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ABSTRACT
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Integrated Navigation, Guidance, and Control of
Missile Systems: 2-D Dynamic Models

Executive Summary

In the past, linear kinematics models have been used for development and analysis of
guidance laws for missile/target engagements. These models were developed in fixed axis
systems under the assumption that the engagement trajectory does not vary significantly
from the collision course geometry. While these models take into account autopilot lags
and acceleration limits, the guidance commands are applied in fixed axis, and ignore the
fact that the missile/target attitude may change significantly during engagement. This
latter fact is particularly relevant in cases of engagements where the target implements
evasive manoeuvres, resulting in large variations of the engagement trajectory from that of
the collision course. The linearised models are convenient for deriving guidance laws (in
analytical form), however, the study of their performance characteristics still requires a
non-linear model that incorporates changes in body attitudes and implements guidance
commands in body axis rather than the fixed axis. In this report, azimuth and elevation
plane mathematical models for multi-party engagement kinematics are derived suitable
for developing, implementing and testing modern missile guidance systems. The models
developed here are suitable for both conventional and more advanced optimal intelligent
guidance, particularly those based on the 'game theory' guidance techniques. These
models accommodate changes in vehicle body attitude and other non-linear effects, such
as, limits on lateral acceleration and aerodynamic forces. The models presented in this
report will be found suitable for computer simulation and analysis of multi-party
engagements.
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Nomenclature

number of interceptors (pursuers) and targets (evaders)
respectively.
are x , y, z-positions respectively of vehicle i in fixed axis.

are x, y, z-velocities respectively of vehicle i in fixed axis.
are X, y, z-accelerations respectively of vehicle i in fixed axis.

are x, y, z-positions respectively of vehicle j w.r.t i in fixed axis.
are x, y, z-velocities respectively of vehicle j w.r.t i in fixed axis.
are X, y, z-accelerations respectively of vehicle j w.r.t i in fixed

axis.
are x ,y-position, velocity and acceleration vectors of vehicle i in

fixed axis.
are x, y- relative position, velocity and acceleration vectors of vehicle

j w.r.tiin fixed axis.
are x, z-position, velocity and acceleration vectors of vehicle i in

fixed axis.
are x, z- relative position, velocity and acceleration vectors of vehicle

j w.r.tiin fixed axis.
separation range of vehicle j w.r.t i in fixed axis.

closing velocity of vehicle j w.r.t i in fixed axis.
are line-of-sight angle (LOS) of vehicle j w.r.t i in yaw and pitch
planes respectively.

X, y, z-accelerations respectively achieved by vehicle i in body axis.

X, y, z-accelerations respectively demanded by vehicle i in body
axis.

is the achieved missile acceleration vector in body axis.

is the demanded missile acceleration vector in body axis.

are yaw and pitch body (Euler) angles respectively of the ith vehicle
w.r.t the fixed axis.

is the transformation matrix from body axis to fixed axis.

is the velocity of vehicle i.

autopilot's longitudinal time-constant for vehicle i.

autopilot's lateral time-constant for vehicle i.
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1. Introduction

In the past [1, 2] linear kinematics models have been used for development and analysis of
guidance laws for missile/target engagements. These models were developed in fixed axis
under the assumption that the engagement trajectory does not vary significantly from the
collision course geometry. While these models take into account autopilot lags and
acceleration limits, the guidance commands are applied in fixed axis, and ignore the fact that
the missile/target attitude may change significantly during engagement. This latter fact is
particularly relevant in cases of engagements where the target implements evasive
manoeuvres, resulting in large variations of the engagement trajectory from that of the
collision course [3]. The linearised models are convenient for deriving guidance laws (in
analytical form), however, the study of their performance characteristics still requires a non-
linear model that incorporates changes in body attitudes and implements guidance
commands in body axis rather than the fixed axis.

In this report, mathematical models for multi-party engagement kinematics are derived
suitable for developing, implementing and testing modern missile guidance systems. The
models developed here are suitable for both conventional and more advanced optimal
intelligent guidance, particularly those based on the 'game theory' guidance techniques. The
models accommodate changes in vehicle body attitude and other non-linear effects such as
limits on lateral acceleration and aerodynamic forces. Body incidence is assumed to be small
and is neglected. The models presented in this report will be found suitable for computer
simulation and analysis of multi-party engagements. Sections 2-4 of this report considers in
some detail the derivation of engagement dynamics in azimuth (Az) plane. Subsequent
sections consider the engagement dynamics in elevation (El) plane and perhaps more relevant
to trajectories that are typical of glide vehicles.

