisable correlations are given in Subsection 4.1.

Since sequences with different scale parameters can be obtained by re-scaling3, θ ≡ 1 in the
following discussions. For the special case of ν = 1, Z ∼ Γ(1, 1) and the sequence of z[n] is
found by z[n] = |x[n]|2, where x[n] is a sequence of the Gaussian process and X ∼ CN(0, 1).
Therefore,

〈z[n]z[n+ k]〉 = 〈x[n]x∗[n]x[n+ k]x∗[n+ k]〉 (3)

where the superscript * denotes complex conjugate. Since x[n] is a complex Gaussian, the ex-
pectation of the right side of (3) can be found by employing Isserlis’s theorem [Michalowicz
et al. 2009], giving,

〈x[n]x∗[n]x[n+ k]x∗[n+ k]〉 =
〈
|x|2
〉2

+ |〈x[n]x∗[n+ k]〉|2 . (4)

Because
〈
|x|2
〉2

= z̄2 and |〈x[n]x∗[n+ k]〉|2 ≥ 0, this results in 〈z[n]z[n+ k]〉 ≥ z̄2 if the real-

isation of z[n] is through z[n] = |x[n]|2. Therefore, regardless of the correlation of the Gaussian
〈x[n]x∗[n+ k]〉, ρk ≥ 0 is the lowest bound of correlation coefficient achievable for Z ∼ Γ(1, 1)
if its realisation is formed by taking the intensity of correlated Gaussian X ∼ CN(0, 1). It can
be seen that by taking the intensity of a Gaussian variable to form a Gamma variable inherently
limits the low bound of the correlation coefficient ρ. The correlation of Gaussian is,

〈x[n]x∗[n+ k]〉 = ±
(
〈z[n]z[n+ k]〉 − z̄2

)1/2
= ± (ρkvar(z))1/2 , k = 0, 1, . . . . (5)

Because ρkvar(z) ≥ 0, its square root is a non-negative real number. If x = [x[1], x[2], . . .]T

is a column vector, where the superscript T denotes transpose, then

E
{
xxH

}
= Mx, (6)

where Mx is the covariance matrix of x and the superscript H denotes the Hermitian transpose.
According to the assumptions of stationarity and symmetry, Mx has a Toeplitz structure, with el-
ements given by (5), i.e., Mx(n, k) =

(
ρ|n−k|

)1/2 (since var(z) = 1 for Z ∼ Γ(1, 1)). According
to SIRP, let,

x = M1/2
x u (7)

where U ∼ CN(0, 1) is an uncorrelated Gaussian process. After obtaining the correlated x and
applying the square-law to each element, the sequence (or the column vector) of
z =

[
|x[1]|2, |x[2]|2, . . .

]T then has the desired correlation of,

E
{

(z− z̄)(z− z̄)T
}

= var(z) Mz (8)

3i.e., if Z ∼ Γ(ν, 1), then θZ ∼ Γ(ν, θ).
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where Mz = Toeplitz(ρ), i.e., Mz(n, k) = ρ|n−k|, which is the same as the desired correlation in
(2).

The above correlated Gaussian sequences can also be obtained through Fourier synthesis
[Ward, Tough & Watts 2006, Section 5.4]. The application of a filter h to a white Gaussian noise
process u(t) gives,

x(t) =

∫ ∞
−∞

h(t′)u(t′)dt′. (9)

In the frequency domain, the above equation is written as,

X(f) = H(f)U(f) (10)

where U(f) is still a Gaussian process. On the other hand, according to the Wiener-Khinchin
theorem [Haykin 2007, Chapter 2], the power spectrum density (PSD) of the correlated signal
x(t) is,

Sxx(f) =

∫ ∞
−∞

RG(t′)e−j2πft
′
dt′ (11)

where RG(t) is the auto-correlation function of x(t). Selecting H(f) =
√
Sxx(f), the Fourier

inversion of X(f) = H(f)U(f) will then result in a correlated Gaussian process x(t) with the
desired correlation RG(t).

The advantage of the Fourier synthesis against SIRP is that the Fourier transform in the numer-
ical simulation can be realised through the fast Fourier transform (FFT) and hence significantly
improves the computational efficiency. In this report, the hybrid method will use the Fourier syn-
thesis instead of SIRP to generate correlated Gaussian sequences.

If ν = m > 1, where m is an integer, Lemma 1 can be utilised to repeatedly generate xk,
k = 1, . . . ,m. The result z[n] =

∑m
k=1 |xk[n]|2 will then have a Γ(m, 1) distribution with the

desired correlation.