2. Development of Azimuth Plane Engagement
Kinematics Model

2.1 Translational Kinematics for Multi-Vehicle Engagement

A typical 2-vehicle engagement geometry is shown in Figure 1, we define the following
variables:
(Xi i ): are x ,y-positions respectively of vehicle i in fixed axis.
(ui Vi ):are x, y-velocities respectively of vehicle i in fixed axis.
(axi Ay, ): are x, y-accelerations respectively of vehicle i in fixed axis.

The above variables are functions of time t . Then the motion of vehicle for n interceptors and

m targets (i:i=12,...n+m) (ie. position, velocity and acceleration) in fixed (e.g. inertial) axis
is given by the following differential equations:
d
pm Xj =Uj (2.1)
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d
pradinid (2.2)
d
au, =ay; (2.3)
d
aVi = ayi (24)

For multiple vehicles i, j engagement, we define the relative variables (states) for
(i i=12,..,nj=12,...m; j= i) as follows:

Xji =Xj —Xj ! x-position of vehicle j w.r.t iin fixed axis.

Yiji =Yj—Vi: y-position of vehicle j w.r.t i in fixed axis.

Uji =Uj — Uj : x-velocity of vehicle j w.r.tiin fixed axis.

Viji =Vj —Vj ! y-velocity of vehicle j w.r.t i in fixed axis.

Ayjj =8xj ~ax; x-acceleration of vehicle j w.r.t i in fixed axis.

i
Ayji =8y —ayi y-acceleration of vehicle j w.r.tiin fixed axis.
2.1.1 Vector/Matrix Representation

We can write equations (2.1)-(2.4), in vector notation as:

d

p” X; =U; (2.5)
d
a!i =3 (2.6)
Where:
Xj = [Xi Yi ]T . is the position vector of vehicle i in fixed axis.
u; = [ui v ]T . is the velocity vector of vehicle i in fixed axis.
a; = [aXi ay; ]T . is the target acceleration vector of vehicle i in fixed axis.
Similarly, we can write the relative kinematics vector equations as:
gt Zii = Yji 2.7)
d
i =@ 78 (2.8)

Where:

Xji = [x i Vi ]T . position vector of vehicle j w.r.t i in fixed axis.
uj = [u i Vi ]T : velocity vector of vehicle j w.r.t i in fixed axis.

aji = I.ani ayji ]T =a;-a;: acceleration vector of vehicle j w.r.t i in fixed axis.

UNCLASSIFIED



UNCLASSIFIED
DSTO-TR-2706

Note: The above formulation admits consideration of engagement where one particular
vehicle (interceptor) is fired at another single vehicle (target). In other words we consider one-
against-one in a scenario consisting of many vehicles. This consideration can be extended to
one-against-many if, for example, i takes on a single value and j is allowed to take on a
number of different values.

2.2 Constructing Relative Sightline (LOS) Angles and Rates - (Rotational
Kinematics)

The separation range Rj; between vehicles j w.r.tiis given by:
1 1

2 2], T Py
Rji =(in +Yji )2 =jS x,—i)z (2.9)
The range rate Rj; is given by:
-
, XiiUii +YiiVii i Ui

gRji R;i= jildji TYijiVii =(ﬂl Jl) 2.10)
The Closing Velocity V. ji is given by:

Veji =-Rji (2.11)

The sightline angle Aj; of j w.r.tiis given by:
Yji

tanxji =— (212)
in
Differentiating both sides of the equation and simplifying, we get:
. . T
d - YiiXji  YiiXji  XjiVji = Yjilji  Xji [J]Hji
EM‘ =Aji = o = > = 5 (2.13)

Where:
b]- [—01 (1)}

Note that an approximation to (2.13) is sometimes used, although not recommended for
simulation purposes, based on the assumptions that the engagement geometry does not
deviate significantly from the collision course; in this case:

in ~ Rji =VCjiTgO; XJI ~ Rji =_chi ; Tgo =(tf —t):is the time—to—go.

Substituting this in equation (2.13) gives us:

hji=y, [T" + 1-2] (2.14)
cji \ 'go Tgo
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The measurements A, ji obtained from the seeker that are used to construct the guidance
commands are given by:

in =}."ji +A}‘"ji (2.15)

Where:
A ji - seeker LOS rate measurement error.