2.2 Case II – Shape parameter to be an integer plus 0.5

If the shape parameter has a value of ν = m + 0.5, where m ≥ 0 is an integer, the sequence xk
is repeatedly generated for k = 1, . . . ,m+ 1. The result z[n] =

∑m
k=1 |xk[n]|2 + Re2 (xm+1[n])

will then have a Γ(m + 0.5, 1) distribution with the desired correlation (according to Lemma 1
and Properties 1 and 2).

2.3 Case III – Shape parameter to be an arbitrary number

If the shape parameter takes an arbitrary value, ν = ν0 + ∆ν, where ν0 = m + 0.5β, m ≥ 0 is
an integer, β = 0 or 1 and 0 < ∆ν < 0.5. Two sequences, y[n] and ∆y[n] can then be simulated
with respective shape values ν0 and ∆ν so their summation produces a sequence with the desired
shape and correlation.

UNCLASSIFIED 5
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The goal of the hybrid method is to use linear transforms whenever possible to generate the
sequences of random variables. The criteria for whether the linear method will work is determined
by 0 ≤ ηk ≤ 1 where ηk and ρk are related by,

ηk =

{
1 k = 0
ρkν/ν0 k 6= 0

, (12)

with the correlation coefficient ηk of the sequence y[n] given by,

ηk =
〈y[n]y[n+ k]〉 − ȳ2

var(y)
k = 0, 1, . . . . (13)

If this relationship is valid, the hybrid method uses the Fourier synthesis method to simulate the
desired sequence. On the other hand, it is possible that this relationship will not be satisfied and a
MNLT technique must be employed. Each case can be summarised by three steps:

Linear Case

Step 1: If the relationship in (12) is satisfied, generate a correlated Gamma sequence of Y ∼
Γ(ν0, 1) which has a correlation coefficient of ηk.

Step 2: Generate an uncorrelated Gamma sequence of ∆Y ∼ Γ(∆ν, 1). Since the sequence
is uncorrelated, the generation of such a sequence is easy to implement by simply using
either the existing function in MATLAB , gamrnd, or other MNLT methods [Ahrens &
Dieter 1974].

Step 3: Combine the correlated sequence with Γ(ν0, 1) distribution and the uncorrelated sequence
with Γ(∆ν, 1) distribution to produce z[n] = y[n] + ∆y[n] with distribution Γ(ν, 1).

To see how the aggregate correlation of 〈(y[n] + ∆y[n]) (y[n+ k] + ∆y[n+ k])〉 is equal
to the correlation of 〈z[n]z[n+ k]〉, notice that the sequence y[n] is correlated whereas
the sequence of ∆y[n] is uncorrelated and the two sequences are mutually independent.
Equation (13) then becomes,

ηk =
ρkvar(z) + z̄2 − 2∆ȳȳ − ȳ2 − 〈∆y[n]∆y[n+ k]〉

var(y)
, (14)

where var(z) = νθ2, z̄ = νθ, ∆ȳ = ∆νθ, ȳ = ν0θ, var(y) = ν0θ
2 and

〈∆y[n]∆y[n+ k]〉 =

{
∆νθ2 + ∆ν2θ2 k = 0
∆ν2θ2 k 6= 0

. (15)

Inserting these values in (14) results in (12).

MNLT Case

Step 1: If the relationship in (12) is not satisfied, generate a correlated Gamma sequence of Y ∼
Γ(ν0, 1) which has a correlation coefficient of ρk.

Step 2: Generate a correlated Gamma sequence of ∆Y ∼ Γ(∆ν, 1) using the MNLT method
described in Section 2.4.

Step 3: Combine the correlated sequence with Γ(ν0, 1) distribution and the correlated sequence
with Γ(∆ν, 1) distribution to produce z[n] = y[n] + ∆y[n] with distribution Γ(ν, 1).

6 UNCLASSIFIED
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2.4 A MNLT technique for shape parameter 0 < ∆ν < 0.5

As mentioned previously, not every case of correlated Gamma can be tackled by the Linear method
and the MNLT must be used instead. This subsection introduces a MNLT technique specially
designed for tackling the case of 0 < ∆ν < 0.5.

The MNLT is a one-to-one non-linear mapping from a known random process (not necessarily
Gaussian) to another random process with a desired density function. Supposing a random process
y[n] has a known PDF pY (y). The MNLT uses this PDF to generate a random process ∆y[n] with
a desired PDF p∆Y (∆y). This may be realised by the mapping of,∫ ∞

∆y[n]
p∆Y (∆y′)d∆y′ =

∫ ∞
y[n]

pY (y′)dy′ n = 1, 2, . . . . (16)

In principle, the MNLT method can be used to generate any non-Gaussian process. In the
following discussion however, the method is limited by using the correlated Γ(1, 1) distribution to
generate a Γ(∆ν, 1) distribution with the same correlation.

Using the linear transform given in the previous section, a sequence y[n] is first generated,
(note Y ∼ Γ(1, 1)) with a desired correlation coefficient of ρk. The one-to-one non-linear mapping
of (16) is then used to produce the corresponding ∆y[n], with a PDF of Γ(∆ν, 1). This is done by
equating their complementary distribution functions (CDF) described in (16) giving,

1

γ(∆ν)
γI (∆ν,∆y[n]) = exp (−y[n]) , n = 1, 2, . . . (17)

where γI(a, b) is the upper incomplete Gamma function, defined as,

γI(a, b) =

∫ ∞
b

ta−1e−tdt. (18)

For a Gamma distribution with an integer shape parameter, or an integer plus 0.5, the corre-
lation given by (5) is independent of the shape parameter. In another words, the linear transform
does not change the correlation. According to our simulation however, it was found that the MNLT
of (17) does slightly alter the correlation. As a consequence, while the correlation of y[n] has the
desired values, after the non-linear transform, the correlation of ∆y[n] will have slightly differ-
ent values. A rigid mathematical trace of how the correlation is being changed through the above
MNLT is difficult and hence an empirical formula is introduced to maintain the desired correlation.

Consider the example of generating a random process ∆y[n] using the MNLT of (17) with
the mapping seeds of y[n]. The former has a Γ(∆ν, 1) distribution with a correlation coefficient
of ρk, and the latter has a Γ(1, 1) distribution with a correlation coefficient of ψk. The empirical
relationship between ρk and ψk is given by,

ψk = ρ
(∆ν+0.5)0.3

k , k = 0, 1, . . . for 0 < ∆ν < 0.5 (19)

and is a function of both ρk and ∆ν. The transformation from ρk to ψk is minor as shown in Figure
1. When ∆ν approaches 0.5, ψ and ρ are identical, since the transform from Γ(1, 1) to Γ(0.5, 1)
is linear.

UNCLASSIFIED 7
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Figure 1: The relationship between ρ and ψ

2.5 Overview of the Hybrid Method

In summary, the proposed hybrid method for simulating correlated Gamma sequences primarily
depends on the shape parameter and may depend on the correlation coefficient. It is summarised
by the following three cases:

Case I If ν = integer, generate the desired correlated Gamma using the linear Fourier method;

Case II If ν = integer + 0.5, generate the desired correlated Gamma using the linear method;

Case III If ν is an arbitrary number, let ν = ν0 + ∆ν, where 0 < ∆ν < 0.5 and ν0 is an integer
or an integer plus 0.5.

• If 0 ≤ ρkν/ν0 ≤ 1 is satisfied, generate a correlated Gamma of shape ν0 with the
correlation of (13) following cases I or II. Generate a second uncorrelated Gamma
sequence with shape ∆ν and sum the two sequences.

• If the check fails, generate a correlated Gamma of shape ν0 with the correlation of
ρk following cases I or II. Generate a second correlated sequence using the MNLT
technique described in Subsection 2.4 to generate a correlated Gamma with shape ∆ν.
Sum the two sequences together.

Therefore, it can be seen that the generation of correlated Gamma only requires linear transform of
Gaussian process for the majority of cases to efficiently produce the correlated random sequences.

8 UNCLASSIFIED
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3 Simulation with Memoryless Non-Linear Transform

The concept of MNLT described in (16) is a non-linear mapping from a known random stochastic
process (input) to an unknown one (output) by equating their CDF’s. If Ξ denotes the desired
random process, then its relation to the Gaussian process X (its intensity is an Exponential distri-
bution), is given by,∫ ∞

ξ
pΞ(ξ′)dξ′ =

1√
2π

∫ ∞
x

exp

(
−x
′2

2

)
dx′ =

1

2
erfc

(
x√
2

)
, (20)

where pΞ is the PDF of Ξ. The reason to often choose a Gaussian process as the input, is that
its correlation can be readily realised through SIRP or Fourier synthesis. The difficulty of MNLT
for correlated processes is that the mapping of the correlation is also non-linear. In particular, the
realisation of a correlated Gamma needs to first transfer the correlation of the Gamma into the
correlation of a Gaussian. The technique for manipulating the transform of the output correlation
back to the input can result in different approaches for the MNLT. In this section, two approaches
are presented. The first is based on using numerical integration and the other employs inverted
polynomials to map the correlation of the output to the correlation of the input.