The above relationships (2.9)-(2.15) will also be referred to as the seeker model.

2.3 Vehicle Navigation Model

Let us define the following:

a)t(’_ . x-acceleration achieved by vehicle i in its body axis.
1

aS_ . y-acceleration achieved by vehicle i in its body axis.
1

The transformation from fixed to body axis is given by (see Figure 2):

b
ay. cosyi siny; || ax ay;

E)(I _ |: _ Vi Vi :| Xi | _ [be]_ Xi (2.16)
ay. —siny; cosy; ||ay; Hlay;

In vector/matrix notation this equation may be written as:
b b
f b

a; = [Tb]i a; (2.18)

Where:
yj: is the yaw (Euler) angle of the ith vehicle w.r.t the fixed axis. It is assumed that the body

orientation y;changes during the engagement.

T
aP =[a>t<)i asi} : is acceleration vector of vehicle i in its body axis.

=1
f b|T _fbl™?.. : . e .
To [i =[Tf J; =|T¢ J; :is the transformation matrix from body axis to fixed axis.

cosy; —siny;
[Tg ]i = [ . Vi Vi } . is the (direction cosine) transformation matrix from body to fixed
SINy; Cosy;

axis.

The vehicle velocity is given by:
1

V =(ui2+vi2);=(giTgi)2 (219)
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Now the flight path angle (=angle that the velocity vector makes with the fixed axis) is given
by:

Vi

tan(y; -B;)=—" (2.20)
1
Where:
B = tan"l[::—bJ :is the azimuth body incidence (side-slip angle), { Up, Vb} are body axis
b

velocities (Figure Al1.1).

Differentiating both sides of equation (2.20) and simplifying we get:

. . T
. U us Uiay. —Viay.  u. . |J]a;
Vi —Pi = V|UZ| _ Vluzl _ 19i . 19X _ Zi [2]—| (2.21)
\A \A \A Vi

Assuming B;,B;remain small (up >> v}, ; see also Appendix A), then we may write:

. . T
iw__ViUi _ViUi _uiayi _ViaXi _Hi [‘]]§| (222)
.2 2 2 a 2 '
dt Vit Y Vi Vi
2.4 Vehicle Autopilot Dynamics
Assuming a first order lag for the autopilot, we may write for vehicle i:
d b b b
aaXi ==Txj 8y, T Tx aXid (2.23)
d b _ b b
EaYi =-Ty; &y, + Ty ayiOI (2.24)
In vector/matrix notation equations (2.23), (2.24) may be written as:
d b b b
prct =[-Aila? +[Ai]aj) (2.25)
Where:
Tx; - Vehicle i autopilot's longitudinal time-constant.
Ty; © Vehicle i autopilot's lateral time-constant.
Ty O
MBI
Tyi
agi : x-acceleration demanded by vehicle i in its body axis.
d
a)t;i - y-acceleration demanded by vehicle i in its body axis.
d
-
glio 4= [agi a?i } : is the demanded missile acceleration (command input) vector in body
d d
axis.
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Remarks: Detailed consideration of the effects of the aerodynamic forces is contained in

8T; —8D;
Appendix A. Generally, the longitudinal acceleration agi :# of a missile is not
d i

varied in response to the guidance commands and may be assumed to be zero. However, the
. b (T-D) . o iy
nominal values: a)t(’i = will change due to changes in flight conditions and needs to be
m

included in the simulation model; this is shown in the block diagram Figure 6. The limits on

. . b .
the lateral acceleration can be implemented as: Ha Yig H Spay ., (see Appendix A).

3. Guidance Laws

3.1 Proportional Navigation (PN) Guidance

There are at least three versions of PN guidance laws that the author is aware of; these are
(for vehicle i - the pursuer against an intercept (target) vehicle j - the evader):

3.1.1. Version 1 (PN-1):
This implementation is based on the principle that the demanded body rate of the attacker
iis proportional to LOS rate to the target j (see Figure 1); that is:

Wig = NAji (3.1)

Where: N :is the navigation constant. Thus the demanded attacker lateral acceleration is given

by:

b . \

ayid = Vi\|Iid = NV,XJ, (32)
b 8T; —oD;

a, =—— 3.3
Xig m; (3.3)

3.1.2. Version 2 (PN-2):

This implementation is based on the principle that the demanded lateral acceleration of
the attacker i is proportional to the acceleration perpendicular (normal) to the LOS rate to the
target j. Now the acceleration normal to the LOS is given by:

anji =VCji Aji (3.4)
>
b _ — \
ainI = Nanji = NVCji Aji (3.5)
b OT; —oD;
a, =—-—- 3.6
Xig m; (3.6)
Where:
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VCji =—Rjj : is the 'closing velocity' between the attacker and the target.