3.1 MNLT Approach I – Numerical Integration

This approach was first described in [Tough & Ward 1999] and expanded in more detail in Chap-
ter 5 of [Ward, Tough & Watts 2006]. The first step of the approach is to use Fourier synthesis to
produce correlated sequences of random numbers with a Gaussian distribution. The real and imag-
inary parts of the inverse Fourier transform provide separate realisations of the complex Gaussian
process. The MNLT which maps the input Gaussian random variables to the output non-Gaussian
random variables is via (20) and can be written as,

ξ(x) = Qdist

(
erfc

(
x√
2

)
/2

)
, (21)

where the function Qdist is the complementary quantile function for the output distribution and
erfc(·) is the complementary error function. Rapid evaluation of this function is essential for prac-
tical implementation of the method. For the Gamma distribution, Qdist is the inverse incomplete
Gamma function. An efficient algorithm for this function was developed and implemented in For-
tran by DiDonato & Morris [1986]. The Fortran code and a C translation, is available on the web
as part of the Cumulative Distribution Function Library (CDFLIB) [Venier & Serachitopol 2003].
The C code has been compiled as a Mex file for MATLAB by Davidson [2011] as part of his Radar
Toolbox. Two special cases are implemented with MATLAB intrinsic functions: the Exponential
distribution (ν = 1), where Qdist(u) = −log(u), and the Chi-square distribution (ν = 1/2),
where Qdist(u) = erfcinv2(u) and erfcinv(·) is the inverse complementary error function.

The desired correlation function for the output non-Gaussian process must be mapped to the
correlation function for the input Gaussian process. The construction of this mapping is described
in Section 5.6 of [Ward, Tough & Watts 2006]. It requires the evaluation of integrals in the form
of [Tough & Ward 1999],

〈ξ(0)ξ(t)〉 =
1

π

∞∑
p=0

RG(t)p

2pp!

∫ ∞
−∞

exp
(
−x′2

)
Hp(x

′)Qdist

(
erfc(x′)

2

)
dx′, (22)
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where RG(t) = 〈x(0)x(t)〉 /
〈
x2
〉

is the correlation coefficient of x(t) (note x is real and X ∼
N(0, 1)) and Hp(·) is the Hermite polynomial of order p. The Hermite polynomial coefficients
are obtained with the function HermitePoly written by David Terr, found on MATLAB Central
[Terr 2004]. The integrals are evaluated with 12 point Gauss-Hermite integration, using the func-
tion GaussHermite, which is a MATLAB translation of the Fortran function hermite.f90
by Miller [2010].

The advantage of this MNLT is that Gamma sequences with ρ(t) < 0 can be simulated, though
the correlation is still be bounded to the condition given in Subsection 4.1. According to Chapter
5 of [Ward, Tough & Watts 2006], for the case of ν = 1, (22) reduces to,

〈ξ(0)ξ(t)〉 ≈ 1 + 0.816RG(t) + 0.177RG(t)2 + 0.0067RG(t)3

+0.00013RG(t)4 + 0.000017RG(t)5.
(23)

This means that a Gamma process with a correlation ρ(t) < 0 can be simulated by choosing a
proper RG(t) < 0.

3.2 MNLT Approach II - Polynomial Approximation

When the MNLT converts a correlated Gaussian process into a new process with desired marginal
distributions, the new process is also correlated, but not through the same auto-covariance function
as the Gaussian process. It is in fact related to the Gaussians auto-covariance by a non-linear map-
ping. In a practical situation, a process with a given auto-covariance function would be specified.
It is shown that by using an appropriate inversion method, the correlation of the Gaussian can be
obtained with the desired correlation for the new process [Weinberg & Gunn 2011a].

As mentioned, the MNLT method is an extension of the CDF inversion method with which
a single random variable can be generated. For a given continuous random variable, inverting its
CDF, and evaluating it on uniformly distributed random numbers between 0 and 1, will generate
sequences distributed from the original random variable. This can be used to very easily produce
independent samples. To extend this to the generation of correlated random samples, it is required
that if X1 and X2 are two random variables, with distribution functions FX1 and FX2 respectively,
then the random variable

F−1
X2

(FX1(X1)) ∼ X2. (24)

The validity of this result is discussed in [Weinberg & Gunn 2011a]. Equation (24) is the key
to generating correlated realisations of a random process. This can be seen by defining a function
ξ(x) = F−1

X2
(FX1(x)) and observing that if x is a realisation of random variable X1, then ξ(x) is

a realisation of random variable X2.

Consider a wide sense stationary stochastic process ζ(t) evolving over time t, with correlation
function Rζ(τ) = IE(ζ(0)ζ(τ)), and each ζ(t) ∼ X1. This can be transformed to produce a new
stochastic process θ(t) = ξ(ζ(t)), which will be distributed according to X2 pointwise. However,
this new process will have a correlation function Rθ(τ) = κ(Rζ(τ)), where κ(·) is a non-linear
function.

The advantage of this is that any random variable X2 can be generated from any X1. If X1

is used to generate a correlated Gaussian sequence which is then transformed into a sequence
of random variables with the desired marginal statistical distribution using the function ξ. The
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resulting sequence will then consist of dependent realisations. Due to the non-linear nature of ξ,
the output sequence will not necessarily have the same correlation properties as the Gaussian input
process. Consequently, the relationship between input and output auto-covariance functions is
examined in detail in [Tough & Ward 1999]. In particular, if the Gaussian process auto-covariance
is denoted RG, and the desired correlated process has auto-covariance Rout, then (22) can be
written as,

Rout(t) =
∞∑
p=0

(RG(t))p

2pp!
a2
p, (25)

with the coefficients ap given by

ap =
1√
π

∫ ∞
−∞

e−x
2
Hp(x)ξ(

√
2x)dx. (26)

The relationship (25) would be more useful if it could be inverted, to specify the Gaussian auto-
covariance necessary to generate a desired auto-covariance in the output process. Some simple
examples where this relationship can be inverted are considered in [Tough & Ward 1999].

This issue is addressed in detail in the report [Weinberg & Gunn 2011a]. In particular, a
polynomial approximation to (25) is derived, which is inverted and scaled, and consequently used
to determine an appropriate Gaussian input process. As an example, four terms were manually
calculated, resulting in a polynomial approximation of,

RG(p) ≈ 1
b1

(Rout(p)− b0)

− b2
b31

(Rout(p)− b0)2

−
(
b3
b41
− 2b22

b51

)
(Rout(p)− b0)3

−
(
b4
b51
− 5b2b3

b61
+

5b32
b71

)
(Rout(p)− b0)4 ,

(27)

where bp = a2
p/(2

pp!).

This has been found to work well in a number of cases considered. Furthermore, the validity
of this polynomial approximation has been examined in [Weinberg & Gunn 2011b]. In terms
of practical simulation of desired correlated processes, it has been reported that the success of
this approach can vary greatly. According to our simulation, it has been found that the approach
produces poor results for the correlated Gamma with small shape parameters, ν < 0.3. This may
be due to the size of the polynomial used for the approximation. Further investigation is required
for this case.
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4 Examples and Comparisons

A number of different methods have been described for simulating correlated Gamma random
variables. Correlation, however, has its own physical and mathematical constraints which have not
been discussed. Section 4.1 presents two constraints to ensure that a given correlation function is
mathematically (and possibly physically) realisable. Two examples of applying the hybrid method
are then presented in Section 4.2. A performance comparison of the methods is then given in
Section 4.3. Finally, a description of how the hybrid method can be used to simulate K-distributed
data is given in Section 4.4.

4.1 Realisable Correlation Functions

This section presents two constraints which are required to ensure that a correlation functions is
realisable.

Constraint 1: As shown by (2) the correlation coefficient of a correlated Gamma sequence z[n]
satisfies ρ0 = 1 and |ρk| ≤ 1 for k > 0.

Constraint 2: The correlation matrix Mz given by (8) is positive semi-definite. The proof is
given below.

Under the stationary and symmetric assumptions, the covariance matrix of Gamma dis-
tributed random vector z = [z[1], . . . , z[N ]]T is given by,

Σ = E
{

(z− z̄) (z− z̄)H
}

= var(z)Mz. (28)

For an arbitrary constant (non-random) vector q = [q1, . . . , qN ]T , the quadratic form is,

qHΣq = E
{(

qH(z− z̄)
) (

(z− z̄)Hq
)}

= E
{∣∣qH(z− z̄)

∣∣2} ≥ 0. (29)

Therefore the covariance matrix Σ, or equivalently the correlation matrix Mz (because of
var(z) > 0), is positive semi-definite.

These two constraints are the characteristics of Gamma distributed sequences (wide-sense
stationary sequences) and independent of simulation methods. If the hybrid method is used to
generate correlated gamma sequences, the aforementioned additional condition of ρk ≥ 0 is also
required.

The validity of the correlation using the above conditions must therefore be checked when
simulating a correlated Gamma process with a given set of correlation coefficients. Any correlation
not satisfying the above constraints cannot be realised accurately by the above methods. For
example, consider the correlation coefficient,

ρk = |cos(0.1πk)| e−k/10, |k| = 0, 1, . . . . (30)

A simple check indicates that Mz is not positive semi-definite and hence the desired correlation
cannot be precisely generated by any of the above simulation methods. However, for a correlation
coefficient of,

ρk = cos(0.125πk)e−k/10, |k| = 0, 1, . . . , (31)
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the corresponding Mz is positive definite and hence the desired correlated correlation can be
simulated by the MNLT methods. However, due to the condition of ρk > 0 not being satisfied, the
proposed hybrid method is unable to produce the desired correlation.