;i - is the acceleration normal to the LOS.

3.1.3. Version 3 (PN-3):

This type of guidance law is similar to version 2 except that the normal LOS acceleration is
resolved along the lateral direction to the attacker body axis first before applying the
proportionality principal. Thus, we have:

anji =VCji}."ji (3.7)
giving us the guidance commands:
b :
ayid = Nanji COS(\|Ii - )\.“ )= NVCji COS(\|Ii - 7\.“ ) 7\.” (38)
b _ OT; —8D;
aXiOI _—mi (3.9

3.2 Augmented Proportional Navigation (APN) Guidance

Finally, a variation of the PN guidance law is the APN that can be implemented as
follows:

ap =(PNG)+ N’[be]igj (3.10)

Where:
N':is the (target) acceleration navigation constant
(PNG) :is the proportional navigation guidance law given in (3.1)-(3.7)

Remarks

e Seeker errors can be introduced by replacing A ji by ) ji in the guidance laws above.
e Incertain engagement geometries V, ji ,cos(..),sin(..)and A ji terms in the above equations

may become zero prior to termination of the engagements, particularly for manoeuvring
targets, and it may become necessary to apply additional disturbances to achieve
successful intercept.

4. Overall Azimuth Plane State Space Model

The overall non-linear state space model (e.g. for APN guidance) that can be used for
sensitivity studies and for non-linear or Monte-Carlo analysis is given below:

d

d f] b [ f] b

Egji =[Tb i LY P:Y (4.2)
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%x i flj—ig’ (43)
ap, ={(PNG)+ N'[be]igj} (4.4)
Sab=[ailal +[Ai]al, @5)
%\I’i — J:E% (4.6)

= |
The overall state space model that can be implemented on the computer is given in Table 4.1,
and the block-diagram is shown in Figure 6.

5. Extension to Elevation Plane Engagement Model

The axis transformation diagram is shown in Figure 4. We shall point out the fact that the
order of rotation is in the order (yaw, pitch and roll), i.e. (y — 06— ¢). Of course for a 2-D
yaw-pitch decoupled model ¢ = 0, however, we shall continue to follow this convention for

the derivation given in this report. Figures 2 and 5 depict the yaw and pitch transformation
diagrams separately. It will be noted, therefore, the key differences in the yaw and the pitch
derivation is the transformation matrix, and the steady-state aerodynamic forces acting in the
two planes.

5.1 Translational Kinematics for Multi-Vehicle Engagement

The development of the elevation (El) plane model follows closely the methodology used
in the development of the Az model; we define the following variables:

(Xi VZj ): are x ,z-positions respectively of vehicle i in fixed axis.
(ui W ):are x, z-velocities respectively of vehicle i in fixed axis.
(axi Az ): are x, z-accelerations respectively of vehicle i in fixed axis.

The motion of vehicle for n interceptors and m targets (i =12,...,n+ m) (i.e. position,

velocity and acceleration) in fixed (e.g. inertial) axis is given by the following differential
equations:

d
axi = U (51)
d
azi =W; (52)
d
au, =ay; 5.3)
d
aWi = aZi (54)
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For multiple vehicles i, j engagement, we define the relative variables (states) for
(i i=12,...,nj=12,.., m) as follows:

Xji =Xj —Xj ! x-position of vehicle j w.r.t iin fixed axis.

Zjj =zj—zj ! z-position of vehicle j w.r.ti in fixed axis.

Uji =Uj —Uj : x-velocity of vehicle j w.r.tiin fixed axis.

Wji =Wj —Wj : z-velocity of vehicle j w.r.tiin fixed axis.

Ayji =8xj ~A; x-acceleration of vehicle j w.r.t i in fixed axis.
azji =ay.

T z-acceleration of vehicle j w.r.t i in fixed axis.