4.2 Examples with the Hybrid Method

To demonstrate the hybrid method, two numerical examples are now presented. The first has a
correlation coefficient of,

ρk = [0.7 + 0.3 cos(0.12π k)] e−k/12, k = 0, 1, 2, . . . . (32)

The desired shape parameter is ν = 3.7 which gives ν0 = 3.5 and ∆ν = 0.2. A simple check
shows the condition of ηk = ρkν/ν0 < 1 is satisfied. Therefore, the linear transform was used to
generate a correlated dataset that has a Γ(3.5, 1) distribution with a correlation coefficient of ηk.
The second uncorrelated dataset having a Γ(0.2, 1) distribution was simply produced by calling
the MATLAB function gamrnd. The combination of the two will then give a Γ(3.7, 1) distribution
with the desired correlation coefficient of ρk. Even though typical radar systems may only collect
a few hundred range bins at a time, a sequence containing 106 samples was generated to ensure
there are sufficient samples for confirming the actual correlation. The comparison between the
desired and simulated correlations, probability and cumulative densities are shown in Figure 2. It
can be seen that the desired correlation of the Gamma has been precisely achieved. The second
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Figure 2: Comparison between the desired and simulated correlation coefficients for Example 1:
(—) exact, (-·-) simulated: (top) one-sided correlation coefficients; (middle) PDF’s of the Gamma
and (bottom) CDF’s of the Gamma.
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example has a correlation coefficient of,

ρk = e−k/10, k = 0, 1, 2, . . . . (33)

In this case, the desired shape parameter is ν = 0.7 which gives ν0 = 0.5 and ∆ν = 0.2. A
simple check shows the condition of ηk = ρkν/ν0 < 1 is not satisfied. Therefore, the linear
transform is used to generate a correlated dataset that has a Γ(0.5, 1) distribution and the MNLT
method described in Subsection 2.4 is used to generate a correlated dataset that has a Γ(0.2, 1)
distribution. Both of them have a correlation coefficient of ρk. The combination gives a dataset
that has a Γ(0.7, 1) distribution and the desired correlation. The comparison between the desired
and simulated correlation coefficients, probability and cumulative densities are shown in Figure 3.
The results again show that the desired correlation of the Gamma has been precisely achieved.

C
D

F

Cumulative values (linear)

P
D

F

Simulated values (dB)

Lag

C
o

rr
el

at
io

n
co

ef
f.

0 1 2 3 4 5

−30 −20 −10 0 10 20

0 20 40 60 80 100

0

0.5

1

0

0.05

0.1

0

0.5

1

Figure 3: Comparison between the desired and simulated correlation coefficients for Example 2:
(—), exact (-·-) simulated: (top) one-sided correlation coefficients; (middle) PDF’s of the Gamma
and (bottom) CDF’s of the Gamma.

4.3 Comparison of Algorithms

In this section, comparisons among the hybrid method, numerically integrated MNLT approach as
well as the polynomial MNLT implementation are performed in terms of accuracy and timeliness.
In particular, the shape parameter is varied from 0.1 to 10 in steps of 0.1 and the mean is set to 1.
104 samples are generated for each realisation and the result is averaged 100 times. It was noted
that the polynomial MNLT method does not work efficiently below a shape of 0.3.

14 UNCLASSIFIED



UNCLASSIFIED DSTO–TR–2688

The first comparison looked at the accuracy of the measured auto-correlation function by com-
paring the simulated with the desired. It was found that each of the three methods are very accurate
with the maximum RMS error over the 100 iterations being less than 0.002.

The second comparison looks at the relative error in the shape parameter and scale by sub-
tracting the maximum likelihood estimate from the true value and dividing that result by the true
value. Figure 4 shows the results with the shape in the top plot and scale in the bottom. The shape
parameter estimate is quite good for each method with a small relative error. However, there is a
slight increase in the relative error for the polynomial MNLT method when the shape is below 0.7.
The scale estimate is also very accurate for all methods when the shape is above 1. For low shape
parameters, however, the hybrid method is more accurate.

The third comparison looks at the second, third and fourth order moments of the simulated
data. These are also known as the variance, skewness and kurtosis. Figure 5 shows that all three
methods produce accurate moments with the numerically integrated MNLT method being less
accurate at low shape parameters.

An exact expression for the algorithm complexity is difficult, as the exact implementation
details are not known for all algorithms. Instead, the final comparison looks at the mean run times
for the three methods. Figure 6 shows that the polynomial MNLT method is the slowest by an
order of magnitude, while the performance of the hybrid method varies depending on the shape
value. The hybrid method is the fastest for nearly all shape values and approaches the numerically
integrated MNLT method as the shape increases. This improvement is significant considering that
the inverse incomplete Gamma function in the latter method was coded in C in order to improve
computational efficiency, while the hybrid method only uses builtin MATLAB functions.