5.1.1. Vector/Matrix Representation
We can write equations (5.1)-(5.4), in vector notation as:

% Y. =v, (5.5)

diMi = 56)
Similarly, we can write the relative kinematics vector equations as:

5oV = Vi 67)

%!ji =Cj —¢; (5.8)

Where:

y, = [Xi Z ]T : is the position vector of vehicle i in fixed axis.

V= [ui w; ]T . is the velocity vector of vehicle i in fixed axis.

;= [aXi az; ]T . is the target acceleration vector of vehicle i in fixed axis.
in = [X i Zji ]T . position vector of vehicle j w.r.t i in fixed axis.

Vii = [u i Wi ]T : velocity vector of vehicle j w.r.ti in fixed axis.

Cji = I.axji azj; ]T =Cj —C; : acceleration vector of vehicle j w.r.t i in fixed axis.
5.2 Constructing Relative Sightline (LOS) Angles and Rates - (Rotational
Kinematics)

The separation range R i between vehicles j w.r.tiis given by:

1

1
Rji =(in2+zji2)2 =(inTinj2 (59)

The range rate Rj; is given by:
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"
oV
inuji+zjiwji (X” —jl)

dRii=Rj = _ (5.10)
The Closing Velocity Vjjis given by:
Veji =Rji (5.11)

The sightline angle yj; of j w.r.tiis given by:

Zji
tanyji =—— (5.12)

in

Differentiating both sides and simplifying, gives us:

. . T
o ZEXjio ZiXji Xiwji = Zjugi Y by
ji=Yiji = 5~ > = > = 7 (5.13)

EY

Note that an approximation to (5.13) is sometimes used, although not recommended for
simulation purposes, based on the assumptions that the engagement geometry does not
deviate significantly from the collision course; in this case:

inszi=VCj.Tgo;inszi=—V T,

| ¢ji i Tgo = (tf - t):is the time-to-go.

Substituting this in equation (5.13) gives us:
. 1| Zji  Zji
Yiji = + (514)

VCji Tgo Tg02

The measurements y jiobtained from the seeker that are used to construct the guidance

commands are given by:

Yii =7Viji + ATji (5.15)

Where:
Ay ji :seeker LOS rate measurement error.

The above relationships (5.9)-(5.15) will also be referred to as the seeker model.

5.3 Vehicle Navigation Model

Let us define the following:
agi . x-acceleration achieved by vehicle i in its body axis.

a?i . y-acceleration achieved by vehicle i in its body axis.

The transformation from fixed to body axis is given by (see Figure 2):

UNCLASSIFIED
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b
ay. | |cos®; —sin®; || ax; ay;
i =[_ ' '][ XI}[be]i[ X'} (5.16)
a,. sin®;  cosO; ||ay, az;
In vector/matrix notation this equation may be written as:
b b
Cj =[Tf ]i G (5.17)
f b
Ci =[Tb]i Ci (5.18)

Where:
y;: body (Euler) angle of the ith vehicle w.r.t the fixed axis.
T
cP =[ab aP } : is acceleration vector of wvehicle i in its body axis.

=i Xi i

T -1
[th, ]i = [be ]i = [be ]i :is the transformation matrix from body axis to fixed axis.

£ cos®; sin®; | . N . . .
Tp )i =| .. :is the (direction cosine) transformation matrix.
—sin@; cosH;

The vehicle velocity is given by:

1 1
Vi =(Ui2+Wi2)E =(yiT!i)2 (519)
The body flight path angle is given by:
tan(ei — QO )= Wi
Ui

Where: a; :is the body angle of incidence angle.

Differentiating both sides and simplifying and assuming (as in section 2.3) that a;,d; are
small, we get:

dg _g o Wil Wili Ujaz —Wjay; =yiT[J]gi 5.20)
dt VERRVE: e e

5.4 Vehicle Autopilot Dynamics

Assuming a first order lag for the autopilot, we may write for vehicle i:
%agi =—Ty; a)k(’i +Ty; agid (5.21)
%agi =Ty atz’i + 1Ty a?id (5.22)

In vector/matrix notation equations (5.21), (5.22) may be written as:
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Lo =[-AJed +[Ai]e 5.23)

Where:
Ty; - Vehicle i autopilot's longitudinal time-constant.

T,; ¢ Vehicle i autopilot's lateral time-constant.

5]

b

a,. ! x-acceleration demanded by vehicle i in its body axis.
Id
atz)i :y-acceleration demanded by vehicle i in its body axis.
d
c P 4= {agi a?i } : is the demanded missile acceleration (command input) vector in body
d d
axis.

Remarks: As in the case of azimuth plane engagement, the longitudinal guidance commands

oT; —dD; , .
asi =———" are assumed to be zero. The effects of aerodynamic forces under nominal
d mj

flight conditions i.e. 52 = % +gcos0 and E)k()i = @ —gsin0 (see Appendix A) have to be

included in the simulation; these are shown as: EF in the block diagram Figure 7. The limits on

the lateral acceleration demanded can be implemented as described in Appendix A, i.e.

b
g

5.5 Guidance Laws-PN and APN Guidance

Several versions of the guidance laws derived in section 3 for the azimuth plane engagement
and these extend directly to the elevation plane case. These are briefly discussed below:

5.5.1. Version 1 (PN-1):

0iy = Nvji (5.25)
Where: N :is the navigation constant; and the demanded attacker lateral acceleration is given

by:

a?id =Vi6id = NVi"in (526)
b OT; —oD;

a, =—m 5.27
Xig m; ( )

5.5.2. Version 2 (PN-2):
anji = VCtiji (5.28)
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b .
aZid = Nanji = NVCji Yiji (529)
b OT; —dD;
a, =——— 5.30
Xig m; ( )
Where:
Ve i=" R ji ¢ is the 'closing velocity' between the attacker and the target.

A - is the acceleration normal to the LOS.

5.5.3. Version 3 (PN-3):

alZ)id = Nap;; Cos(ei ‘in)= NVe;i Cos(ei —in)in (5.31)
b OT; —oD;
%xig ~ 5.32
Xid m; ( )

5.5.4. Augmented Proportional Navigation (APN) Guidance
Finally, a variation of the PN Tuidance law is the APN that can be implemented as follows:

cp, =(PNG)+ N’[be c; (5.33)

Where:
N':is the (target) acceleration navigation constant
(PNG) :is the proportional navigation guidance law given in (3.1)-(3.7)

5.6 Overall State Space Model in Elevation Plane

The overall non-linear state space model (e.g. for APN guidance) that can be used for
sensitivity studies and for non-linear or Monte-Carlo analysis is given below:

%X]i =Vji ©1

%in =[Tt§]j o _[Tl];]i ¢ (6.2)

i AT& (63)
Yii Yii

cr, ={(PNG)+ N'[be]igj} (6.4)

%9? =[-Aile? + [Ai]QFd (6-5)

%ei =0; =% (6.6)
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The overall model that can be implemented on the computer is given in Table 5.1. and the
block-diagram is shown in Figure 7.

6. Conclusions

In this report mathematical models are derived for multi-vehicle guidance, navigation and
control model suitable for developing, implementing and testing modern missile guidance
systems. The models allow for incorporating changes in body attitude in addition to autopilot
lags, accelerometer limits and aerodynamic effects. These models will be found to be
particularly suitable for studying the performance of both the conventional and the modern
guidance such as those that arise of game theory and intelligent control theory. The following
are considered to be the main contribution of this report:
e The models are derived for Az as well as the El plane engagements for multi-vehicle
engagement scenarios,
e The models incorporate non-linear effects including large changes in vehicle body
attitude, autopilot lags, acceleration limits and aerodynamic effects,
e The models presented in this report can easily be adapted for multi-run non-linear
analysis of guidance performance and for undertaking Monte-Carlo analysis.
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Table 1: Combined (Yaw-Plane) State Space Dynamics Model for Navigation, Seeker, Guidance and

Autopilot
ALGORITHM MODULE NAME
d —
1 ali =U;
d Kinematics
Ui =3
dt
1
T 2
Rji (f,-i x,—i)
T
2 |d  (xTug)
gt i =R =
) ) Seeker
Veji =R
d JiT[J]u
_lji - .
d Rji
Aji =hji + AL
1. _NvixJI
b
2.2y = NVe;ih
b \ .
3 3. ayid = NVCji COS(\|!i —A.ji)xj'i Guidance
4. g'ﬁd =(PNG)+ N'[be]igj
dab _[a;]ab +[a;]al
4 dt ! 1=l 11=ld Autopilot
1
Vi =(QiTHi)2
T
5 L MEY
dt Vi ? Navigation
cos —sin T
el v ol -]
siny; cosy
f b
a =[Tb]i g
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Table 2: Combined (Pitch-Plane) State Space Dynamics Model for Navigation, Seeker, Guidance and