In summary, the hybrid method is slightly more accurate at low shape values than the other
MNLT methods and has a superior mean run time. The polynomial MNLT method is less accurate
with low shape parameters and takes a significantly longer time to run.
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4.4 K-distribution Example

As a final example, two range-time (pulse) intensity images of correlated K-distributed sea-clutter
are shown in Figure 7. The temporal correlation, i.e. the correlation among the fast-varying
Gaussian component with respect to pulse, is specified by (33), while the spatial correlation, i.e.
the correlation among the slowly-varying Gamma component with respect to range bin is specified
by (32).

(a) ν=1.2

(b) ν=3.7

Figure 7: Range-time (pulse) intensity maps of correlated K-distributed sea-clutter. Both have the
same correlation but different shape parameters. Normalised intensity values ≥ 0.5 are shown as
white in the images.
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5 Conclusion

This report has systematically studied how to generate correlated Gamma processes to support the
simulation of sea-clutter for many DSTO projects. In particular, a hybrid method was proposed for
generating the desired correlated Gamma samples. The method uses only linear transformations
for most values of the shape parameter and correlation, with a non-linear transform required in
some cases. The difficulty of the non-linear transform is the mapping of the correlation of the de-
sired output to the correlation of the input, often a Gaussian process. Two MNLT implementations
were presented for comparison, one based on numerical integration and the other a polynomial
approximation. Performance of the three methods has been evaluated, focusing on the accuracy of
the desired correlated process and the timeliness for the realisation. It was found that the hybrid
method is the slightly more accurate for small shape parameters. It is also the most computation-
ally efficient and hence the fastest for nearly all shape values. This improvement is significant
considering that the numerically integrated MNLT method has the inverse incomplete Gamma
function coded in C in order to improve computational efficiency, while the hybrid method only
uses builtin MATLAB functions. The drawback of the hybrid method is, however, that it can only
handle positive correlations whilst the two MNLT methods are capable of handing both positive
and negative correlations.
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Appendix A Temporal and Spatial Correlations of
Compound K-Distributed Clutter

The compound K-distribution assumes that the data consists of a fast-varying component modu-
lated by a slowly-varying component. The fast-varying component commonly refers to the speckle
component that is a Gaussian random process with zero mean and unit variance. The slowly-
varying component also describes the underlying mean or texture with intensity modelled by a
Gamma distribution. Care must be taken when estimating the correlations of these components
as the slowly-varying component may not always remain constant when estimating the temporal
correlation.

A.1 Temporal Correlation

The temporal correlation is present between data samples collected by a pulse train in a coherent
processing interval (CPI). Often during the CPI, it can be assumed that the slowly-varying com-
ponent remains unchanged, i.e., the slowly varying component is fully correlated (this is how the
compound K-distributed clutter got its name)4. The covariance matrix of the data is written as,

M = E
{
xxH

}
, (A1)

where expectation is with respect to the pulse for the temporal correlation, and
x = [x[0], . . . , x[N − 1]]T is an N × 1 vector collected by N pulses. Each measurement may
be further written as a product of fast-varying and slowly-varying components, according to the
model assumption,

x[n] =
√
τxf [n], (A2)

where xf [n] is the fast-varying component which is a complex Gaussian variable and τ is the
underlying mean which is constant in a CPI. Because the two components are independent,

M = E
{
xxH

}
= E {τ} E

{
xfx

H
f

}
= µMf , (A3)

where Mf = E
{

xfx
H
f

}
is the covariance matrix of the fast-varying component and µ is the

clutter mean. Therefore, the temporal correlation can be estimated using data samples and the
correlation of the fast-varying component is just the covariance matrix normalised by its mean.
Under the assumption of wide sense stationary, Mf has a Toeplitz structure of,

Mf =


1 ρ1 · · · ρN−1

ρ∗1 1 · · ·
...

...
...

. . . ρ1

ρ∗N−1 · · · ρ∗1 1

 , (A4)

where ρk = 1
µE {x[n]x∗[n+ k]} , n, k = 0, 1, . . . , N − 1.