Autopilot
ALGORITHM MODULE NAME
d —
1 aX. =V
d Kinematics
a\_/i =G;

2 d . (inTMJl)
ER“ =Rii =R—ji Seeker
Cji _Rji
d inT[‘]]yji
ani =v
Vi =¥ji + A ji
1. a‘z’d =NVi7ji
2, a'gid = NVe;,7ji
30 |aad =g, cos(0; = 7ji) ¥ Guidance

4. cp =(PNG)+ N'[be]igj

4

9 =[-Aile? +[Ai]9ibd

4 dti Autopilot
1
Vi =(¥iTMi)2
5 | dg _wi'Ble
=
dt V2 Navigation
f cosO; sin®; [ f] [ b]T
[Tb]i :{—siné- cosGI}; o ki =1 l;
| |
f b
¢ =[Tb]i o
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Y2
Y1

Figure 1: Engagement Geometry for 2-Vehicles

b ay.
a |
Yi
A
b
7 A
Vi
>y,

Figure 2: Axis transformation fixed <=>body in pitch-plane

UNCLASSIFIED
17



UNCLASSIFIED
DSTO-TR-2706

Figure 3: Body Incidence

Figure 4: Axis System Convention
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Figure 5: Axis transformation fixed <=>body in pitch-plane
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V,

________________________ , cji
Kinematics :
. : .
1 ] a:: 1 A
1 QJ =1 1 X"T[J]U-- J G -d
| || 2ji =ji ulidance
' + > J. ! I Module
U X!
| i =ji 2 i
b e . ; Seeker
g ——————— Ir...;.............................................................;3...:......................:
a; ' a; aj, P 8ig
« f 1 =l d b =
lTb]i |z ) E‘# le Ji <
+ 1
+1 R
1 1
1 1
8 E Autopilot
a; J‘ uj UiT[J]au [ Vi J~ Vi
V2
"i" |
Navigation
Figure 6: Yaw-Plane Simulation Model Block Diagram
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V,

Cji

Kinematics L
J. . }
1
1
1

1
1 . C.. Yii
1 9] =) yT[J]V ji Guid
' i Vii uidance
! i I > I —» - Module
! ] .
1
C : b gid
Zi: ! :
= S [y je—
: 1 :
i . A
!
T 0; 0
~i j‘ M| VI [J]9| I J‘ 1
)
> Vi2
¢ ﬁ
Navigation

Figure 7: Pitch-Plane Simulation Model Block Diagram
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Al

Appendix A

Aerodynamic Forces and Equations of Motion

For a symmetrical body (I x =01y =1, ), the equations of motion for an aerodynamic

vehicle are given by (see Figure Al.1) [4]:

uP +qwIO —rvP =§—gsin6
m

. Y .
vP 4+ ruP —pwb =—+gcososing
m

Z
WP +pvb —qub =—+(gcosOcosd

m

1, -1
p_l_qr(z—)/):L
X IX
q_'_rp(IX_IZ):M
Iy Iy

I, —1
r+pq(y—x)=ﬁ
IZ IZ

Where:

(ub v wP ) are the vehicle velocities defined in body axis.
p,q,r):are the body rotation rates w.r.t the fixed axis defined in the body axis.

(A-1.1)
(A-1.2)
(A-1.3)
(A-1.4)

(A-1.5)

(A-1.6)

L, M, N) are the aerodynamic moments acting on the vehicle body defined in the body axis.

Iy
m:

) are the vehicle body inertias.

iis the vehicle mass.
(\V, 0, d)) :are respectively the body (Euler) angles w.r.t the fixed axis.

(X, Y, Z):are the aerodynamic forces acting on the vehicle body defined in the body axis.

For a non rolling vehiclep =p = ¢ =0; this assumption enables us to decouple the yaw and
pitch kinematics. Equations (A-1.1)-(A1.6) give us:

22

ub +qwb —rvP =§—gsin0
m
vP +ruP =i
m
WP —qub =£+gcose
L=0
. M
q=|—
y
N
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The accelerations about the vehicle body CG is given by:
aE =P + qwP - P =%—gsin6 (A-1.13)
.b b Y
ay =V +ru = (A-1.14)
a? =wP —quIO =%+gcose (A-1.15)

Where: (a;': : a$ : a? ): are the body accelerations w.r.t the fixed axis defined in the body axis.

If we consider perturbation about the nominal, we get:

a +8al :M—g(sin§+cos§89)
b +aal - (V)

Z+06Z

ad +8ad :%+g(czos§—sin§66)

A.2 2-D Yaw-Plane Kinematics Equations:

For 2-D yaw-plane kinematics only 8 = 0; 80 =0 (i.e. zero pitch motion), therefore, the X
and Y-plane steady state equations (in body axis) may be written as:

3y =%= Y (A-1.16)
al =§= (T;BL (t-D) (A-1.17)

o :(T;B):('T'—f)). Also, the total thrust is defined as:

T=T+8T, and the total drag is defined as: D= D+8D.

Where we define: :\?;

X
m

For ‘nominal flight’ condition in the yaw-plane Y = 0; and the perturbation equation is given
by:
Y

b_97 < R
Say— EBY ) (A-1.18)
b o0X (8T-06D) (. = ~ }
Sax_—_—_(SI —SD) (A-1.19)

Where :

Sa?, :represents the body axis guidance commands (lateral acceleration) applied by the
vehicle.
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) aQ :represents the body axis guidance commands (longitudinal acceleration) applied by the
vehicle. However, during guidance manoeuvre (8'7', 8[5) are not directly controlled, Hence we

may assume d a)k() to be zero.

A.3 2-D Pitch-Plane Kinematics Equations:
Unlike the previous case, for 2-D pitch-plane kinematics@#0, and for steady state
conditions, we get:

aP :%+gcos§:2+gcos§ (A-1.20)

E)t(’:%—gsiné:@—gsin@J‘T—5)—gsin§ (A-1.21)

The X, Z (pitch)-plane perturbation kinematics (in body axis) is given by:
8Z

5ad = = 5Z (A-1.22)
sal = @ ~(6T-sD) (A-1.23)

Where

SagJ :represents the body axis guidance commands (lateral acceleration) applied by the
vehicle.

As in the case of the yaw-plane, during guidance (S:I:, 85) are not directly controlled, hence
we may assume 8a§ to be zero. The reader will recognize, that in the main text of this report:

a® =5a,, al ';’di =38a, (A-1.24)

a =day a
Xdj Ydj y

A4 Calculating the Aerodynamic Forces

For the purposes of the simulation under consideration we may assume that the vehicle
thrust profile T(t), say as a function of time, is given; then the drag force D, which depends on
the vehicle aerodynamic configuration, is given by:

D= %pVZS Cp(.B) (A1.25)
Y= %pvzs c,(B)=0 (A1.26)
Z= %pvzs C_(a)=-gcos (A1.27)

Where: the term in the bracket is the dynamic pressure; p being the air density, S is the body

characteristic surface area and V is the steady-state velocity. Cpis the drag coefficient and
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C is the lift coefficient. (E, E) represent respectively the pitch- and the yaw-plane nominal
(steady-state) incidence angles. Contribution to thrust and drag due to control deflections are
small and ignored. Also:

8Y = & pVZSJ C_(3p)=0 (A1.28)

82=(%pV28JCL(8a)=—g sin 6 50 (A1.29)

(80, 8B) represent respectively the the variation in pitch- and the yaw-plane incidence angles
as a result of control demands; these are assumed to be small.

Note that for a given (8o, 8B), 8Y,8Z o V 2 the maximum/ minimum acceleration capability

of a vehicle is rated at the nominal velocity V, then the maximum/minimum acceleration at

any other velocity V is given by:
2
Hab H <p aP al |< 71 aP ;Where: p= (%J

yd Ymax ” || Zd Zmax

A.5 Body Incidence

The body incidence angles (a,)are given by (Vb Wp << Up ):

b b b b
1| W w 41| v v
a=tan"1| = ~——; B=tan = r—; ;Vp=V;= =\/ub2+vbz+wb2 ; these angles
b b uP uP

u u
represent the angle that the body makes w.r.t “flight path” or with the direction of the total
velocity vector V. In this report we shall assume that these angles are small and may be
ignored; in which case the body can be assumed to be aligned with the velocity vector.

Figure A.1. Aerodynamic variables for a missile
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