4With reference to a maritime search radar, there is high superposition of antenna footprints with respect to succes-
sive pulses in a CPI, so the texture of sea-clutter can be assumed to be completely correlated.
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A.2 Spatial Correlation (Correlation in Range)

In order to find the correlation of the slowly varying component, the data needs to be manipu-
lated in the intensity (or amplitude) domain rather than the complex (I/Q) domain. Consider the
correlation between range bin n and n+ k, k 6= 05,

E
{√

τ [n]xf [n]
√
τ [n+ k]x∗f [n+ k]

}
= E

{√
τ [n]τ [n+ k]

}
E
{
xf [n]x∗f [n+ k]

}
. (A5)

If however, the interval between bin n and bin n+ k is greater than the radar range resolution,
E
{
xf [n]x∗f [n+ k]

}
≡ 0. Therefore, even if E

{√
τ [n]τ [n+ k]

}
6= 0, its value is not measur-

able using the I/Q data. The correlation therefore has to be found using the intensity (or amplitude)
data. The correlation coefficients of texture, τ [n] and intensity, z[n] = x2[n] are given by,

ρk =
E {τ [n]τ [n+ k]} − E2 {τ}

var(τ)
, k = 0, 1, . . . , (A6)

χk =
E {z[n]z[n+ k]} − E2 {z}

var(z)
, k = 0, 1, . . . , (A7)

with

χ0 = ρ0 = 1. (A8)

The next step is to find the relationship between χk and ρk for k 6= 0. Denoting z = τ |xf |2 = τzf ,
gives

E {z[n]z[n+ k]} = E {τ [n]τ [n+ k]zf [n]zf [n+ k]} (A9)

and since the fast-varying and slowly varying components are independent,

E {τ [n]τ [n+ k]zf [n]zf [n+ k]} = E {τ [n]τ [n+ k]}E {zf [n]zf [n+ k]} . (A10)

For k 6= 0, the value ofE {zf [n]zf [n+ k]} can be calculated using Isserlis’ Theorem [Michalowicz
et al. 2009], giving

E {zf [n]zf [n+ k]} = E
{
xf [n]x∗

f
[n]xf [n+ k]x∗f [n+ k]

}
= 1 + E

{
xf [n]xf [n+ k]

}
E
{
x∗f [n]x∗f [n+ k]

}
+E

{
xf [n]x∗f [n+ k]

}
E
{
x∗f [n]xf [n+ k]

} for k 6= 0. (A11)

If the interval between bin n and bin n+ k is greater than the radar range resolution, the last two
items of (A11) become zero and E {zf [n]zf [n+ k]} = 1, simplifying the above correlation to

E {τ [n]τ [n+ k]} = E {z[n]z[n+ k]} for k 6= 0. (A12)

5In order to simplify symbols, the same index notation is used to represent either temporal series (the index refers to
pulse numbers) or spatial series (the index refers to range bin number). There should be no confusion under the context.
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Combining (A6), (A7) and (A12) and noticing E{τ} = E{z} = µ, then gives

χk = ρk
var(τ)

var(z)
, k = 1, 2 . . . . (A13)

Equations (A8) and (A13) indicate that once the correlation of z or τ is known, the correlation of
the other can be determined. The texture τ is Gamma distributed, and the intensity z is single-look
or multi-look K-distributed, with variances given respectively as,

var(τ) = µ2/ν, (A14)

var(z) =
ν +N + 1

Nν
µ2, (A15)

where N is the number of multi-looks. Therefore, due to the effect of the fast-varying component
that is uncorrelated and randomly varying, the correlation of the intensity z is generally weaker
than the correlation of the texture τ . Only if the number of multi-looks reaches infinity, will the
fluctuations of the fast-varying component disappear (averaged to its mean value for every range
bin) and the two correlations become identical.

The final relationship is therefore found by inserting (A14) and (A15) into (A13), giving,

χk = ρk
N

ν +N + 1
, k = 1, 2 . . . . (A16)

The correctness of the above derivation is confirmed by Monte Carlo simulation where the slowly
varying Gamma component has a shape parameter of ν = 1.2 and a correlation coefficient of,

ρk = [0.7 + 0.3 cos(0.12π k)] e−k/12, k = 0, 1, . . . . (A17)

The multi-look K distributed data was then generated by modulating the uncorrelated multi-look
fast-varying Gaussian component with the correlated Gamma. The correlation coefficient for the
simulated multi-look K data was regressed and compared to the theoretical value. Figure A.2
shows a comparison between the ideal and theoretical correlation for the single look case and
with 16 looks. It can be seen that the simulated results match the theory with the multi-look
averaging reducing the variance of fast-varying component. As a result, < |x|2 >≈ 1 and hence
the correlation approaches the correlation of texture. For the single-look case, oscillation of the
uncorrelated fast-component greatly reduces the overall correlation.

For over-sampled range data, when the range interval between bin n and bin n+ k (k 6= 0) is
smaller than the range resolution, the fast-varying component is also correlated in range, resulting
in E {zf [n]zf [n+ k]} > 1 (see (A11)). The correlation of the intensity z will then be jointly
contributed by the fast-varying component and the slowly-varying component.
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(a) Correlation of gamma (b) correlation of K

Figure A1: The desired correlation of the (a) Gamma component (16 looks) and (b) the correlation
of the multi-look K data for: (-◦-, -∗-) 1 look and (-◦-, -∗-) 16 looks.
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